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1 . We want to use the geometric series (cf. Tutorials). In order to obtain a power
series with center a =−1, we first have to rewrite f in the following way:

f (z) =
1

1− (z+1)+1
=

1
2
· 1

1− (z+1)/2
.

Now we can apply the geometric series to (z+1)/2 and obtain

f (z) =
1
2

∞

∑
n=0

((z+1)/2)n

=
∞

∑
n=0

2−(n+1)(z+1)n.

The geometric series used here converges for |(z+1)/2|< 1, i.e. for |z+1|< 2,
hence the radius of convergence of the resulting power series is 2. Alternatively, we
can compute with the ratio test

lim
n→∞

∣∣∣∣∣2−(n+2)

2−(n+1)

∣∣∣∣∣= lim
n→∞

1
2
=

1
2
.

The domain of convergence is sketched below:
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a 1

R = 2

Re

Im

2 . i) The criterion of Cauchy-Hadamard states that

1
R
= limsup

n→∞

n
√
|cn|.

By definition of the limes superior, there exists a subsequence of ( n
√
|cn|)n∈N which

converges to 1
R . If there are only finitely many n such that n

√
|cn| ≥ 1

r , this implies
that

1
R
≤ 1

r
,

and hence R≥ r.

ii) The assumption implies that there exists a subsequence of ( n
√
|cn|)n∈N which is

bounded from below by 1
r . Then by definition of the limes superior and

Cauchy-Hadamard we get

1
r
≤ limsup

n→∞

n
√
|cn|=

1
R

and hence R≤ r.

3 . i) For f we can use the ratio test to compute∣∣∣∣1/(n+1)2

1/n2

∣∣∣∣= n2

(n+1)2

which converges to 1 for n→ ∞. Hence the radius of convergence for f is 1
1 = 1.
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For g we can use the representation

g(z) =
∞

∑
n=0

cnzn

where

cn :=

{
1 n = k! for a k ∈ N,
0 else.

In this form, we see that g is dominated by the geometric series and the dominated
convergences theorem implies that g converges for |z|< 1. It is also easy to see that
for |z| ≥ 1

lim
n→∞

∣∣zn!∣∣ 6= 0,

hence g diverges for |z| ≥ 1 and the radius of convergence is also 1.

ii) We already solved the boundary for g in part i). For f , we can use the
well-known fact that the series

∞

∑
n=1

1
n2

converges to π2

6 to conclude that f converges on the boundary.

4 . We can define

cn :=

{
2n/2 n even,
0 n odd,

to rewrite

f (z) =
∞

∑
n=0

cnzn.

Then the criterion of Cauchy-Hadamard yields

1
R
= limsup

n→∞

n
√
|cn|.

To compute the limes superior, we have to determine all limit points of
subsequences of n

√
|cn|. These are obviously 0 for the subsequence of odd integers

and
√

2 for the subsequence of even integers, hence the limes superior is
√

2 and
the radius of convergence is R = 1√

2
.
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For g we can use the the dominated convergence theorem and the geometric series
since |cos(n)| ≤ 1 to obtain that g converges for all z ∈ C with |z|< 1.
For proving that the radius of converges is indeed 1, we need to show the hint:
We first show that the sequence (cos(n))n∈N does not converge to 0.
Suppose (cos(n))n∈N would converge to 0, then we can use the well-known
formula

cos(2n) = 2cos(n)2−1

and pass to the limit on both sides. This yields 0 =−1, which is a contradiction.
Now the definition of convergence implies that there must exist an α > 0 such that
for any N ∈ N there exists an n≥ N with cos(n)> α .

Now for z ∈ C with |z|> 1, we can use the hint to conclude that there exists a
subsequence of (cos(n)zn)n∈N which is bounded from below by α > 0, hence

lim
n→∞
|cos(n)zn| 6= 0,

and g diverges. Altogether we find that the radius of convergence for g is 1.
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5 . i) By definition we obtain:(
σ

n+1

)
=

σ · (σ −1) · · ·(σ −n+1) · (σ −n)
(n+1)!

=
σ · (σ −1) · · ·(σ −n+1)

n!
· σ −n

n+1

=
σ −n
n+1

·
(

σ

n

)
.

ii) For σ ∈ N and n > σ we get
(

σ

n

)
= 0, hence

fσ (z) =
σ

∑
n=0

(
σ

n

)
zn

is a polynomial and converges for all z ∈ C.
Now we have to prove the binomial formula

(a+b)σ =
σ

∑
n=0

(
σ

n

)
anbσ−n (1)

for any σ ∈ N and a,b ∈ C. This can be proven by induction on σ :
For σ = 0, we get

0

∑
n=0

(
0
n

)
anb0−n = 1 = (a+b)0.

Now we assume that (1) holds for a σ ∈ N. Then we get
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(a+b)σ+1 = (a+b) · (a+b)σ

IH
= (a+b) ·

σ

∑
n=0

(
σ

n

)
anbσ−n

=
σ

∑
n=0

(
σ

n

)
an+1bσ−n +

σ

∑
n=0

(
σ

n

)
anbσ+1−n

= aσ+1 +
σ−1

∑
n=0

(
σ

n

)
an+1bσ−n +

σ

∑
n=1

(
σ

n

)
anbσ+1−n +bσ+1

= aσ+1 +
σ

∑
n=1

((
σ

n−1

)
+

(
σ

n

))
︸ ︷︷ ︸

Tut.
= (σ+1

n )

anbσ+1−n +bσ+1

=
σ+1

∑
n=0

(
σ +1

n

)
anbσ+1−n.

Using this formula for a = z and b = 1 we obtain the desired result.

iii) Using the ratio test, we find

1
R
= lim

n→∞

∣∣∣∣( σ

n+1

)
/

(
σ

n

)∣∣∣∣
i)
= lim

n→∞

∣∣∣∣σ −n
n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣ σ

n+1︸ ︷︷ ︸
→0

− n
n+1︸ ︷︷ ︸
→1

∣∣∣∣
= 1.

6 . Let z ∈ C with |z|< min{R1,R2}. Then f1(z) and f2(z) converge and hence
also f3(z) = ( f1 + f2)(z) converges to f1(z)+ f2(z). Since this is true for all z
with |z|< min{R1,R2}, the radius of convergence R3 must be at least this
minimum.

Now suppose that R1 6= R2 and without loss of generality we can assume R1 > R2.
From the first part, we know that R3 ≥ R2. Suppose now that R3 > R2. Then we can
choose a z ∈ C such that R2 < |z|< R3 and |z|< R1. This implies that f1 and f3
converge at z, which yields that

f2(z) = ( f3− f1)(z) = f3(z)− f1(z)

converges. But this is a contradiction to the assumption |z|> R2.
Therefore, R3 = R2 and we are done.
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7 . i) Using the partial fraction decomposition as suggested by the hint, we obtain
that f1(z) = 1

a−b and f2(z) = 1
b−a . Then we can use the geometric series to compute

f (z) = f1(z)
1

1−az
+ f2(z)

1
1−bz

= f1(z)
∞

∑
n=0

(az)n + f2(z)
∞

∑
n=0

(bz)n

=
∞

∑
n=0

(
an

a−b
+

bn

b−a

)
zn

=
∞

∑
n=0

an−bn

a−b
zn.

ii) We used the geometric series for az and bz, hence the radius of convergence of
the first power series is R1 =

1
|a| and of the second power series is R2 =

1
|b| . By

exercise 6 we obtain that the radius of convergence of the power series computed in
i) is

R3 ≥min{|a|−1 , |b|−1}.

If |a| 6= |b|, we get immediately an equality here. If |a|= |b|, we have b = ζ ·a with
|ζ |= 1,ζ 6= 1 and the coefficients can be rewritten as

an−bn

a−b
= an−1 1−ζ n

1−ζ
.

Since |ζ |= 1, we get that 0 < |1−ζ n| ≤ 2 for any n ∈ N. Moreover, for any ζ 6= 1
on the unit circle, there exist infinitely many n such that the real part of ζ n is
negative, hence |1−ζ n|> 1. This, together with the fact that the sequence n

√
c

converges to 1 for any constant c > 0, implies

1
R3

= limsup
n→∞

n

√
|a|n

|a|
· |1−ζ n|
|1−ζ |

= |a| · limsup
n→∞

n
√
|1−ζ n|

= |a| .

Hence R3 =
1
|a| .

8 . i) We compute

7



(1−αz−β z2) f (z) =
∞

∑
n=0

cnzn−
∞

∑
n=0

αcnzn+1−
∞

∑
n=0

βcnzn+2

= c0 + c1z+
∞

∑
n=0

cn+2zn+2−αc0z−
∞

∑
n=0

αcn+1zn+2−
∞

∑
n=0

βcnzn+2

= c0 +(c1−αc0)z+
∞

∑
n=0

(cn+2−αcn+1−βcn)zn+2.

If we assume now that the coefficients satisfy the given relations, we see that the
series in the above expression vanishes and inserting the values of c0 and c1 yields

(1−αz−β z2) f (z) = z.

If we assume that f (z) satisfies the given relation, we can compare the coefficients
to conclude that c0 = 0, c1 = 1 and cn+2 = αcn+1 +βcn.

ii) We define

f (z) =
z

1− z− z2 =
z

(1−Φz)(1−Φ ′z)
,

where Φ−1 and Φ ′−1 are the zeros of 1− z− z2, i.e.

Φ
−1 =−1−

√
5

2
, Φ

′−1 =−1+
√

5
2

,

Φ =
1+
√

5
2

, Φ
′ =

1−
√

5
2

.

Using exercise 7, we obtain that f (z) can be expanded as a power series with radius
of convergence given by

min{|Φ | ,
∣∣Φ ′∣∣}= ∣∣Φ ′∣∣> 0.

Since f (z) is a convergent power series, we can use part i) to conclude that its
coefficients satisfy the recursive relation of the Fibonacci numbers, i.e. we have
indeed

∞

∑
n=0

cnzn = f (z) =
z

1− z− z2.

