Übungsblatt 11 zu Lineare Algebra (Lehramt Gymnasium)

Aufgabe 30: (10 Punkte):

Es seien $L, M \subseteq \mathbb{R}$ Intervalle, $f: L \to M$ stetig, bijektiv und streng monoton. Zeige: Die Umkehrfunktion $f^{-1}: M \to L$ ist stetig.

Aufgabe 31: (15 Punkte): Zeige:

- a) $\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ ist eine stetige, streng monoton steigende Funktion. $x \mapsto \tan(x) := \frac{\sin(x)}{\cos(x)}$
- b) In $\widehat{\mathbb{R}}$ gilt:

$$\lim_{\substack{x \to \frac{\pi}{2} \\ x \in]-\frac{\pi}{2}, \frac{\pi}{2}[}} \tan(x) = \infty \quad \text{und} \quad \lim_{\substack{x \to -\frac{\pi}{2} \\ x \in]-\frac{\pi}{2}, \frac{\pi}{2}[}} \tan(x) = -\infty$$

- c) $\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ ist ein Homö
omorphismus. $x \mapsto \tan(x) := \frac{\sin(x)}{\cos(x)}$
- d) Für die Umkehrfunktion $\arctan: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ von } \tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R} \text{ gilt } y \mapsto \arctan(y) \qquad x \mapsto \tan(x)$

$$\lim_{x\to\infty}\arctan(x)=\frac{\pi}{2}\quad \text{und}\quad \lim_{x\to-\infty}\arctan(x)=-\frac{\pi}{2}.$$

Aufgabe 32: (15 Punkte):

Es sei $n \in \mathbb{N}$, $E_n \in M_n(\mathbb{C})$ die Einheitsmatrix und $||\cdot||: \mathbb{C}^n \to [0, \infty[$ eine Norm auf \mathbb{C}^n sowie

$$\begin{aligned} |||\cdot|||: M_n(\mathbb{C}) &\to [0, \infty[\\ A &\mapsto |||A||| := \sup\{||A\underline{v}||: \underline{v} \in \mathbb{C}^n, ||\underline{v}|| \leq 1\} \end{aligned}$$

die zugehörige Operatornorm. Zu $m \in \mathbb{N}$ und $A \in M_n(\mathbb{C})$ sei weiterhin die Partialsummenfolge

$$S_m(A) := \sum_{k=0}^m \frac{1}{k!} A^k \in M_n(\mathbb{C})$$

definiert und $S_{ij,m}$ sei der Eintrag in der i-ten Zeile und j-ten Spalte von $S_m(A) = (S_{ij,m})_{1 \leq i,j \leq n}$. Zeige:

- a) Die Folge $(S_m(A))_{m\in\mathbb{N}}$ konvergiert bezüglich $|||\cdot|||$ in $M_n(\mathbb{C})$.
- b) Die Folge $(S_m(A))_{m\in\mathbb{N}}$ konvergiert bezüglich jeder Norm auf $M_n(\mathbb{C})$, insbesondere konvergiert für alle $i, j \in \{1, ..., n\}$ die Folge $(S_{ij,m})_{m\in\mathbb{N}}$ in \mathbb{C} .
- c) Es gilt $|||e^A||| \le e^{|||A|||}$.

d) Es gilt
$$\lim_{\substack{t\to 0\\t\in\mathbb{C}\backslash\{0\}}}\frac{\mathrm{e}^{tA}-E_n}{t}=A.$$

Abgabe je Zweier-/ Dreiergruppe eine Lösung bis Mittwoch, den 8.7.2020, 15 Uhr via Uni2work. Geben Sie auf den Lösungen die Namen an.

Ergänzungsaufgabe 6 (ohne Punkte/ Abgabe)

Es seien $X_1,...,X_n,Y$ Vektorräume über demselben Körper K. Eine Abbildung $\phi: X_1 \times ... \times X_n \to Y$ heißt **multilinear**, wenn für jedes $k \in \{1,...,n\}$ und für jede Wahl von $a_j \in X_j, j \neq k$ die Abbildung $X_k \to Y$ K-linear ist.

$$x_k \mapsto \phi(a_1, ..., a_{k-1}, x_k, a_{k+1}, ..., a_n)$$

Zeige: Sind $(X_1, \|\cdot\|_1), ..., (X_n, \|\cdot\|_n), (Y, \|\cdot\|)$ Banachräume über demselben Körper \mathbb{K} , dann sind für eine multilineare Abbildung $\phi: X_1 \times ... \times X_n \to Y$ äquivalent:

- a) ϕ ist stetig (bezüglich der Produkttopologie auf $X_1 \times ... \times X_n$ aus den Normtopologien $\mathcal{O}_{\|\cdot\|_1}$ auf $X_1,...$ $\mathcal{O}_{\|\cdot\|_n}$ auf X_n und der Normtopologie $\mathcal{O}_{\|\cdot\|}$ auf Y).
- b) ϕ ist stetig in **0**.
- c) Es gibt $C \in]0, \infty[$ mit

$$\|\phi(x_1, ..., x_m)\| \le C \|x_1\|_1 \cdots \|x_n\|_n \tag{1}$$

für alle $(x_1, ..., x_n) \in X_1 \times ... \times X_n$.