





Petri Nets









Joachim Wehler

Ludwig-Maximilians-Universität

München, 1999





















Version 2.0, 12.7.1998





�� VERZEICHNIS \o "1-2" �1 Why Petri nets?	� GEHEZU _Toc419959540  � SEITENREF _Toc419959540 �6��

1.1 Different classes of Petri nets (Examples)	� GEHEZU _Toc419959541  � SEITENREF _Toc419959541 �6��

1.2 System properties and net types (Example)	� GEHEZU _Toc419959542  � SEITENREF _Toc419959542 �7��

1.3 Petri nets as a mathematical model (Remark)	� GEHEZU _Toc419959543  � SEITENREF _Toc419959543 �7��

1.4 Scenario Car-Service (Example)	� GEHEZU _Toc419959544  � SEITENREF _Toc419959544 �8��

1.5 Fundamental properties of Petri nets (Remark)	� GEHEZU _Toc419959545  � SEITENREF _Toc419959545 �9��

1.6 How to analyze Petri nets? (Remark)	� GEHEZU _Toc419959546  � SEITENREF _Toc419959546 �9��

2 Petri topology of bipartite graphs	� GEHEZU _Toc419959547  � SEITENREF _Toc419959547 �10��

2.1 Bipartite graph (Definition)	� GEHEZU _Toc419959548  � SEITENREF _Toc419959548 �10��

2.2 Undirected net (Remark)	� GEHEZU _Toc419959549  � SEITENREF _Toc419959549 �10��

2.3 Morphism between bipartite graphs (Definition)	� GEHEZU _Toc419959550  � SEITENREF _Toc419959550 �10��

2.4 Morphisms of bipartite graphs (Remark)	� GEHEZU _Toc419959551  � SEITENREF _Toc419959551 �11��

2.5 Topology (Definition)	� GEHEZU _Toc419959552  � SEITENREF _Toc419959552 �11��

2.6 Metric space (Example)	� GEHEZU _Toc419959553  � SEITENREF _Toc419959553 �12��

2.7 Continuity (Remark)	� GEHEZU _Toc419959554  � SEITENREF _Toc419959554 �12��

2.8 Petri topology (Definition)	� GEHEZU _Toc419959555  � SEITENREF _Toc419959555 �12��

2.9 Petri topology (Remark)	� GEHEZU _Toc419959556  � SEITENREF _Toc419959556 �13��

2.10 Morphism of bipartite graphs (Lemma)	� GEHEZU _Toc419959557  � SEITENREF _Toc419959557 �14��

2.11 Subgraph (Definition)	� GEHEZU _Toc419959558  � SEITENREF _Toc419959558 �14��

2.12 Subgraph (Remark)	� GEHEZU _Toc419959559  � SEITENREF _Toc419959559 �15��

2.13 Image of a morphism (Definition)	� GEHEZU _Toc419959560  � SEITENREF _Toc419959560 �15��

3 Nets and morphisms	� GEHEZU _Toc419959561  � SEITENREF _Toc419959561 �16��

3.1 Net (Definition)	� GEHEZU _Toc419959562  � SEITENREF _Toc419959562 �16��

3.2 Incidence maps and rank (Definition)	� GEHEZU _Toc419959563  � SEITENREF _Toc419959563 �17��

3.3 Incidence map (Example)	� GEHEZU _Toc419959564  � SEITENREF _Toc419959564 �17��

3.4 Incidence maps (Remark)	� GEHEZU _Toc419959565  � SEITENREF _Toc419959565 �18��

3.5 Preset, postset (Definition)	� GEHEZU _Toc419959566  � SEITENREF _Toc419959566 �19��

3.6 P-net and T-net (Definition)	� GEHEZU _Toc419959567  � SEITENREF _Toc419959567 �19��

3.7 Net morphism (Definition)	� GEHEZU _Toc419959568  � SEITENREF _Toc419959568 �19��

