Mathematisches Institut der LMU Dr. Heribert Zenk D.T. Nguyen

Excercise Sheet 6

Übung 1

Let \mathcal{H}_1 , \mathcal{H}_2 be two Hilbert spaces. Let A be self-adjoint operator on \mathcal{H}_1 and B be symmetric operator and A-bounded with relative bound $\epsilon > 0$, i.e. $D(A) \subset D(B)$ and

$$||B[\phi]|| \le \epsilon ||A[\phi]|| + C_{\epsilon} ||\phi|| \quad \forall \phi \in D(A).$$

- a) Prove that $A \otimes id_{\mathcal{H}_2}$ with domain the span{ $\phi \otimes \psi : \phi \in D(A), \psi \in \mathcal{H}_2$ } and $(A \otimes id_{\mathcal{H}_2})[\phi \otimes \psi] = A\phi \otimes \psi$, is essentially self-adjoint on $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- b) Prove that the closure of $B \otimes id_{\mathcal{H}_2}$ on D(A) is relatively bounded with respect to $\overline{A \otimes id_{\mathcal{H}_2}}$ with the relative bound ϵ .

Übung 2

Let A and B be operators on Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , respectively. Prove that

- a) If $A \otimes B$ is different from zero, then $A \otimes B$ is symmetric if and only if there exists a $c \in \mathbb{K}, c \neq 0$ for which cA and $c^{-1}B$ are symmetric.
- b) $A \otimes \operatorname{id}_{\mathcal{H}_2} + \operatorname{id}_{\mathcal{H}_1} \otimes B$ is symmetric if and only if there exists a $c \in \mathbb{R}$ for which $A ic\operatorname{id}_{\mathcal{H}_1}$ and $B + ic\operatorname{id}_{\mathcal{H}_2}$ are symmetric.