Übungsblatt 7 zu Mathematik I für Physiker

Aufgabe 25: (10 Punkte)

Es sei (X, d) ein metrischer Raum und $(x_n)_{n \in \mathbb{N}}$ eine Folge in X.

- a) Zeige: Sind die Teilfolgen $(x_{3n})_{n\in\mathbb{N}}$ und $(x_{7n})_{n\in\mathbb{N}}$ beide konvergent, so konvergieren sie gegen denselben Grenzwert.
- b) Zeige: Sind die Teilfolgen $(x_{2n})_{n\in\mathbb{N}}$, $(x_{2n+1})_{n\in\mathbb{N}}$ und $(x_{7n})_{n\in\mathbb{N}}$ konvergent, dann konvergiert auch $(x_n)_{n\in\mathbb{N}}$.
- c) Gib ein Beispiel einer Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} an, so daß für jedes $k\in\mathbb{N}, k\geq 2$ die Teilfolgen $(x_{kn})_{n\in\mathbb{N}}$ konvergieren, aber $(x_n)_{n\in\mathbb{N}}$ nicht konvergiert.

Aufgabe 26: (10 Punkte)

Es sei $\emptyset \neq X$ eine Menge und

$$B(X) := \{f : X \to \mathbb{R} : f \text{ ist Funktion und } f(X) \subseteq \mathbb{R} \text{ ist beschränkt} \}$$

a) Zeige, daß

$$\begin{array}{ccc} d:B(X)\times B(X) & \to & [0,\infty[\\ & (f,g) & \mapsto & d(f,g) := \sup\{|f(x)-g(x)| : x\in X\} \end{array}$$

eine Metrik auf B(X) definiert.

b) Betrachte nun den Spezialfall X=[0,1] und für $n\in\mathbb{N}$ sei $f_n:[0,1]\to\mathbb{R}$. Zeige: Für $x\mapsto x^n$ jedes $x\in[0,1]$ konvergiert die reelle Folge $(f_n(x))_{n\in\mathbb{N}}$, aber $(f_n)_{n\in\mathbb{N}}$ konvergiert nicht in (B([0,1]),d).

Aufgabe 27: (10 Punkte)

a) Zu vorgegebenen $a_1, a_2 \in \mathbb{R}$ definiere rekursiv die Folge $(a_n)_{n \in \mathbb{N}}$ durch

$$a_n := \frac{1}{7}(5a_{n-1} + 2a_{n-2})$$

für $n \geq 3$. Zeige, daß die Folge $(a_n)_{n \in \mathbb{N}}$ konvergiert und bestimme den Grenzwert.

b) Beginnend mit $b_1 := 1$ definiere die Folge $(b_n)_{n \in \mathbb{N}}$ durch

$$b_{n+1} := \sqrt{2b_n + 3}$$

für $n \geq 1$. Zeige, daß die Folge $(b_n)_{n \in \mathbb{N}}$ konvergiert und bestimme den Grenzwert.

Aufgabe 28: (10 Punkte)

Untersuche die Folgen auf Konvergenz und berechne gegebenenfalls den Grenzwert für:

a)
$$a_n := \frac{(-1)^n n^3 - n^2 + 10}{n^3 + 1}$$
.

b)
$$b_n := \frac{4n^3 + 2n^2 - 1}{n^3 + 5n - 7}$$

c)
$$c_n := n \cdot \sqrt[n]{\frac{1}{(2n)!}}$$

$$\mathrm{d}) \ d_n := \left(1 + \frac{1}{n^2}\right)^n$$

Abgabe je Zweier-/Dreiergruppe eine Lösung bis Donnerstag 7.12.2017, 10.15 Uhr – im Übungskasten vor der Bibiliothek , Theresienstraße 1. Stock oder in der Vorlesung. Markieren Sie einen Nachnamen zum Sortieren bei der Rückgabe.