Moreover, we get from exercise 7 the closed form of the Fibonacci numbers

cn =
Φn−Φ ′n

Φ−Φ ′
=

1√
5
(Φn−Φ

′n).

Note that Φ ′ = 1−Φ and Φ is the well-known golden ratio.
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9 . i) Using the Cauchy product formula and the binomial formula from exercise
5ii), we obtain

exp(z1) · exp(z2) =

(
∞

∑
n=0

zn
1

n!

)
·

(
∞

∑
n=0

zn
2

n!

)

=
∞

∑
n=0

(
n

∑
k=0

zk
1

k!
·

zn−k
2

(n− k)!

)

=
∞

∑
n=0

1
n!

n

∑
k=0

n!
k!(n− k)!︸ ︷︷ ︸

=(n
k)

·zk
1zn−k

2

=
∞

∑
n=0

(z1 + z2)
n

n!

= exp(z1 + z2).

ii) Using i) and the Euler identity from the Tutorial, we obtain

sin(x+ y) =
1
2i
(exp(i(x+ y))− exp(−i(x+ y)))

=
1
2i
(exp(ix)exp(iy)− exp(−ix)exp(−iy))

=
1
2i
((cos(x)+ isin(x))(cos(y)+ isin(y))− (cos(−x)︸ ︷︷ ︸

=cos(x)

+isin(−x)︸ ︷︷ ︸
=−sin(x)

)(cos(−y)+ isin(−y)))

=
1
2i
(cos(x)cos(y)− sin(x)sin(y)+ i(cos(x)sin(y)+ cos(y)sin(x))

− cos(x)cos(y)+ sin(x)sin(y)+ i(cos(x)sin(y)+ cos(y)sin(x)))

=
1
2i
·2i(cos(x)sin(y)+ cos(y)sin(x))

= cos(x)sin(y)+ cos(y)sin(x).
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Analogously, we get

cos(x+ y) = cos(x)cos(y)− sin(x)sin(y).

10 . i) With the ratio test, we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ (−1)n+2 ·n
(n+1) · (−1)n+1

∣∣∣∣= lim
n→∞

∣∣∣∣ n
n+1

∣∣∣∣= 1,

hence R = 1
1 = 1. For z = 1, we get the well-known alternating harmonic series

which converges to the value ln(2).

ii) Let SN := ∑
N
n=1

(−1)n+1

n and TN := 1+∑
N
n=1
( 1

4n−1 −
1
2n +

1
4n+1

)
. Then we get

S4N +
1
2

S2N =
4N

∑
n=1

(−1)n+1

n
+

2N

∑
n=1

(−1)n+1

2n

=
N

∑
n=1

(
1

4n−3
− 1

4n−2
+

1
4n−1

− 1
4n

)
+

N

∑
n=1

(
1

4n−2
− 1

4n

)
=

N

∑
n=1

(
1

4n−3
− 1

2n
+

1
4n−1

)
= 1+

N

∑
n=1

(
1

4n+1
− 1

2n
+

1
4n−1

)
= TN .

Since

lim
N→∞

S4N = lim
N→∞

S2N = lim
N→∞

SN = f (1),

we get

f̃ (1) = lim
N→∞

TN = lim
N→∞

S4N +
1
2

lim
N→∞

S2N =
3
2

f (1).

11 . i) We use induction on n and first compute

|d1|= |c1| ≤M =
1
2
· (2M)1.

Now assume that

|dn| ≤
1
2
· (2M)n

for an n≥ 1. Then we get
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|dn+1|=

∣∣∣∣∣− n

∑
k=0

dk · cn+1−k

∣∣∣∣∣≤ n

∑
k=0
|dk| · |cn+1−k| ≤

n

∑
k=0

1
2
(2M)k ·Mn+1−k =

1
2
·Mn+1

n

∑
k=0

2k

︸ ︷︷ ︸
=2n+1−1

≤ 1
2
· (2M)n+1.

ii) The criterion of Cauchy-Hadamard states that

1
R
= limsup

n→∞

n
√
|dn| ≤ limsup

n→∞

n

√
1
2
·2M = 2M,

Hence R≥ 1/(2M)> 0.

iii) Let f (z) be an analytic function on U . Since f (z) 6= 0 for all z ∈U , the function

1/ f : U −→ C
z 7−→ f (z)−1

is well-defined. Now we have to show that this function is analytic, i.e. for any
z0 ∈U , we have to define a convergent power series gzo(z) with center z0 such that
gz0(z) converges to 1/ f on a suitable domain. Since f is analytic we can expand
f (z) as a power series at z0 with radius of convergence Rz0 , i.e. we can write

f (z) = f (z0)
∞

∑
n=0

cn(z− z0)
n, for z ∈ C with |z− z0|< Rz0 ,

with c0 = 1 and |cn| ≤ 1/Rn
z0

for almost all n. Since f (z0) 6= 0, we can define

gz0(z) :=
1

f (z0)

∞

∑
n=0

dn(z− z0)
n,

where dn is the recursive sequence defined in the exercise. By part ii), we know
that this is a convergent power series. Then we compute for |z− z0|< Rz0/2

f (z)g(z) =

(
∞

∑
n=0

cn(z− z0)
n

)
·

(
∞

∑
n=0

dn(z− z0)
n

)

=
∞

∑
n=0

(
n

∑
k=0

dk · cn−k

)
(z− z0)

n

= 1+
∞

∑
n=1

(
dn +

n−1

∑
k=0

dk · cn−k︸ ︷︷ ︸
=−dn

)
(z− z0)

n

= 1,

11



hence g = 1/ f .

12 . i) Let f (z) := ∑
∞
n=0 anzn,g(z) := ∑

∞
n=0 bnzn ∈ C{z}. Then by exercise 6

f (z)+g(z) =
∞

∑
n=0

(an +bn)zn

is a convergent power series with center 0, i.e. it is an element of C{z}. Now the
addition is reduced to the adding the coefficients, hence the group structure with
respect to + is inherited from the group structure on C.
From the lecture, we know that the Cauchy product

f (z)g(z) =
∞

∑
n=0

( n

∑
k=0

akbn−k

)
zn

is also convergent and hence an element of C{z}. The commutativity, associativity
and distributivity follow in exactly the same way as for polynomials. The unit is
given by the power series with constant coefficient c0 = 1 and all other coefficients
cn = 0.
ii) For f ,g ∈ C{z} with f (0) = 0 = g(0), we clearly have

( f +g)(0) = f (0)+g(0) = 0+0 = 0,

so f +g ∈m. Hence, m is an abelian group. For f ∈m and g ∈ C{z}, we obtain

( f ·g)(0) = f (0) ·g(0) = 0 ·g(0) = 0,

so f ·g ∈m and m is indeed an ideal.

iii) Let f ∈ C{z}\m. Then f (0) 6= 0 and we can write

f (z) = f (0)
∞

∑
n=0

cnzn,

with c0 = 1. Using the coefficients dn from exercise 11, we obtain

g(z) :=
1

f (0)

∞

∑
n=0

dnzn

and as in the solution of 11iii), it follows f (z) ·g(z) = 1. Hence, any element
in C{z}\m is a unit, i.e.

C{z}? = C{z}\m.

Therefore, m is the only maximal ideal of C{z} (see Tutorial). For the quotient
field, we consider the map
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ϕ : C{z} −→ C
f (z) 7−→ f (0).

An easy computation shows, that ϕ is a ring homomorphism. It is surjective, since
for any a ∈ C, the constant power series f (z) = a is mapped to a. The kernel of ϕ

is exactly given by m and the homomorphism theorem gives

C{z}/m∼= C.
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13 . i) Since |sin(x)| ≤ 1 for all x ∈ R, we see that

| f (x)| ≤ |x| x→0−−→ 0,

hence f is continuous.
ii) Assume that there exists such a domain G and an analytic function F which
extends f . Since F(0) = 0 but F 6= 0, the theorem of isolated zeros implies, that
there must exist an ε > 0 such that F(z) 6= 0 for all z with 0 < |z|< ε . But for any
ε > 0, there exists an n ∈ N such that 1

nπ
< ε and we obtain

F
(

1
nπ

)
= f

(
1

nπ

)
=

1
nπ
· sin(nπ) = 0.

This is a contradiction, hence there is no such analytic function.

14 . We can use the series expansion from the lecture to obtain

sin(z) =
∞

∑
n=0

(−1)n z(2n+1)

(2n+1)!
= z− z3

6
+O(z5).

With this, we obtain

sin2(z) =
(

z− z3

6
+O(z5)

)2

= z2− z4

3
+O(z6),

sin3(z) = z3 +O(z5),

sin4(z) = z4 +O(z6).

For g(z), we can use the above results to compute
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exp(sin(z)) =
∞

∑
n=0

sinn(z)
n!

= 1+ sin(z)+
sin2(z)

2
+

sin3(z)
6

+
sin4(z)

24
+O(z5)

= 1+ z− z3

6
+

z2

2
− z4

6
+

z3

6
+

z4

24
+O(z5)

= 1+ z+
z2

2
− z4

8
+O(z5).

15 . First, we prove the hint: Let D be a disk with center a and radius r and let b
and c be arbitrary points in D. Define

γ : [0,1]−→ D

t 7−→ bt + c(1− t)

This is well-defined, since

|γ(t)−a|= |bt + c(1− t)−a|
= |bt + c(1− t)− (at +a(1− t))|
= |bt−at + c(1− t)−a(1− t)|
≤ |b−a| t + |c−a|(1− t)

< rt + r(1− t)

= r.

Therefore, there exists a path from b to c inside D and the disk D is path-connected.

Now let U ⊆ C be an open connected set and fix an arbitrary point a ∈U . Define

U1 := {b ∈U | ∃ path from a to b},
U2 := {b ∈U | @ path from a to b}.

