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Introduction

Brouwer’s continuity principle

The value of f(α) of a function f : NN → N depends only on a finite prefix of
the sequence α ∈ NN.

In e.g. higher-type Heyting arithmetic (HAω),

∀(f : NN → N). ∀(α : NN). ∃(n : N). ∀(β : NN). α =n β ⇒ f(α) = f(β)

is not provable (or disprovable).

But it’s validated by e.g. Johnstone’s topological topos, among other
well-known models.
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Introduction

Continuity in type theory

How should it be formulated in intuitionistic type theory?

I We of course don’t expect it to be provable.

I But much less we expect it to be disprovable.

Its Curry-Howard interpretation (CH - Cont)

Π(f : NN → N). Π(α : NN). Σ(n : N). Π(β : NN). α =n β → f(α) = f(β)

is provably false in intensional Martin-Löf type theory.

What does it mean?

What is the the correct formulation of the continuity principle in type theory?

What about uniform continuity of functions 2N → N?
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Failure of the CH interpretation of the continuity principle

Failure of the CH interpretation of the continuity principle

A theorem in intensional Martin-Löf type theory (with N,Π,Σ, Id):(
Π(f :NN→N)(α :NN). Σ(n :N). Π(β :NN). α =n β → f(α) = f(β)

)
→ 0 = 1

by adaptation of an old argument due to Kreisel, originally relying on choice
and extensionality.

By projection, CH - Cont gives a modulus-of-continuity functional

M : (NN → N)× N
N → N

assigning a modulus n = M(f, α) to f at the point α.

Trouble: While all functions NN → N may be continuous, there can’t be any
continuous modulus-of-continuity functional.
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Failure of the CH interpretation of the continuity principle

Proof of CH -Cont → 0 = 1

I Assuming CH - Cont, we get M and write M(f) = M(f, 0ω), where
I 0ω is the infinite sequence of zeros, and
I 0nkω consists of n zeros followed by infinitely many k’s.
I Two facts: 0ω =n 0nkω and (0nkω)(n) = k for any n, k.

I Let m = M(λα.0).

Define f : NN → N to be f(β) = M(λα.β(αm)).

I By expanding the definitions (which involves the ξ-rule), we get

f(0ω) = M(λα.0ω(αm)) = M(λα.0) = m.

I By the definition of M , we have

Π(β : NN). 0ω =M(f) β → m = fβ.

I Choosing β = 0M(f)+11ω, we have 0ω =M(f) β and hence f(β) = m.

I By the continuity of λα.β(αm), we get

Π(α : NN). 0ω =m α→ β0 = β(αm).

I Choosing α = 0m(M(f) + 1)ω, we have 0ω =m α and hence

0 = β0 = β(αm) = β(M(f) + 1) = 1.
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Failure of the CH interpretation of the continuity principle

Formalisation in Agda
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Failure of the CH interpretation of the continuity principle

Discussion

1. No continuous/extensional modulus-of-continuity functional M :

We used our hypothetical M to define a non-continuous function f and
hence prove M wrong.

2. And this is exactly what is happening in the topological topos:
I All functions NN → N are continuous.
I But there is no continuous way of finding moduli of continuity.

3. The conversion

f(0ω) = M(λα.0ω(αm)) = M(λα.0) = m

in the proof relies on the ξ-rule (reduction under λ).

4. In HAω, the ξ-rule, the axiom of choice, and the continuity of all functions
NN → N are together impossible.

5. Since ξ-rule holds in categories, any locally cartesian closed category with
a natural numbers object (e.g. any topos) disproves CH - Cont.
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Propositions and propositional truncations

Propositional truncation

A type is called a proposition if it has at most one element.

A propositional truncation of a type X, if it exists, is a proposition ‖X‖
together with a map | − | : X → ‖X‖ such that for any proposition P and
f : X → P we can find f̄ : ‖X‖ → P .

X
|−| //

f

##

‖X‖

f̄

��
P

Intuitively, ‖X‖ is

I the truth value of the inhabitedness of X;

I the quotient of the type X by the chaotic equivalence relation.
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Propositions and propositional truncations

The logic of propositions in HoTT and toposes

In HoTT, ‖X‖ is defined as a higher inductive type.

The logic of propositions

⊥ :≡ 0

> :≡ 1

P ∧Q :≡ P ×Q
P ∨Q :≡ ‖P +Q‖
P ⇒ Q :≡ P → Q

∀(x :A).P (x) :≡ Π(x :A).P (x)

∃(x :A).P (x) :≡ ‖Σ(x :A).P (x)‖
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Propositions and propositional truncations

The correct type-theoretic formulation of continuity

Π(f :NN→N)(α :NN). ‖ Σ(n :N). Π(β :NN). α =n β → f(α) = f(β) ‖

I It’s validated in e.g. the topological topos.

I The continuous dependency of n on inputs f and α is now broken.

I Because the axiom of choice

Π(x :X).‖Σ(y :Y ).A(x, y)‖ → ‖Σ(f :X→Y ).Π(x :X).A(x, y)‖

is not provable.
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Equivalence of the two formulations of uniform continuity

Uniform continuity of functions 2N → N

∀(f : 2N → N). ∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β)

I Not provable but consistent in HAω.

I Its Curry–Howard interpretation

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → f(α) = f(β)

is also consistent in MLTT.

