Übungsblatt 10 zu Analysis mehrerer Variablen (Lehramt Gymnasium)

Aufgabe 36: (15 Punkte)

a) Sind $A, J, T \in M(d \times d, \mathbb{C})$, T invertierbar mit $A = T^{-1}JT$, dann gilt

$$e^{tA} = T^{-1}e^{tJ}T$$

für alle $t \in \mathbb{R}$.

b) Berechne e^{tJ} für $t \in \mathbb{R}$ und

b) Es sei
$$A = \begin{pmatrix} 0 & -2 & -1 \\ 1 & -3 & -1 \\ -2 & 3 & 0 \end{pmatrix}$$
. Berechne e^{tA} .

Aufgabe 37: (15 Punkte)

- a) Zeige, daß $\widetilde{\tan}:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow \mathbb{R}$ bijektiv und stetig ist. $x \mapsto \tan(x)$
- b) Es sei arctan : $\mathbb{R} \to \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ die Umkehrfunktion von $\widetilde{\tan}$. Zeige, daß arctan differenzierbar ist und bestimme die Ableitung.
- c) Zeige, daß für alle $x \in]-1,1[$ gilt:

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1} = \arctan(x)$$

Aufgabe 38: (10 Punkte)

- a) Zeige, daß $U:=\{(x,y)\in\mathbb{R}^2: x>0, x^2-y^3>0\}$ offen ist.
- b) Zeige, daß

$$\begin{pmatrix}
x \\
y
\end{pmatrix}
\mapsto
\begin{pmatrix}
x^{y} \\
\ln(x^{2} - y^{3}) \\
x\sqrt{x^{2} - y^{3}}
\end{pmatrix}$$

differenzierbar ist und bestimme die Ableitung.

Abgabe je Zweier-/Dreiergruppe eine Lösung bis Donnerstag 17.1.2019, 14 Uhr – vor der Übung oder im Übungskasten vor der Bibiliothek, Theresienstraße 1. Stock