Then we clearly have a decomposition U =U1∪̇U2. Moreover, since the constant
path from a to a always exists, the set U1 6= /0. Now let b ∈U1 and D⊆U be a disk
around b which is contained in U . Then for an arbitrary point c ∈ D, there exists a
path from b to c (since any disk is path-connected), and composing this path with
the given path from a to b yields a path from a to c, hence D⊆U1 and U1 is an
open set. Assume that U2 6= /0, then a similar argument shows that U2 would be an
open set, too. But this is a contradiction, since U is connected. Hence U2 = /0 and
therefore, U is path-connected.

16 . Define G := {z ∈ C | |z−1|< 1} and
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a0 := 1/π, an :=
1

nπ
for n≥ 1.

Then clearly 0 < an ≤ 1 and hence an ∈ G for all n ∈ N. Moreover,

lim
n→∞

an = 0 ∈ ∂G.

Define

fn : G−→ C
z 7−→ sin(1/z).

This is clearly an analytic function on G and we get

f (a0) = sin(π) = 0, f (an) = sin(nπ) = 0

for all n≥ 1, i.e. f (an) = 0 for all n ∈ N. Since b := 2/π ∈ G satisfies

f (b) = sin(π/2) = 1 6= 0,

we get that f does not vanish identically on G. Note that the result does not
contradict the Identity Theorem 1.17.
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17 . Suppose that f ,g ∈A (G) with f ·g = 0 and f 6= 0. Then there exists an open
set U ⊆ G such that f (z) 6= 0 for all z ∈U . Since f ·g = 0, this implies g(z) = 0 for
all z ∈U . Since g is analytic, the Identity Theorem then implies g = 0, hence
A (G) is an integral domain.

18 . i) Let z ∈ C such that sin(z) = 0. Then we obtain

0 = sin(z) =
1
2i
(exp(iz)− exp(−iz))

=⇒ exp(iz) = exp(−iz)

=⇒ exp(−ℑ(z)) = |exp(iz)|= |exp(−iz)|= exp(ℑ(z))
=⇒ ℑ(z) =−ℑ(z) = 0,

hence all zeros of sin must be real numbers. These zeros are well-known:

{πn | n ∈ Z}.

Analogously, we get for cos:

{(2n+1)
π

2
| n ∈ Z}.

ii) Suppose that ω is a period of sin, then for each z ∈ C we have

sin(z+ω) = sin(z).

In particular, we get for z = 0 that

sin(ω) = 0,

hence ω must be a zero of sin. Considering the zeros determined in i), we see that
the odd multiples of π are no periods (e.g. sin(π/2) 6= sin(−π/2)), so ω = k ·2π

for a k ∈ Z. For cos we look at z = π/2 to obtain

0 = cos(π/2) = cos(π/2+ω)

and then conclude in the same way that ω = k ·2π for a k ∈ Z.

17



19 . i) Suppose that l̃og is another branch of the logarithm, then

l̃og(z) = log(z)+2πki

for a k ∈ N. Then for the corresponding power function f̃ we obtain

f̃ (z) = exp(α · l̃og(z))
= exp(α · (log(z)+2πki))

= exp(α · log(z)) · exp(k ·2πiα)

= f (z) · exp(k ·2πiα).

ii) For the principal branch of the logarithm, we obtain Log(i) = iπ/2 and hence

ii = exp(i ·Log(i)) = exp(−π/2),

iπ = exp(π ·Log(i)) = exp(iπ2/2),

i−1 = exp(−1 ·Log(i)) = exp(−iπ/2) =−i =
1
i
.

20 . i) For x ∈ [0,2π]\{0,π/2,π,(3/2)π,2π}, we know that sin(x) 6= 0 6= cos(x).
Hence we can choose a := |sin(x)| and b := |cos(x)| for a fixed x. From the tutorial
we know

sin(z) = sin(x)cosh(y)+ icos(x)sinh(y).

Hence, for z ∈ Gx we can write u(y) := sin(x)cosh(y) for the real part of sin(z) and
v(y) := cos(x)sinh(y) for the imaginary part. Inserting this in the hyperbola
equation, we obtain

sin(x)2 cosh(y)2

sin(x)2 − cos(x)2 sinh(y)2

cos(x)2 = cosh(y)2− sinh(y)2.

We have shown in the tutorial that this is equal to 1 for any y, hence the hyperbola
equation is satisfied for this choice of a,b,u and v.

Analogously, we can define a := cosh(y)(= |cosh(y)|) and b := |sinh(y)| for
fixed y 6= 0, since these functions have no other zeros. For z ∈ Hy,
we set u(x) := sin(x)cosh(y) for the real part of sin(z) and v(x) := cos(x)sinh(y)
for the imaginary part. Inserting in the ellipse equation yields

sin(x)2 cosh(y)2

cosh(y)2 +
cos(x)2 sinh(y)2

sinh(y)2 = sin(x)2 + cos(x)2 = 1

for all x, hence sin defines an ellipse here.

18



ii) sin(Gx):

Re

Im

1

i

xxx===000
x=π

xxx===222πππ

xxx===πππ///444
x=(3/4)π

x = π/2

xxx===(((555///444)))πππ
x=(7/4)π

x = (3/2)π

The arrow tips indicate the direction of the graph for the bold value, whereas the
graphs for the other values run in the opposite direction.

sin(Hy):

Re

Im

1

i

y = 0

y = ln(1/3)

y = ln(2)

19
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21 . By definition of the path integral, we obtain∫
γ1

dz
z

=
∫

π

0

1
γ1(t)

γ
′
1(t)dt =

∫
π

0

1
eit · ie

itdt =
∫

π

0
idt = iπ,∫

γ2

dz
z

=
∫

π

0

1
γ2(t)

γ
′
2(t)dt =

∫
π

0

1
e−it · (−i)e−itdt =

∫
π

0
(−i)dt =−iπ.

22 . i) We use induction on n to show that the n-th derivative of f exists, is
continuous and of the form

f (n)(x) =

{
pn(1/x)e−1/x2

x 6= 0,
0 x = 0,

for some polynomial pn ∈Q[X ].
For n = 0, this is the definition of f (for x→ 0, the quotient −1/x2→−∞ and
hence e−1/x2 → 0 so f is continuous).
Now suppose that for some n ∈ N, we have that f (n) is a continuous function of the
form

f (n)(x) =

{
pn(1/x)e−1/x2

x 6= 0,
0 x = 0.

Then we compute

lim
h→0

f (n)(h)
h

= lim
h→0

1
h
· pn(1/h)e−1/h2

= 0,

since the exponential function dominates any polynomial in the limit, in particular
also 1

h · pn(1/h). Therefore, f (n+1) exists and f (n+1)(0) = 0. Moreover, we can use
the product rule to obtain for x 6= 0:

f (n+1)(x) = pn(1/x) · 2
x3 · e

−1/x2
+ e−1/x2 · p′n(1/x) ·

(
−1
x2

)
= (2(1/x)3 · pn(1/x)− (1/x)2 · p′n(1/x)) · e−1/x2

.

20



Since pn ∈Q[X ], we also obtain that p′n ∈Q[X ], so

pn+1 := 2X3 · pn−X2 · p′n ∈Q[X ]

and

f (n+1)(x) =

{
pn+1(1/x)e−1/x2

x 6= 0,
0 x = 0.

ii) Suppose that f : U −→ C is such an extension on a suitable neighbourhood U
of R. Since U is open, there exists an ε > 0 such that the punctured disk
V := Dε(0)\{0} is completely contained in U . Now we can define

g : V −→ C

z 7−→ e−1/z2

Since −1/z2 is analytic on V and the exponential function is analytic on C, g is
also analytic on V . Hence f and g are two analytic functions on V which coincide
on I := (0,ε)⊂ R. Since I has an accumulation point in V (e.g. ε/2), the Identity
Theorem implies that f = g on V .
Now let N ∈ N such that 1

N < ε . Then we can define the sequence

zn := i · 1
N +n

, n ∈ N.

By the choice of N, we get zn ∈V for all n and clearly

lim
n→∞

zn = 0.

But we find

f (zn) = g(zn) = e−1/z2
n = e(n+N)2 n→∞−−−→ ∞,

whereas f (0) = 0. Hence f is not continuous and cannot be analytic, which is a
contradiction.

23 . Since f and g are differentiable, their difference f −g is also differentiable and
satisfies the Cauchy-Riemann differential equations:

∂ Im( f −g)
∂y

=
∂Re( f −g)

∂x
=

∂ (Re( f )−Re(g))
∂x

=
∂0
∂x

= 0,

∂ Im( f −g)
∂x

=−∂Re( f −g)
∂y

=−∂ (Re( f )−Re(g))
∂y

=−∂0
∂y

= 0.

Therefore, Im( f −g) = Im( f )− Im(g) must be constant.

21



24 . The Wirtinger derivatives at a point z0 = γ j(t0) ∈ C are given by

∂ f
∂ z

(z0) = A(z0)

∂ f
∂ z

(z0) = B(z0)

where A,B : U −→ C are continuous functions such that

f (z) = f (z0)+A(z)(z− z0)+B(z)(z− z0).

Inserting γ j(t) in the above equation we obtain for the derivative of t:

( f ◦ γ j)
′(t) =(A◦ γ j)

′(t)(γ j(t)− z0)+(A◦ γ j)(t)γ ′j(t)

+(B◦ γ j)
′(t)(γ j(t)− z0)+(B◦ γ j)(t)γ j

′(t)

Now we can insert t0 to obtain

( f ◦ γ j)
′(t0) =

∂ f
∂ z

(z0) · γ ′j(t0)+
∂ f
∂ z

(z0) · γ j
′(t0). (2)

Since f is differentiable at any z0, ∂ f/∂ z(z0) = 0, hence

( f ◦ γ j)
′(t0) =

∂ f
∂ z

(z0)γ
′
j(t0)

and therefore we get that

( f ◦ γ2)
′(t0)

( f ◦ γ1)′(t0)
=

∂ f/∂ z(z0)γ
′
2(t0)

∂ f/∂ z(z0)γ ′1(t0)
=

γ ′2(t0)
γ ′1(t0)

.

