Übungsblatt 11 zu Mathematische Quantenmechanik II

Aufgabe 1:

Es sei $T: \mathcal{D}(T) \to \mathcal{H}$ ein dicht definierter, abschließbarer Operator mit $T \neq 0$. Zeige, daß die zweite Quantisierung $d\Gamma(T)$ unbeschränkt ist.

Aufgabe 2:

Es sei $T: \mathcal{D}(T) \to \mathcal{H}$ selbstadjungiert mit $T \geq 0$. Zeige, daß die zweite Quantisierung $d\Gamma(T) \geq 0$ ist.

Aufgabe 3:

Es sei $\psi \in \mathcal{H}$ und $a^+(\psi) : \mathcal{F}_{b,e}(\mathcal{H}) \to \mathcal{F}_{b,e}(\mathcal{H})$ bzw. $a^-(\psi) : \mathcal{F}_{b,e}(\mathcal{H}) \to \mathcal{F}_{b,e}(\mathcal{H})$ die bosonischen Erzeugungs- und Vernichtungsoperatoren, \mathcal{N}_b der Teilchenzahloperator. Zeige

$$||a^{-}(\psi)[\Phi]|| \leq ||\psi|| \cdot ||(\mathcal{N}_b + 1)^{\frac{1}{2}}[\Phi]||$$

$$||a^{+}(\psi)[\Phi]|| \leq ||\psi|| \cdot ||(\mathcal{N}_b + 1)^{\frac{1}{2}}[\Phi]||$$

für alle $\Phi \in \mathcal{F}_{b,e}(\mathcal{H})$. Was gilt für die Abschlüße $a^*(\psi) = \overline{a^+(\psi)}$ und $a(\psi) = \overline{a^-(\psi)}$?

Aufgabe 4:

Beweise Lemma F4.