Übungsblatt 4 zu Mathematik I für Physiker

Aufgabe 13: (10 Punkte)

Seien m und n teilerfremde natürliche Zahlen und zu $a \in \mathbb{Z}$ sei $[a]_m = \{a + km : k \in \mathbb{Z}\}$ die Äquivalenzklasse ¹ von a in $\mathbb{Z}/m\mathbb{Z}$. Es sei $(\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z})$ das direkte Produkt ² der Gruppen $(\mathbb{Z}/m\mathbb{Z}, [+]_m)$ und $(\mathbb{Z}/n\mathbb{Z}, [+]_n)$ und

$$\varphi: \mathbb{Z}/(mn\mathbb{Z}) \to (\mathbb{Z}/m\mathbb{Z}) \times (\mathbb{Z}/n\mathbb{Z}),$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

- a) Zeige, daß dies eine Funktion definiert, also insbesondere unabhängig von der Wahl der Repräsentanten ist.
- b) Zeige, daß φ ein Homomorphismus von Gruppen ist.
- c) Zeige, daß φ bijektiv ist.

Aufgabe 14: (10 Punkte)

Für eine Gruppe G sei

$$\operatorname{Aut}(G) := \{ \psi : G \to G : \psi \text{ bijektiver Gruppenhomomorphismus} \}$$

Zeige: $\operatorname{Aut}(G)$ bildet zusammen mit der Komposition von Abbildungen eine Gruppe ($\operatorname{Aut}(G)$, \circ).

Aufgabe 15: (10 Punkte)

Es seien $(G, *_G)$ und $(H, *_H)$ Gruppen und ein Gruppenhomomorphismus

$$\psi: H \longrightarrow \operatorname{Aut}(G)$$

 $h \longmapsto (\phi_h: G \to G)$

gegeben. Zeige: Mit der Verknüpfung

$$*: (G \times H) \times (G \times H) \rightarrow G \times H$$

 $((g_1, h_1), (g_2, h_2)) \mapsto (g_1 *_G \phi_{h_1}(g_2), h_1 *_H h_2)$

wird $(G \times H, *)$ eine Gruppe – das **semidirekte Produkt**.

Aufgabe 16: (10 Punkte)

Gegeben seien die Permutationsgruppe $S_n = \{ \sigma : \{1, ..., n\} \to \{1, ..., n\} : \sigma \text{ ist bijektiv} \}$ und ³ die Gruppe $(\mathbb{R}^n, +)$.

- a) Zeige: $\sigma \in \mathcal{S}_n$ definiert bijektiven Gruppenhomomorphismus $\phi_{\sigma}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $(x_1, ..., x_n) \longmapsto (x_{\sigma(1)}, ..., x_{\sigma(n)}).$
- b) Zeige: $\psi: \mathcal{S}_n \longrightarrow \operatorname{Aut}(\mathbb{R}^n)$ ist ein Gruppenhomomorphismus. $\sigma \longmapsto \phi_{\sigma}$.
- c) Wie sieht die Verknüpfung des semidirekten Produkts ($\mathbb{R}^n \times \mathcal{S}_n, *$) zusammen mit den obigen Gruppenhomomorphismen konkret aus?

Abgabe je Zweier-/Dreiergruppe eine Lösung bis Donnerstag 16.11.2017, 10.15 Uhr – im Übungskasten vor der Bibiliothek, Theresienstraße 1. Stock oder in der Vorlesung. Vermerken Sie auf jeder Lösung rechts oben eine Tutoriumsgruppe zur Rückgabe.

$$([a_1]_m, [b_1]_n) + ([a_2]_m, [b_2]_n) := ([a_1]_m [+]_m [a_2]_m, [b_1]_n [+]_n [b_2]_n)$$

¹also bzgl. der Äquivalenzrelation $a \sim_m b$ genau dann wenn es $k \in \mathbb{Z}$ mit a - b = km gibt (vgl. Tutorium) ²für $[a_1]_m, [a_2]_m \in \mathbb{Z}/m\mathbb{Z}$ und $[b_1]_n, [b_2]_n \in \mathbb{Z}/n\mathbb{Z}$ ist

³wie man Elemente aus dem \mathbb{R}^n addiert, darf in dieser Aufgabe als bekannt vorausgesetzt werden