By the definition of ^ we are done.
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25 . We choose the parametrization

γ : [0,2π]−→ C
t 7−→ eit

and compute

−
∫
|ζ |=1

f (ζ )
ζ 2 dζ =−

∫ 2π

0

f (eit)

e2it ieitdt

=
∫ 2π

0
f (eit)(−i)e−itdt

=
∫ 2π

0
f (eit)ieitdt =

∫ 2π

0
f (eit)ieitdt

=
∫
|ζ |=1

f (ζ )dζ .

26 . i) If | f (z)|= r is constant, then f (G) is contained in the circle

Sr(0) = {z ∈ C | |z|= r}

of radius r. If f would be a non-constant function, then the Open Mapping
Theorem would imply that f (G) is open which is a contradiction.

ii) Since f (a) 6= 0, 1/ f is defined on U and is a holomorphic function (cf. Exercise
11). Moreover, |1/ f | assumes its maximum at a ∈U and hence the Maximum
Principle shows that 1/ f is constant, hence f is constant on U . By the Identity
Theorem, f must be constant on G.

iii) In the lecture, it was shown that

f ′ =
∂ f
∂x

= i
∂ f
∂y

.

23



If f ′ = 0, we see that these real partial derivatives vanish, which implies that the
function is constant.

27 . We know that

∂ f
∂x

=
∂ f
∂x

∂ f
∂y

=
∂ f
∂y

,

hence we compute

∂ f
∂ z

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
=

1
2

(
∂ f
∂x
− i

∂ f
∂y

)
=

∂ f
∂ z

and

∂ f
∂ z

=
1
2

(
∂ f
∂x
− i

∂ f
∂y

)
=

1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
=

∂ f
∂ z

.

28 . Since {1, i} is a basis of C as an R-vector space and j ◦TC and TR2 ◦ j are
R-linear maps, they are completely determined by their image on this basis. Hence
we compute:

( j ◦TC)(1) = j( fz(z)+ fz(z)) = j
(

1
2

(
∂ f
∂x
− i

∂ f
∂y

+
∂ f
∂x

+ i
∂ f
∂y

))
= j
(

∂ f
∂x

)
= j(ux(x,y)+ ivx(x,y)) =

(
ux(x,y)
vx(x,y)

)
=

(
ux(x,y) uy(x,y)
vx(x,y) vy(x,y)

)(
1
0

)
= TR2

(
1
0

)
= (TR2 ◦ j)(1)

( j ◦TC)(i) = j( fz(z)i+ fz(z)(−i)) = j
(

i
2

(
∂ f
∂x
− i

∂ f
∂y
− ∂ f

∂x
− i

∂ f
∂y

))
= j
(

∂ f
∂y

)
= j(uy(x,y)+ ivy(x,y)) =

(
uy(x,y)
vy(x,y)

)
=

(
ux(x,y) uy(x,y)
vx(x,y) vy(x,y)

)(
0
1

)
= TR2

(
0
1

)
= (TR2 ◦ j)(i)
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29 . It is clear that any constant function satisfies the required property. Suppose
that f is a non-constant function such that f ◦ f = f , then for any z ∈ f (C) we have
f (z) = z. Since f is holomorphic, f (C) is open and non-empty, hence it contains
an accumulation point. By the Identity Theorem, we get that f (z) = z for all z ∈ C,
hence the only non-constant entire function satisfying f ◦ f = f is the identity.

30 . For any s ∈ [0,2π], γs(0) = z0 and γ ′s(0) = eis 6= 0, hence the properties of
Exercise 24 are satisfied for each pair (γs,γ0). Then we obtain that

^
(
γ
′

s (0),γ
′

0 (0)
)
= arg(eis) = s,

whereas

^
(
( f ◦ γs)

′(0),( f ◦ γ0)
′(0)
)
= arg

(
( f ◦ γs)

′(0)
( f ◦ γ0)′(0)

)
.

Using (2), we obtain

( f ◦ γs)
′(0) =

∂ f
∂ z

(z0) · γ ′s(0)+
∂ f
∂ z

(z0) · γs
′(0) =

∂ f
∂ z

(z0) · eis +
∂ f
∂ z

(z0) · e−is,

hence

^
(
( f ◦ γs)

′(0),( f ◦ γ0)
′(0)
)
= arg

(
eis ·

∂ f
∂ z (z0)+

∂ f
∂ z (z0) · e−2is

∂ f
∂ z (z0)+

∂ f
∂ z (z0)

)

= arg(eis)+arg

(
∂ f
∂ z (z0)+

∂ f
∂ z (z0) · e−2is

∂ f
∂ z (z0)+

∂ f
∂ z (z0)

)
.

In order to obtain equality, we must have

arg
(

∂ f
∂ z

(z0)+
∂ f
∂ z

(z0) · e−2is
)
= arg

(
∂ f
∂ z

(z0)+
∂ f
∂ z

(z0)

)
which is independent of s. This can only be true for ∂ f

∂ z (z0) = 0, hence f must be
holomorphic. If z0 would be a zero of f ′, then

25



0 =
∂ f
∂ z

(z0) =
1
2

(
∂ f
∂x

(z0)− i
∂ f
∂y

(z0)

)
=⇒ ∂u

∂x
(z0)+ i

∂v
∂x

(z0) =−
∂v
∂y

(z0)+ i
∂u
∂y

(z0).

This, together with the Cauchy-Riemann differential equations, implies

0 = det(Jac( f )(z0)),

which is a contradiction to the assumptions on f .

31 . We can use partial fraction decomposition to obtain

f (z) =
1

1− z
− 1

2− z
.

i) Since |z|< 1 and hence also
∣∣ 1

2 z
∣∣< 1, we can use the geometric series to obtain

the power series

f (z) =
∞

∑
n=0

zn− 1
2

∞

∑
n=0

(
1
2

z
)n

=
∞

∑
n=0

(
1− 1

2n+1

)
zn.

ii) For 1 < |z|< 2, we still obtain that
∣∣ 1

2 z
∣∣< 1 and we can use the geometric series

for the second term as before. For the first term, we consider the following
modification of the geometric series (cf. Tutorial):

−
∞

∑
n=1

1
zn =

1
1− z

for |z|> 1. (3)

This enables us to compute

f (z) =−
∞

∑
n=1

z−n−
∞

∑
n=0

1
2n+1 zn = ∑

n<0
−zn + ∑

n≥0
− 1

2n+1 zn.

iii) In this case, we have that both |z|> 1 and
∣∣ 1

2 z
∣∣> 1, hence we can use (3) for

both terms to obtain

f (z) =−
∞

∑
n=1

z−n +
1
2

∞

∑
n=1

(
1
2

z
)−n

=
∞

∑
n=1

(
1

2−n+1 −1
)

z−n = ∑
n<0

(
1

2n+1 −1
)

zn.

54 . Suppose that f (C) is not dense in C, i.e. suppose that there exists a point a ∈C
and a radius r > 0 such that Dr(a)∩ f (C) = /0. Then for any z ∈ C, we have

|a− f (z)| ≥ r.

26



Therefore, the function

g : C−→ C

z 7−→ 1
a− f (z)

is holomorphic on C and

|g(z)|= 1
|a− f (z)|

≤ 1
r
,

hence g is an entire, bounded function. By Liouville’s Theorem, g must be
constant. But this would imply that f is also constant, which is a contradiction.
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LMU MÜNCHEN
SUMMER TERM 2019 Joachim Wehler, Pascal Stucky

Solutions 09

33 . We consider the function

g : C∗ −→ C
z 7−→ f (1/z)

Since f is entire, g is holomorphic away from 0. We see that

lim
|z|→0
|g(z)|= lim

|z|→0
| f (1/z)|= lim

|z|→∞

| f (z)|= ∞,

hence g has a pole at z = 0. Therefore, g has a Laurent series expansion of the form

g(z) =
∞

∑
n=−k

cnzn = f (1/z),

so the Laurent series expansion of f is given by

f (z) =
k

∑
n=−∞

c−nzn.

Since f is entire, it is holomorphic at z = 0, hence the principal part of the Laurent
series must be 0, so

f (z) =
k

∑
n=0

c−nzn

is indeed a polynomial.

34 . We first compute

28



∣∣ f (ρ · eiφ )
∣∣2 = f (ρ · eiφ ) f (ρ · eiφ )

=

(
∞

∑
m=0

cmρ
m · eiφm

)(
∞

∑
m=0

cmρ
m · e−iφm

)

=
∞

∑
m=0

(
m

∑
k=0

ckcm−keiφ(2k−m)

)
ρ

m.

Inserting this result in the integral given in the hint and using the absolute
convergence, we find

1
2π
·
∫ 2π

0

∣∣ f (ρ · eiφ )
∣∣2 dφ =

1
2π
·

∞

∑
m=0

(
m

∑
k=0

ckcm−k

∫ 2π

0
eiφ(2k−m)dφ

)
ρ

m.

Now since ∫ 2π

0
eiφ(2k−m)dφ =

{
2π, 2k = m,

0, 2k 6= m,

we obtain

1
2π
·
∫ 2π

0

∣∣ f (ρ · eiφ )
∣∣2 dφ =

∞

∑
m=0
|cm|2 ρ

2m.

Now inserting the assumptions of the exercise, we get

M2 =
1

2π
·
∫ 2π

0
M2dφ

≥ 1
2π
·
∫ 2π

0

∣∣ f (ρ · eiφ )
∣∣2 dφ

=
∞

∑
m=0
|cm|2 ρ

2m

= |cn|2 ρ
2m +

∞

∑
m=0
m 6=n

|cm|2 ρ
2m

= M2 ρ2m

r2m +
∞

∑
m=0
m 6=n

|cm|2 ρ
2m.

