Übungen zum Staatsexamen: Analysis

Aufgabe 9: (F12T3A2)

Sei
$$f: \mathbb{C} \setminus \{1, 2\} \to \mathbb{C}$$

 $z \mapsto \frac{1}{(z-1)(2-z)}$

- a) Bestimmen Sie die Taylorreihenentwicklung von f in $\{z \in \mathbb{C} : |z| < 1\}$.
- b) Bestimmen Sie die Laurentreihenentwicklung von f in $\{z \in \mathbb{C} : 1 < |z| < 2\}$.
- c) Bestimmen Sie die Laurentreihenentwicklung von f in $\{z \in \mathbb{C} : |z| > 2\}$.
- d) Zwei reelle Zahlen $a \neq b$ erfüllen 1 < a, b < 2. Betrachten Sie die Ellipse $E = \gamma([0, 2\pi])$, wobei $\gamma: [0, 2\pi] \to \mathbb{C}$ ist. Berechnen Sie $\int\limits_{\gamma} f(z)dz$. $t \mapsto a\cos(t) + ib\sin(t)$

Aufgabe 10: (H14T3A3)

Gegeben sei eine holomorphe Funktion f auf einer Umgebung von $z_0 \in \mathbb{C}$ mit einer Nullstelle der Ordnung $p \in \mathbb{N}$ in z_0 durch die Potenzreihe

$$f(z) = \sum_{n=p}^{\infty} a_n (z - z_0)^n$$

- a) Geben Sie eine Rekursionsformel für die Koeffizienten der Laurent-Entwicklung der Funktion $\frac{1}{f}$ um z_0 an.
- b) Berechnen Sie den Hauptteil der Laurent-Entwicklung der Funktion $z\mapsto \frac{1}{\sin(z)}$ jeweils um $z_0=0$ und $z_0=\pi$.
- c) Sei Γ die Kreislinie $|z-\frac{3}{2}|=2$ orientiert im positiven Sinn. Berechnen Sie

$$\int_{\Gamma} \frac{dz}{\sin(z)}$$

Aufgabe 11: (H02T1A1)

Sei f eine holomorphe Funktion auf dem Gebiet $G = \{z \in \mathbb{C} : |z| < 1 + \rho\}$ mit $\rho > 0$ und $|f(e^{i\theta})| = c$ für $0 \le \theta \le 2\pi$.

Es sei z=0 eine einfache Nullstelle von f und $f(z)\neq 0$ für $z\in G\setminus\{0\}$. Man zeige: Es existiert ein $c_1\in\mathbb{C}$ mit $|c_1|=c$, so daß $f(z)=c_1z$ für alle $z\in G$ gilt.

Aufgabe 12: (F11T1A5) Gegeben sei die Funktion $g:D\to\mathbb{C}$ mit maxi- $z\mapsto\frac{z}{\sin(z^2-4z)}$

maler Definitionsmenge $D \subseteq \mathbb{C}$.

- a) Bestimmen Sie alle isolierten Singularitäten der Funktion g sowie jeweils deren Typ (hebbar? Polstelle wievielter Ordnung? wesentlich?).
- b) Bestimmen Sie mit Hilfe von (a) den Konvergenzradius der Potenzreihe für g um den Punkt 0. (Diese Formulierung gibt auch einen kleinen Hinweis für (a).)

Aufgabe 13: (F08T1A3)

Es sei
$$f: \mathbb{C} \setminus \{-1, 1\} \to \mathbb{C}$$

 $z \mapsto \sin\left(\frac{1}{z^2 - 1}\right)$.

- a) Von welchem Typ sind die Singularitäten bei -1 und 1?
- b) Es seien $\sum_{j=-\infty}^{\infty} a_j(z-1)^j$ und $\sum_{j=-\infty}^{\infty} b_j(z+1)^j$ Laurententwicklungen von f. Zeigen Sie

$$b_j = (-1)^j a_j$$
 für alle $j \in \mathbb{Z}$

ohne die Koeffizienten zu berechnen.

c) Beweisen Sie $\int_{|z|=2} f(z)dz = 0$.

Aufgabe 14: (H04T3A1) Es seien $f: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ und $g: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ zwei verschiedene holomorphe Funktionen und $(z_n)_{n\in\mathbb{N}}$ eine Nullfolge in $\mathbb{C}\setminus\{0\}$ mit $f(z_n)=g(z_n)$ für alle $n\in\mathbb{N}$. Zeigen Sie, daß f oder g dann eine wesentliche Singularität im Nullpunkt hat.

Aufgabe 15: (F09T3A5)

Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph und injektiv. Zeigen Sie, daß f eine nicht konstante affine Funktion ist, dh es gibt $a, b \in \mathbb{C}$ mit $a \neq 0$ und f(z) = az + b für alle $z \in \mathbb{C}$. Hinweis: Untersuchen Sie die Art der Singularität von f in ∞ .

Aufgabe 16: (F00T2A2) Berechnen Sie das Integral

$$\int_{\gamma} \frac{1}{1-z} e^{\frac{1}{z}} dz$$

für einen einfach geschlossenen, positiv orientierten Weg $\gamma,$ der die Punkte 0 und 1 umschließt.

Aufgabe 17: (F07T1A5) Es sei $f := \frac{p}{q}$ eine rationale Funktion und es sei der Grad des Nennerpolynoms q um 2 größer als der Grad des Zählerpolynoms p. Zeigen Sie, daß die Summe der Residuen von f verschwindet, dh.

$$\sum_{a \in \mathbb{C}} \operatorname{Res}(f, a) = 0.$$

Aufgabe 18: (F08T2A4) Berechnen Sie die Integrale

a)
$$\int_{0}^{2\pi} \frac{2 + \cos(3\theta)}{2 + \cos(\theta)} d\theta$$

$$b) \int_{-\infty}^{\infty} \frac{1}{1+x^4} dx$$