Ernstfalltest zum Staatsexamen: Analysis

Aufgabe 31: (F18T1A2) Beweisen oder widerlegen Sie folgende Aussagen. Seien $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$ zwei beliebige Funktionen. Dann gilt:

a) Ist f stetig, dann ist $h: \mathbb{R} \to \mathbb{R}$ ebenfalls stetig.

$$x \mapsto \int_{0}^{g(x)} f(t)dt$$

b) Ist f stetig und ist g differenzierbar, dann ist $h: \mathbb{R} \to \mathbb{R}$ ebenfalls dif-

$$x \mapsto \int_{0}^{g(x)} f(t)dt$$

ferenzierbar.

c) Ist f beschränkt und differenzierbar und existiert $\lim_{x\to\infty} f'(x)$ im eigentlichen Sinne (dh. dieser Grenzwert existiert und hat einen endlichen Wert), dann gilt $\lim_{x\to\infty} f'(x) = 0$.

Aufgabe 32: (H13T1A3)

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} 0 & \text{für } y \le 0 \text{ oder } y \ge x^2 \\ 1 & \text{für } 0 < y < x^2 \end{cases}$$

Beweisen Sie, daß f in (0,0) unstetig ist, aber dort sämtliche Richtungsableitungen existieren.

Aufgabe 33: (H18T1A2)

Bezeichne $D:=\{(x,y)\in\mathbb{R}^2:y\geq -x^2\}$ den Definitionsbereich der Funktion $f:D\to\mathbb{R}$ mit $f(x,y):=x^2+y^2+2y$.

- a) Skizzieren Sie die Menge D.
- b) Zeigen Sie, daß die Funktion f ein globales Minimum besitzt.
- c) Bestimmen Sie das globale Minimum von f sowie alle Stellen in D, bei denen dieses angenommen wird.