Since this inequality holds for any ρ < r, we can take the limit ρ → r to see that

M2 ≥M2 +
∞

∑
m=0
m 6=n

|cm|2 r2m

which implies that |cm|= 0 for all m 6= n. Hence

29



f (z) = cn · zn.

35 . i) Since f is entire, it is holomorphic on Dr(0) for every r ≥ 0. If f is
non-constant, it assumes its maximum on the boundary of Dr(0), hence

| f (z)| ≤M f (r)

for any z ∈ Dr(0). Let

f (z) =
∞

∑
n=0

cnzn

be the power series expansion of f . Then for any r ≥ r0, the Cauchy inequalities
imply

|cn| ≤
M f (r)

rn ≤
√

r · lnr
rn

Since rn dominates
√

r · lnr for any n > 0, we see that

lim
r→∞

√
r · lnr
rn = 0

for n > 0. Hence cn = 0 for n > 0, so f must be constant.

ii) The formula for the Laurent coefficients of f gives

|cn|=
1

2π

∣∣∣∣∫|z|=r
f (z) · z−n−1dz

∣∣∣∣
≤ 1

2π

∫
|z|=r
| f (z)| |z|−n−1 dz

≤ 1
2π

∫
|z|=r

M f (r)r−n−1dz

= M f (r)r−n

≤ |ln(r)|r−n−1/2

Taking the limit r→ 0, we find that for n < 0, cn = 0. Hence f has a removable
singularity at 0.

36 . i) Let w0 ∈ C∗ and r = |w0|. Then there exists a branch of the logarithm log on
Dr(w0). This is a holomorphic function on Dr(w0) and we set

g(w) := f
(

1
2πi

log(w)
)
.

30



for w ∈ Dr(w0). First we have to check that this is well-defined. For this purpose,
suppose that l̃og is another branch of the logarithm which is holomorphic on
Dr(w0). Then

l̃og(w) = log(w)+ k ·2πi

for a k ∈ Z. Hence

f
(

1
2πi

l̃og(w)
)
= f

(
1

2πi
log(w)+ k

)
= f

(
1

2πi
log(w)

)
,

since f is periodic with period 1. Since f is entire, g defines a holomorphic
function on Dr(w0). Using another element w1 ∈C∗ with ρ = |w1|, we can define a
function

g′ : Dρ(w1)−→ C

w 7−→ f
(

1
2πi

log(w)
)

for a branch of logarithm log which is holomorphic on Dρ(w1). Then g′ = g on the
intersection of Dr(w0) and Dρ(w1), since either we can use the same branch of
logarithm or we obtain a summand of k which disappears due to the periodicity of
f . Hence we obtain a holomorphic function g on the union of Dr(w0) and Dρ(w1).
Covering C∗ with such balls, we obtain a holomorphic function

g : C∗ −→ C (4)

which satisfies

f (z) = g(e2πiz)

for any z ∈ C. The formula for the coefficients of the Laurent series
g(w) = ∑

∞
n=−∞ cnwn gives

cn =
1

2πi
·
∫
|ζ |=1

g(ζ )
ζ n+1 dζ =

1
2πi
·
∫ 2π

0

g(eiφ )

eiφ(n+1) ieiφ dφ

=
1

2π
·
∫ 2π

0
g(eiφ )e−inφ dφ .

ii) Using (4) for z = φ

2π
, we obtain

f (z) = g(e2πiz) =
∞

∑
n=−∞

(
1

2π
·
∫ 2π

0
g(eiφ )e−inφ dφ

)
e2πinz

=
∞

∑
n=−∞

(
1

2π
·
∫ 2π

0
f
(

φ

2π

)
e−inφ dφ

)
e2πinz.
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37 . By definition, the Bernoulli numbers are the coefficients of the Taylor series
expansion of

f (z) :=
z

ez−1
=

∞

∑
n=0

Bn

n!
zn.

Multiplying this equation with

ez−1 =
∞

∑
n=1

zn

n!
=

∞

∑
n=0

zn+1

(n+1)!

and using the Cauchy product on the right hand side yields

z =
∞

∑
N=0

(
N

∑
n=0

Bn

n!(N−n+1)!

)
zN =

∞

∑
N=0

(
N

∑
n=0

(N +1)!
n!(N +1−n)!

Bn

)
zN+1

(N +1)!
.

Comparing the coefficients then gives

0 =
N

∑
n=0

(N +1)!
n!(N +1−n)!

Bn =
N

∑
n=0

(
N +1

n

)
Bn.

38 . i) In Exercise 9 ii) we derived addition theorems for real arguments. Because of
the Identity Theorem, they must also hold for complex arguments, hence we obtain

sin(2z) = 2cos(z)sin(z),

cos(2z) = cos(z)2− sin(z)2.

This enables us to compute

cot(z)−2 · cot(2z) =
cos(z)
sin(z)

−2 · cos(2z)
sin(2z)

=
cos(z)
sin(z)

−2 · cos(z)2− sin(z)2

2cos(z)sin(z)

=
cos(z)2

cos(z)sin(z)
− cos(z)2− sin(z)2

cos(z)sin(z)
=

sin(z)2

cos(z)sin(z)
=

sin(z)
cos(z)

= tan(z)
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ii) Inserting the Taylor series expansion for cot in the formula proven in i), we get

tan(z) =
1
z
+

∞

∑
k=1

(−1)k · 2
2k ·B2k

(2k)!
· z2k−1−2 ·

(
1
2z

+
∞

∑
k=1

(−1)k · 2
2k ·B2k

(2k)!
· (2z)2k−1

)

=
∞

∑
k=1

(−1)k ·
(

22k ·B2k

(2k)!
−22k · 2

2k ·B2k

(2k)!

)
· z2k−1

=
∞

∑
k=1

(−1)k · 2
2k(1−22k)B2k

(2k)!
· z2k−1

=
∞

∑
k=1

(−1)k−1 · 2
2k(22k−1)B2k

(2k)!
· z2k−1.

The radius of convergence of cot(z)− 1
z is R1 = π by the lecture. Consequently, the

radius of convergence of −2cot(2z)+ 1
z is R2 =

π

2 and by Exercise 6, we obtain
that

R3 = min{R1,R2}=
π

2

is the radius of convergence of tan(z).

39 . i) Since |z|< 2 and n≥ 2, we get that∣∣∣∣ z2

n2

∣∣∣∣= ( |z|n
)2

< 12 = 1.

Moreover, we obtain

1
z−n

+
1

z+n
=

z+n+ z−n
z2−n2 =−2z

n2 ·
1

1− z2/n2 .

By the above computation, we can use the geometric series to obtain

1
z−n

+
1

z+n
=−2z

n2

∞

∑
k=0

(
z2

n2

)k

=−2 ·
∞

∑
k=0

z2k+1

n2k+2 =−2 ·
∞

∑
k=1

z2k−1

n2k .

ii) Since |z|> 1, we also have
∣∣z2
∣∣> 1. With the same computation as in i) and the

modified geometric series (3) we obtain

1
z−1

+
1

z+1
=−2z · 1

1− z2 = 2z ·
∞

∑
k=1

1
z2k = 2 ·

∞

∑
k=1

1
z2k−1 .

iii) From the lecture we know that
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π · cot(πz) =
1
z
+

∞

∑
n=1

2z
z2−n2 =

1
z
+

∞

∑
n=1

(
1

z−n
+

1
z+n

)
=

1
z
+

(
1

z−1
+

1
z+1

)
+

∞

∑
n=2

(
1

z−n
+

1
z+n

)
For the first bracket we can use ii) and for the remaining sum we can use i) to
obtain

π · cot(πz) =
1
z
+2 ·

∞

∑
k=1

(
1
z

)2k−1

−2 ·
∞

∑
k=1

(
∞

∑
n=2

1
n2k

)
· z2k−1

40 . i) We compute

1
2

(
cot
(

πz
2

)
+ tan

(
πz
2

))
=

1
2

(
cos(πz/2)
sin(πz/2)

+
sin(πz/2)
cos(πz/2)

)
=

1
2

(
cos(πz/2)2 + sin(πz/2)2

cos(πz/2)sin(πz/2)

)
=

1
2cos(πz/2)sin(πz/2)

.

Using the addition theorem for sin (cf. solution of Exercise 38 i)) this gives

1
2

(
cot
(

πz
2

)
+ tan

(
πz
2

))
=

1
sin(πz)

.

ii) We compute with the addition theorems

cot
(

π(1− z)
2

)
=

cos(π(1− z)/2)
sin(π(1− z)/2)

=
cos(π/2)cos(−πz/2)− sin(π/2)sin(−πz/2)
cos(π/2)sin(−πz/2)+ sin(π/2)cos(−πz/2)

.

Now with

cos(π/2) = 0 sin(π/2) = 1
cos(−z) = cos(z) sin(−z) =−sin(z)

we obtain

cot
(

π(1− z)
2

)
=

sin(πz/2)
cos(πz/2)

= tan
(

πz
2

)
.

With i), we are done.

iii) The pole set of π

sin(πz) is exactly the set of zeros of sin(πz) which is Z by
Exercise 18. At the center a = 0 we have
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π

sin(πz)
=

π

πz+O(z3)
=

π

πz
· 1

1+O(z2)
=

1
z
· (1+O(z)) =

1
z
+O(1).

Hence the principal part of π

sin(πz) at 0 is given by

H0(z) =
1
z

so the pole is of order 1. Since the function has period 2, the principal part at every
even integer is given by

H2n(z) =
1

z−2n
.

For the odd integers, we will use the equality

sin(πz) =−sin(π(z−1)).

Therefore, we find at the center a = 1

π

sin(πz)
=− π

sin(π(z−1)
=− π

π(z−1)+O((z−1)3)
=− 1

z−1
· (1+O(z−1))

=− 1
z−1

+O(1),

hence the principal part here is

H1(z) =
−1

z−1
.