I Moreover, it’s logically equivalent to

Π(f : 2N → N). ‖ Σ(n : N). Π(α, β : 2N). α =n β → f(α) = f(β) ‖
assuming function extensionality.
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Equivalence of the two formulations of uniform continuity

Disclosing secrets from truncations

In general we don’t have ‖X‖ → X for arbitrary X, because it gives a
constructive taboo and also contradicts univalence.

However, for some types X, we can disclose a secret ‖X‖ to X.

Lemma. For any family A of types indexed by natural numbers such that

1. A(n) is a proposition for every n : N, and

2. A(n) implies that A(m) is decidable for every m < n

we have
Σ(n :N).A(n) ↔ ‖Σ(n :N).A(n)‖.

Proof sketch of (←). Given n with A(n), we can find the minimal k with A(k),
using the decidability of A(m) for m < n. Since “having a minimal k with
A(k)” is a proposition (proved using function extensionality), the elimination
rule of ‖ − ‖ gives the desired result.
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Equivalence of the two formulations of uniform continuity

Equivalence of the two formulations of uniform continuity

Theorem. The proposition

Π(f : 2N → N). ‖ Σ(n : N). Π(α, β : 2N). α =n β → f(α) = f(β) ‖

is logically equivalent to the type

Π(f : 2N → N). Σ(n : N). Π(α, β : 2N). α =n β → f(α) = f(β).

Proof sketch. Use the lemma by taking

A(n) :≡ Π(α, β : 2N). α =n β → f(α) = f(β).
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Equivalence of the two formulations of uniform continuity

Adding uniform continuity to type theory

Simply adding a constant as an axiom Ax to a theory T may destroy its
canonicity, i.e. not every closed natural number in T evaluates to a numeral.

Instead, one can build a constructive/computational model M of the theory T

T [[− ]]−−−→M

such that the axiom Ax has an interpretation [[Ax]] ∈M.

Then the evaluation of terms in T + Ax becomes the one in the model M.

We build such a model of type theory extended with the uniform-continuity
principle, using C-spaces.
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Equivalence of the two formulations of uniform continuity

C-spaces and continuous maps

Def. A C-topology on a set X is a collection P of probes 2N → X subject to
the following probe axioms:

1. All constant maps are in P .

2. If t : 2N → 2N is uniformly continuous and p ∈ P , then p ◦ t ∈ P .
(Presheaf condition)

3. For any two maps p0, p1 ∈ P , the unique map p : 2N → X defined by
p(i ∗ α) = pi(α) is in P .
(Sheaf condition)

A C-space is a set X equipped with C-topology.

A function f : X → Y of C-spaces is continuous if f ◦ p ∈ PY whenever
p ∈ PX . (Naturality condition)

Continuity in Type Theory Mathematisches Institut, Ludwig-Maximilians-Universität München



Introduction Continuity of functions NN → N Propositional truncations Uniform continuity of functions 2N → N

Equivalence of the two formulations of uniform continuity

Examples of C-spaces

All continuous maps from 2N (with the usual topology) to any topological
space X form a C-topology on X:

I Any constant map 2N → X is continuous.

I The composite 2N t−→ 2N p−→ X of two continuous maps is continuous.

I The sheaf condition is satisfied because 2N is compact Hausdorff.

Any continuous map of topological spaces is continuous w.r.t. the above
C-topology, as composition preserves continuity.
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Equivalence of the two formulations of uniform continuity

Discrete C-spaces

Def. A map p : 2N → X into a set X is called locally constant iff
∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β).

Lemma
The locally constant maps 2N → X form a C-topology which has the smallest
amount of probes on X.

Def. A C-space X is discrete if all functions X → Y into any C-space Y are
continuous.

Lemma
A C-space is discrete iff its probes are precisely the locally constant functions.

Def. We thus refer to the collection of all locally constant maps 2N → X as
the discrete C-topology on X.

• The discrete C-topology on 2 or N is the set of uniformly continuous maps.

• The discrete space 2 is the coproduct of two copies of the terminal space.

• The discrete space N is the natural numbers object.
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Equivalence of the two formulations of uniform continuity

Yoneda Lemma and Fan functional

The monoid C of uniformly continuous 2N → 2N is a C-topology on 2N.

(2N,C) = the exponential of the two discrete C-spaces

The Yoneda Lemma says that a map 2N → X into a C-space X is a probe iff it
is continuous in the sense of the category of C-spaces.

Lemma
The exponential N2N

is a discrete C-space.

Theorem
There is a continuous functional fan: N2N

→ N that calculates (minimal)
moduli of uniform continuity.
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Equivalence of the two formulations of uniform continuity

Modelling uniform continuity

C-spaces provide a model of system T and dependent types:

1. Cartesian closed structure — simply typed λ-calculus.

2. Locally cartesian closed structure — dependent types.

3. Natural numbers object — base type and primitive recursion principle.

Theorem
The uniform continuity axiom

∀(f : 2N → N). ∃(n : N). ∀(α, β : 2N). α =n β ⇒ f(α) = f(β)

is validated by the fan functional.
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Equivalence of the two formulations of uniform continuity

Computing moduli of uniform continuity

A Gödel’s T term f : (N→ 2)→ N (or a term in MLTT)

A continuous map [[f ]] : 2N → N in C-Space

[[− ]]

[[f ]] is uniformly continuous (as Σ)

Yoneda Lemma

The least modulus of uniform continuity of f

pr1, pr2

An Agda program
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