Tutoriumsblatt 4 zu Gewöhnliche Differentialgleichungen

Aufgabe 1:

Bestimme die maximale Lösung von

$$x' = \frac{1}{x+t} - 1$$
, $x(0) = 2$.

Aufgabe 2:

Es seien $f: \mathbb{R} \to \mathbb{R}$ stetig und $g:]x_1, x_2[\to \mathbb{R}$ lokal Lipschitzstetig und $y_1, y_2 \in]x_1, x_2[$ mit $y_1 < y_2$ und $g(y_1) = g(y_2) = 0$. Zeige, daß die maximale Lösung $\lambda: I \to \mathbb{R}$ von x' = f(t)g(x), x(0) = z für jedes $z \in [y_1, y_2]$ auf $I = \mathbb{R}$ existiert.

Aufgabe 3:

Bestimme die maximale Lösung von

$$x' = e^{t}(x^{2} - 3x + 2), \quad x(0) = \frac{3}{2}.$$