Therefore, the principal parts for the odd integers are

H2n+1(z) =
−1

z− (2n+1)

and we also obtain poles of order 1 here.
From the lecture we know

π · cot(πz) =
1
z
+

∞

∑
n=1

2z
z2−n2 =

1
z
+

∞

∑
n=1

2z
z2− (2n)2 +

∞

∑
n=1

2z
z2− (2n−1)2

=⇒ π · cot(πz/2) =
2
z
+

∞

∑
n=1

z
(z/2)2−n2 =

2
z
+

∞

∑
n=1

4z
z2− (2n)2 .

Using Exercise 38 i) and part i), we obtain
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π

sin(πz)
=

π

2

(
cot
(

πz
2

)
+ cot

(
πz
2

)
−2cot(πz)

)
= π · cot

(
πz
2

)
−π · cot(πz)

=
2
z
+

∞

∑
n=1

4z
z2− (2n)2 −

(
1
z
+

∞

∑
n=1

2z
z2− (2n)2 +

∞

∑
n=1

2z
z2− (2n−1)2

)

=
1
z
+

∞

∑
n=1

2z
z2− (2n)2 −

∞

∑
n=1

2z
z2− (2n−1)2

=
1
z
+2z ·

∞

∑
n=1

(−1)n

z2−n2 .
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41 . i) By definition, we have

Ep(z) = (1− z)exp

(
p

∑
n=1

zn

n

)
.

For convenience we define the polynomial function

f (z) :=
p

∑
n=1

zn

n
.

Taking the derivative yields

E ′p(z) = exp( f (z)) · (−1+(1− z) f ′(z))

= exp( f (z))

(
−1+

p

∑
n=1

zn−1−
p

∑
n=1

zn

)

= exp( f (z))

(
p−1

∑
n=0

zn−
p

∑
n=0

zn

)
=−zp exp( f (z)).

With the power series of the exponential function, we hence obtain

E ′p(z) =−zp
∞

∑
n=0

f (z)n

n!
.

Since f (z) is a polynomial in z with positive coefficients, so is f (z)n for any n ∈ N.
Hence we can sort the terms and obtain

E ′p(z) =−zp
∞

∑
n=0

βnzn =−
∞

∑
n=0

βnzn+p

with βn ≥ 0 for all n. Now let

Ep(z) =
∞

∑
n=0

(−an)zn
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be the Taylor series expansion of Ep(z). Then clearly we have a0 =−1 and we can
differentiate to obatin

E ′p(z) =−
∞

∑
n=1

nanzn−1 =−
∞

∑
n=0

(n+1)an+1zn.

Comparing the coefficients of these two expansions, we get

an = 0 1≤ n≤ p,

an =
βn−p−1

n
≥ 0 n≥ p+1.

Altogether, we get

Ep(z) = 1−
∞

∑
n=p+1

anzn

with an ≥ 0 for all n≥ p+1.

ii) Since Ep(1) = 0, we get with i) that

1 =
∞

∑
n=p+1

an.

For |z| ≤ 1, we also have |z|n ≤ |z|p+1 for all n≥ p+1. Hence we obtain

∣∣Ep(z)−1
∣∣= ∣∣∣∣∣ ∞

∑
n=p+1

anzn

∣∣∣∣∣≤ ∞

∑
n=p+1

|an| |z|n ≤
∞

∑
n=p+1

an |z|p+1 = |z|p+1 .

42 . Since

∞

∑
n=1

1
n1+1 =

∞

∑
n=1

1
n2 =

∞

∑
n=1

1
(−n)2 =

π2

6
< ∞,

the Weierstrass product theorem implies normal convergence of the product.
Therefore, we can reorder the terms to obtain
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∏
n∈Z
n6=0

E1

( z
n

)
=

∞

∏
n=1

(
E1

( z
n

)
E1

(
z
−n

))

=
∞

∏
n=1

(
1− z

n

)
exp
( z

n

)(
1+

z
n

)
exp
(
− z

n

)
=

∞

∏
n=1

(
1− z2

n2

)
=

sin(πz)
πz

,

where the last equality was shown in the lecture.

43 . i) Let D be a divisor on U . Define

Z1 := {z ∈ supp(D) | D(z)> 0},
Z2 := {z ∈ supp(D) | D(z)< 0}.

Then clearly Z1∩Z2 = /0 and Zi is a discrete set as a subset of supp(D) for i = 1,2.
Since unions of open sets are open and Zi is discrete, we find that Zi is also open in
supp(D) for i = 1,2, therefore the complement

Z j = supp(D)\Zi, i, j ∈ 1,2, i 6= j,

is a closed subset of supp(D). Since supp(D) is closed in C, this implies that Zi is
also closed in C for i = 1,2.
Now set

D1 : U −→ Z

z 7−→

{
D(z) z ∈ Z1,

0 z /∈ Z1,

and

D2 : U −→ Z

z 7−→

{
−D(z) z ∈ Z2,

0 z /∈ Z2.

Then Di ≥ 0 and supp(Di) = Zi for i = 1,2.

ii) By part i) it suffices to show the statement for non-negative divisors, since

( f/g) = ( f )− (g)
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by a corollary from the lecture.
So let D≥ 0 be such a divisor on C. If supp(D) is finite, we can define the
polynomial function

f : C−→ C

z 7−→ ∏
a∈supp(D)

(z−a)D(a)

and hence D = ( f ) by definition.
Now suppose that supp(D) is infinite. First, we want to show that supp(D) has no
accumulation point in C. Suppose a ∈ C would be such a point, then there exists a
sequence of points (an)n∈N in supp(D) which converges to a. Since supp(D) is
closed, a ∈ supp(D) and for any neighbourhood U of a, we find infinitely many
an ∈U . This is a contradiction to supp(D) being discrete.
Now let r > 0 be arbitrary. Since supp(D) has no accumulation point, there exists
only finitely many elements in supp(D)∩Dr(0), hence the set

supp(D) =
⋃

n∈N
(Dn(0)∩ supp(D))

is a countable union of finite sets and hence is countable. Moreover, for any r > 0
there exists an a ∈ supp(D) with |a|> r. Hence by ordering supp(D) with respect
to |·|, we get a sequence (aν)ν∈N with

lim
ν→∞
|aν |= ∞.

Set kν := D(aν). Then the solution of the Weierstrass problem provides a
holomorphic function f which has exactly the zeros aν of order kν . Hence, by
definition

( f ) = D

and we are done.

44 . i) We show the statement by induction on n. For n = 0, we clearly have
Γ (z) = Γ (z). Now suppose that the statement is true for all z ∈ RH(0) and a fixed
n ∈ N. From the lecture, we know that

Γ (z+1) = z ·Γ (z)

for any z ∈ RH(0). In particular, we can apply this to Γ (z+n) to obtain

Γ (z+n+1) = (z+n) ·Γ (z+n).

With the induction hypothesis, we obtain
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Γ (z+n+1)
z(z+1) · · ·(z+n−1)(z+n)

=
1

z(z+1) · · ·(z+n−1)
· Γ (z+n+1)

(z+n)

=
Γ (z+n)

z(z+1) · · ·(z+n−1)
= Γ (z).

ii) Let z ∈ C be arbitrary and let n ∈ N such that z+n ∈ RH(0). Define

Γ (z) :=
Γ (z+n)

z(z+1) · · ·(z+n−1)
.

By i) this is well-defined and independent of the choice of n. Moreover, Γ (z+n) is
holomorphic at z by the lecture. Clearly, the denominator is also holomorphic, so
the quotient defines a meromorphic function on C. The uniqueness of this
extension now follows from the identity theorem.

iii) Let z be a pole of Γ (z). Let n be such that z+n ∈ RH(0), then z is a pole of

Γ (z+n)
z(z+1) · · ·(z+n−1)

.

Since Γ (z+n) is holomorphic, z cannot be a pole of this function and hence must
be a zero of pn(z) := z(z+1) · · ·(z+n−1). The zeros of this function are exactly
the numbers 0, ...,n−1. Hence the set of poles of Γ (z) is given by P. For the
principal part at −n, we can use

Γ (z) =
Γ (z+n+1)

z(z+1) · · ·(z+n)
=

1
z+n

· Γ (z+n+1)
z(z+1) · · ·(z+n−1)︸ ︷︷ ︸

=:ψ(z)

.

With

Ψ(−n) =
Γ (1)

(−n)(−n+1) · · ·(−1)
=

1
(−1)n ·n!

=
(−1)n

n!

we get

Γ (z) =
1

z+n
·ψ(z) =

1
z+n

(
(−1)n

n!
+O(z+n)

)
=

(−1)n

n!
· 1

z+n
+O(0),

hence the principal part at −n is given by

H−n(z) =
(−1)n

n!
· 1

z+n

and all the poles have order 1.
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45 . Let a ∈ ∂A. We consider the neighbourhood U := D1/2(a) of a and the map

ρ : U −→ R

z := x+ iy 7−→ |z|2−1 = x2 + y2−1.

Then ρ is continuously differentiable on U and for any z ∈ A∩U , we have

ρ(z) = |z|2−1≤ 1−1 = 0.

On the other hand, if z ∈U \ (A∩U), then clearly |z|> 1 hence

ρ(z) = |z|2−1 > 1−1 = 0.

Together, we get

A∩U = {z ∈U | ρ(z)≤ 0}.

Now let z ∈U , then z = x+ iy corresponds to the vector
(

x
y

)
∈ R2. Then we

compute the gradient of ρ at z:

grad(ρ)(z) =
(
(∂ρ/∂x)(z)
(∂ρ/∂y)(z)

)
=

(
2x
2y

)
6= 0,

since 0 /∈U . Therefore, A has a smooth boundary ∂A.

46 . i) Let

f (z) =
∞

∑
n=0

an(z−a)n

1/g(z) =
∞

∑
n=−1

bn(z−a)n =
b−1

z−a
+

∞

∑
n=0

bn(z−a)n

be the Laurent series expansions of f and 1/g at a (note that the expansion for 1/g
starts at n =−1, since g has a zero of order 1 at a). Then the Laurent series
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expansion of f/g is given by(
b−1

z−a
+

∞

∑
n=0

bn(z−a)n

)
·

∞

∑
n=0

an(z−a)n =
b−1

z−a
·a0 +

∞

∑
n=0

cn(z−a)n

for some coefficients cn ∈ C. Clearly, we have a0 = f (a). For b−1, we consider the
function

h(z) :=
z−a
g(z)

=
∞

∑
n=0

bn−1(z−a)n.

Then

z−a = g(z)h(z) = g′(a)h(a)(z−a)+O((z−a)2),

hence

b−1 = h(a) =
1

g′(a)
.

Therefore,

res
(

f
g

;a
)
= b−1a0 =

f (a)
g′(a)

.

ii) First we see that the holomorphic function g(z) := 1+ z4 has the four zeros
exp
( iπ

4 · k
)
, where k ∈ {1,3,5,7}. g is a polynomial of degree four and we found

four different zeros, the fundamental theorem of algebra implies that each of these
zeros has order 1. Hence we are in the situation of part i) and find

res
(

1/g; exp
(

iπ
4
· k
))

=
1

g′
(
exp
( iπ

4 · k
)) = 1

4exp
( 3iπ

4 · k
) = 1

4
exp
(
−3iπ

4
· k
)
.

Now we want to integrate 1/g(z) along the closed path consisting of the straight
line from −R to R and the semicircle described by

γR : [0,π]−→ C
t 7−→ Reit .

It is shown in the lecture, that the integral over γR vanishes for R→ ∞. For R > 1,
the closed path described above contains the poles of 1/g which are contained in
the upper half-plane, i.e. for k = 1,3. Then the residue theorem yields

2πi ·
(

res
(

1/g; exp
(

iπ
4

))
+ res

(
1/g; exp

(
iπ
4
·3
)))

=
∫ R

−R

1
1+ x4 dx+

∫
γR

1
g(z)

dz

R→∞−−−→
∫

∞

−∞

1
1+ x4 dx,
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therefore, the value of the integral is given by

2πi
4

exp
(
−3iπ

4

)
+

2πi
4

exp
(
−3iπ

4
·3
)
=

πi
2

(
−1+ i√

2
+

1− i√
2

)
=

π√
2

47 . i) By Fubini’s theorem, we get∫
∞

−∞

e−x2
dx ·

∫
∞

−∞

e−y2
dy =

∫
∞

−∞

e−x2
e−y2

d(x,y) =
∫

∞

−∞

e−x2
e−y2

dx∧dy =
∫

∞

−∞

e−(x
2+y2)dx∧dy

Changing to polar coordinates, we obtain

x = r cos(ϕ) =⇒ dx = cos(ϕ)dr− r sin(ϕ)dϕ,

y = r sin(ϕ) =⇒ dy = sin(ϕ)dr+ r cos(ϕ)dϕ,

hence

dx∧dy = (cos(ϕ)dr− r sin(ϕ)dϕ)∧ (sin(ϕ)dr+ r cos(ϕ)dϕ)

= cos(ϕ)sin(ϕ)dr∧dr+ r cos(ϕ)2dr∧dϕ− r sin(ϕ)2dϕ ∧dr− r2 sin(ϕ)cos(ϕ)dϕ ∧dϕ

= r(cos(ϕ)2 + sin(ϕ)2)dr∧dϕ = rdr∧dϕ.

Therefore, we get∫
∞

−∞

e−(x
2+y2)dxdy =

∫ 2π

0

∫
∞

0
e−r2

rdr∧dϕ = 2π

∫
∞

0
e−r2

rdr.

The remaining integral can be computed by substitution with u = r2 (hence
du = 2rdr):∫

∞

0
e−r2

rdr =
1
2

∫
∞

0
e−udu =

1
2
[−e−u]∞0 =

1
2
(−0− (−1)) =

1
2
.

Altogether, we get ∫
∞

−∞

e−x2
dx ·

∫
∞

−∞

e−y2
dy = π,

and hence ∫
∞

−∞

e−x2
dx =

√
π.

ii) The integration along the closed path from 0.1 splits into three integrals:∫
γ

e−z2
dz =

∫ R

0
e−r2

dr+
∫

γR

e−z2
dz+

∫ 0

R
exp
(
−
(

reiπ/4
)2
)
· eiπ/4dr,
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where γR describes the arc from R to Reiπ/4. We start approximating the second
integral by∣∣∣∣∫

γR

e−z2
dz
∣∣∣∣= ∣∣∣∣∫ π/4

0
exp(−(Reiϕ)2)i ·Reiϕ dϕ

∣∣∣∣≤ ∫ π/4

0

∣∣exp(−R2e2iϕ)i ·Reiϕ ∣∣dϕ

=
∫

π/4

0
R · exp(−R2 cos(2ϕ))dϕ.

Similarly to the proof of Prop. 6.12, we can approximate cos(2ϕ)≥ 1− 4
π

ϕ for
ϕ ∈ [0,π/4], hence we get∣∣∣∣∫

γR

e−z2
dz
∣∣∣∣≤ R

∫
π/4

0
e−R2

exp
(

4R2ϕ

π

)
dϕ = Re−R2 π

4R2 (e
R2 −1)<

π

4R
R→∞−−−→ 0.

For the third integral, we compute

eiπ/4 = cos(π/4)+ isin(π/4) =
1+ i√

2

and hence∫ 0

R
exp
(
−
(

reiπ/4
)2
)
· eiπ/4dr =−1+ i√

2

∫ R

0
exp
(
−r2eiπ/2

)
dr

=−1+ i√
2

∫ R

0
exp(−ir2)dr

=−1+ i√
2

∫ R

0
cos(−r2)+ isin(−r2)dr

=− 1√
2

(∫ R

0
cos(r2)dr+

∫ R

0
sin(r2)dr

)
− i√

2

(∫ R

0
cos(r2)dr−

∫ R

0
sin(r2)dr

)
.

Since the function e−z2
is holomorphic in the complex plane, Cauchy’s integral

theorem implies

1√
2

(∫ R

0
cos(r2)dr+

∫ R

0
sin(r2)dr

)
+

i√
2

(∫ R

0
cos(r2)dr−

∫ R

0
sin(r2)dr

)
=
∫ R

0
e−r2

dr =
1
2

∫ R

−R
e−r2

dr R→∞−−−→
√

π

2
,

where the value in the limit was computed in part i). Taking the limit on the left
hand side and comparing the real and imaginary parts, we obtain∫

∞

0
cos(r2)dr =

∫
∞

0
sin(r2)dr =

√
π

2
√

2
=

√
π

8
.
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48 . i) We consider the Weierstrass elementary factors E1 and the canonical product
for the sequence (aν)ν∈N≥1 with aν :=−ν . Since ∑

∞
n=1

1
n2 < ∞, the Weierstrass

product theorem gives the function

f (z) :=
∞

∏
n=1

E1

(
z
−n

)
=

∞

∏
n=1

1+(z/n)
ez/n ,

which is holomorphic on C and has exactly the zero −n, n≥ 1, of order 1.
Multyplying with z ·e−Cz preserves the holomorphicity but adds a zero of order 1 at
z = 0. Then we see that the resulting function satisfies

z · eCz · f (z) =
1

γ(z)
.

Hence, γ(z) is meromorphic on C and has the pole set

P = {−n | n ∈ N}.

Moreover, we find that

γ(z) =
1
z
· lim

N→∞
exp

(
−z ·

N

∑
n=1

(
1
n

)
− ln(N)

)
N

∏
n=1

ez/n

1+(z/n)
.

We compute

exp

(
−z ·

N

∑
n=1

(
1
n

)
− ln(N)

)
N

∏
n=1

ez/n

1+(z/n)
= ez ln(N) exp

(
N

∑
n=1

−z
n

)
N

∏
n=1

ez/n

1+(z/n)

= Nz
N

∏
n=1

e−z/nez/n

1+(z/n)

= Nz
N

∏
n=1

n
n+ z

=
NzN!

(z+1)(z+2) · · ·(z+N)
.

Inserting this in the above equation, we obtain

γ(z) =
1
z

lim
N→∞

NzN!
(z+1)(z+2) · · ·(z+N)

.

ii) We compute
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γ(z+1) =
1

z+1
lim

N→∞

N ·NzN!
(z+2)(z+3) · · ·(z+N +1)

= z · 1
z

lim
N→∞

(N +1)z(N +1)!
(z+1)(z+2) · · ·(z+N +1)

·
(

N
N +1

)z+1

.

Since limN→∞
N

N+1 = 1, we can rewrite this as

γ(z+1) = z · 1
z

lim
N→∞

(N +1)z(N +1)!
(z+1)(z+2) · · ·(z+N +1)

·
(

lim
N→∞

N
N +1

)z+1

= z · γ(z) ·1z+1

= z · γ(z).

Now we see that

γ(z) =
1
z
· (1+O(z)) =

1
z
+O(0),

Hence it has principal part 1
z at center a = 0. This coincides with the principal part

of Γ (z) at center a = 0 and since both functions satisfy the same functional
equation relating the principal parts at −n and −n+1, we conclude that γ(z) and
Γ (z) have the same principal part at any pole.

iii) We see that |z+n| ≥ Re(z+n) for any n≥ 0 and

|Nz|=
∣∣∣ez·logN

∣∣∣= eRe(z)·logN = NRe(z).

Hence ∣∣∣∣ Nz ·N!
z(z+1) · · ·(z+N)

∣∣∣∣= |Nz| ·N!
|z| · |z+1| · · · |z+N|

≤ NRe(z) ·N!
Re(z) · (Re(z)+1) · · ·(Re(z)+N)

and therefore

|γ(z)| ≤ γ(Re(z)).

The function γ(x) on the real interval [1,2] is continuous and hence bounded,
therefore, γ(z) is bounded on B1,2. Similarly, we know from the proof of Prop. 5.25
that |Γ (z)| ≤ Γ (Re(z)) for Re(z)> 1, which is also bounded on B1,2 by continuity
on the real interval [1,2]. Therefore, the difference g(z) = Γ (z)− γ is bounded on
B1,2. Moreover, we get

g(z+1)
z

=
Γ (z+1)− γ(z+1)

z
=

Γ (z+1)
z

− γ(z+1)
z

= Γ (z)− γ(z) = g(z).
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Considering the entire function g on D1(0)∩B0,1, it is bounded as a holomorphic
function on a compact set. For z ∈ B0,1 \D1(0) we get

|g(z)|=
∣∣∣∣g(z+1)

z

∣∣∣∣= |g(z+1)|
|z|

≤ |g(z+1)| .

Since g is bounded on B1,2, it is therefore also bounded on B0,1.
Now let z ∈ C be arbitrary. We compute

S(z+1) = g(z+1) ·g(1− (z+1)) = g(z) · z ·g(−z) =−g(z) · (−z) ·g(−z)

=−g(z)g(1− z) =−S(z).

For z ∈ B1,2 we have 1− z ∈ B0,1, hence g(z) and g(1− z) are bounded, so S(z) is
bounded on B1,2. By the functional equation we also obtain that S(z) is bounded in
B0,1. Moreover, we get that

S(z+2) =−S(z+1) = S(z),

so S(z) has period 2.

iv) Part iii) implies that S(z) is bounded on C. Since it is also holomorphic, the
theorem of Liouville implies that S(z) is constant. The constant is given by

S(1) = g(1) ·g(0) = 0 ·g(0) ·g(0) = 0,

hence we can use Exercise 17 to conclude that if

g(z) ·g(1− z) = 0

for all z ∈ C, then g(z) or g(1− z) is the zero function. In any case, g(z) = 0 and
hence Γ (z) = γ(z).
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49 . i) Let φ(z) :=−z8−1 and f (z) :=−3z2. Then we get for |z|= 1:

|φ(z)|=
∣∣z8 +1

∣∣≤ |z|8 +1 = 2 < 3 =
∣∣3z2∣∣= | f (z)| .

Applying the theorem of Rouché, we get that f (z) has the same number of zeros in
D1(0) as

( f −φ)(z) = z8−3z2 +1 = p(z).

Clearly, f has two zeros in the unit disk. By the fundamental theorem of algebra,
we find that p(z) has eight zeros in C. Altogether, we see that p(z) has six zeros
with |z|> 1.

ii) For φ(z) := 7z−2 and f (z) := 3z4, we get for |z|= 3/2:

|ϕ(z)|= |7z−2| ≤ 7 |z|+2 = 25/2 < 35/24 = 3
∣∣z4∣∣= | f (z)| .

Hence, the theorem of Rouché implies that

q(z) = ( f −φ)(z)

has four zeros in D3/2(0). Now defining φ(z) :=−3z4−2 and f (z) =−7z we see
that for |z|= 1, we get that

q(z) = ( f −φ)(z)

has one zero in D1(0). Hence q(z) has three zeros for 1 < |z|< 3/2.

50 . Let G be a star-like domain with respect to a and let γ : [0,1]→ G be a closed
path. Without loss of generality, we can assume that γ(0) = γ(1) = a. Since
γ(t) ∈ G for any t and G is star-like, the line

{(1− s)γ(t)+ sa | s ∈ [0,1]}

is contained in G. Hence, we can define
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Φ : [0,1]× [0,1]−→ G

(t,s) 7−→ (1− s)γ(t)+ sa.

Clearly, Φ is continuous. Moreover, we have Φ(−,0) = γ and Φ(−,1) = a. Now
for any s ∈]0,1[, we have that

γs(0) = (1− s)γ(0)+ sa = (1− s)γ(1)+ sa = γs(1),

hence γs is a closed path. Altogether, Φ is a homotopy and γ and the constant path
a are homotopic. Since γ was arbitrary, G is simply connected.

51 . i) Let z ∈ G and let γz be any path from z0 to z. Note that any continuous
function on a compact set can be approximated uniformly by polynomials
according to Stone-Weierstrass. In particular, polynomials are continuously
differentiable, so any path is homotopic to a continuously differential path. Hence,
we can define

F(z) :=
∫

γz

f (ζ )dζ .

This is well-defined on G, since the integral coincides by assumption for any two
paths from z0 to z. Now fix z1 ∈ G and let U be a neighbourhood of z1. Since f is
holomorphic, there exists a primitive F1 of f on U . Then for any z ∈U , we have

F(z) =
∫

γz

f (ζ )dζ =
∫

γz1

f (ζ )dζ +
∫ z

z1

f (ζ )dζ =
∫

γz1

f (ζ )dζ +F1(z)−F1(z1),

where the integral from z to z1 does not depend on the path, since the other to
integrals are independent of the paths by assumption. We see that the first and the
third summand are constant and since F1 is a primitive of f , it is holomorphic on
U . Altogether, we see that F is holomorphic on U . By definition F(z) = 0 for any
z ∈U , hence we obtain

0 = F ′(z) = F ′1(z) = f (z)

for any z ∈U . Since z1 ∈ G was arbitrary, we conclude f = 0 on G.

ii) Suppose [γ] = [γ ′]. Since f is holomorphic and γ and γ ′ are homotopic, we can
apply Theorem 7.5 from the lecture to obtain∫

γ

f (z)dz =
∫

γ ′
f (z)dz,

hence Tf is indeed well-defined.

iii) Let f : G−→ C be a holomorphic function and
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γ1 : [0,1]−→ G

t 7−→ e2πit .

Then the residue theorem yields

Tf ([γ1]) =
∫

γ1

f (z)dz =
∫

∂D1(0)
f (z)dz = 2πi · res( f ;0).

Now let a ∈ C be arbitrary. Define

f : G−→ C

z 7−→ a
2πiz

.

Then res( f ;0) = a
2πi and hence

Tf (γ1) = a.

Therefore, C=
⋃

f∈O(G) Tf (π1(G,x0)).
Let [γn] ∈ π1(G,x0) be given by γn(t) = en·2πit . Then the residue theorem implies
for any f ∈ O(G)

Tf ([γn]) =
∫

γn

f (z)dz = n ·
∫

γ1

f (z)dz = n ·2πi · res( f ;0),

where the second equality is proven in the tutorials. Hence Tf = 0 if and only if
res( f ;0) = 0.

52 . Let z0 ∈ G be arbitrary. Since holomorphicity is a local property, it suffices to
show that f is holomorphic on a disk Dr(z0) for r > 0 such that Dr(z0)⊆ G.
Without loss of generality, we can assume z0 = 0 (if f (z− z0) is holomorphic, then
so is f (z)). So let G = Dr(0). For z = x+ iy ∈ G, define γz : [0,x+ y]→ G by

γz(t) =

{
t 0≤ t ≤ x,
x+(t− x)i x≤ t ≤ x+ y.

This is a continuous path which describes two sides of a rectangle. Note that the
integral over a path is independent of the parametrization as long as the orientation
of the path is preserved, therefore we can choose γz to be a function defined on
[0,x+ y] instead of [0,1]. Hence we can define

F(z) :=
∫

γz

f (ζ )dζ .

We also define
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ηz(t) =

{
it 0≤ t ≤ y,
iy+(t− y) y≤ t ≤ y+ x.

Then the assumption on f implies

F(z) =
∫

ηz

f (ζ )dζ .

We compute

∂F
∂y

(z) = f rac∂∂y
∫

γz

f (z)dz =
∂

∂y

(∫ x

0
f (t)dt +

∫ x+y

x
f (x+(t− x)i)idt

)
=

∂

∂y

∫ x

0
f (t)dt + i

∂

∂y

∫ y

0
f (x+ it)dt = i f (x+ iy)

= i f (z)

and

∂F
∂x

(z) = f rac∂∂x
∫

ηz

f (z)dz =
∂

∂x

(∫ y

0
f (it)idt +

∫ y+x

y
f (iy+(t− y))dt

)
= i

∂

∂x

∫ y

0
f (it)dt +

∂

∂x

∫ x

0
f (iy+ t)dt = f (x+ iy)

= f (z).

By the assumption on f , the partial derivatives are continuous. Decomposing the
above equations into the real and imaginary parts, we see that F satisfies the
Cauchy-Riemann differential equations. Hence F is holomorphic and also its
derivative

F ′(z) =
∂F
∂x

(z) = f (z).
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53 . If g = 0 is the zero function, then the assumption implies that f (z) = 0 for any
z ∈ C, hence f = g. Now suppose that g 6= 0 and let N be the set of zeros of g and
G := C\N. Then we can define

h : G−→ C

z 7−→ f (z)
g(z)

.

This is a holomorphic function on G satisfying

|h(z)|= | f (z)||g(z)|
≤ 1.

Since h is a quotient of holomorphic functions, it is meromorphic on C with
isolated singularities at the points in N. Let a ∈ N and let r > 0 be such that
D∗r (a)∩N = /0. Then h is holomorphic and bounded on D∗r (a) by 1 (note that this
bound does not depend on the chosen singularity a), hence it has a removable
singularity by Riemann’s theorem. Extending h to an entire function ĥ, we find that
ĥ is bounded on C by 1, hence it is constant by the theorem of Liouville. Therefore,
h(z) = λ with |λ | ≤ 1.

54 . See Exercise 32.

56 . The function f has singularities at a = 0 and at each zero of cos(1/z). The
zeros of cos(1/z) satisfy

1
z
=

π

2
+ k ·π ⇐⇒ z =

1
π/2+ k ·π

for k ∈ Z. For any r > 0, there exists a k ∈ Z such that 1
π/2+k·π < r, hence any

neighbourhood of 0 contains another singularity of f . Therefore, a = 0 is no
isolated singularity of f .
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