3.8 Net morphism (Remarks)	� GEHEZU _Toc419959569  � SEITENREF _Toc419959569 �20��

3.9 Duality of nets (Definition)	� GEHEZU _Toc419959570  � SEITENREF _Toc419959570 �20��

3.10 Duality of nets (Remark)	� GEHEZU _Toc419959571  � SEITENREF _Toc419959571 �21��

3.11 Connectedness and strong connectedness (Definition)	� GEHEZU _Toc419959572  � SEITENREF _Toc419959572 �22��

4 Fundamentals of Petri net theory	� GEHEZU _Toc419959573  � SEITENREF _Toc419959573 �23��

4.1 Petri net (Definition)	� GEHEZU _Toc419959574  � SEITENREF _Toc419959574 �23��

4.2 Ocurrence rule (Definition)	� GEHEZU _Toc419959575  � SEITENREF _Toc419959575 �23��

4.3 Sequential semantics of a Petri net (Definition)	� GEHEZU _Toc419959576  � SEITENREF _Toc419959576 �23��

4.4 Case graph of a Petri net (Definition)	� GEHEZU _Toc419959577  � SEITENREF _Toc419959577 �24��

4.5 Case graph and language (Examples)	� GEHEZU _Toc419959578  � SEITENREF _Toc419959578 �24��

4.6 The language of closed subnets (Lemma)	� GEHEZU _Toc419959579  � SEITENREF _Toc419959579 �27��

4.7 Language of subnets (Remark)	� GEHEZU _Toc419959580  � SEITENREF _Toc419959580 �27��

4.8 Concurrency (Definition)	� GEHEZU _Toc419959581  � SEITENREF _Toc419959581 �28��

4.9 Structural concurrency (Proposition)	� GEHEZU _Toc419959582  � SEITENREF _Toc419959582 �28��

4.10 Conflict (Definition)	� GEHEZU _Toc419959583  � SEITENREF _Toc419959583 �29��

4.11 Concurrency and conflict (Remark)	� GEHEZU _Toc419959584  � SEITENREF _Toc419959584 �29��

4.12 Concurrency in pure nets (Proposition)	� GEHEZU _Toc419959585  � SEITENREF _Toc419959585 �29��

4.13 Concurrency in pure nets (Example)	� GEHEZU _Toc419959586  � SEITENREF _Toc419959586 �30��

4.14 Conflict relations (Definition)	� GEHEZU _Toc419959587  � SEITENREF _Toc419959587 �30��

5 Boundedness and Liveness	� GEHEZU _Toc419959588  � SEITENREF _Toc419959588 �32��

5.1 Boundedness (Definition)	� GEHEZU _Toc419959589  � SEITENREF _Toc419959589 �32��

5.2 Finiteness of the case graph (Lemma)	� GEHEZU _Toc419959590  � SEITENREF _Toc419959590 �32��

5.3 Unboundedness (Proposition)	� GEHEZU _Toc419959591  � SEITENREF _Toc419959591 �32��

5.4 Live resp. deadlock-free Petri net (Definition)	� GEHEZU _Toc419959592  � SEITENREF _Toc419959592 �33��

5.5 Liveness implies place-livenes (Remark)	� GEHEZU _Toc419959593  � SEITENREF _Toc419959593 �33��

5.6 Replication of live and bounded nets (Lemma)	� GEHEZU _Toc419959594  � SEITENREF _Toc419959594 �34��

5.7 Exchange Lemma	� GEHEZU _Toc419959595  � SEITENREF _Toc419959595 �34��

5.8 Liveness and boundedness imply strong connectedness (Theorem)	� GEHEZU _Toc419959596  � SEITENREF _Toc419959596 �35��

5.9 Reversibility (Definition)	� GEHEZU _Toc419959597  � SEITENREF _Toc419959597 �37��

5.10 Reversibility (Proposition)	� GEHEZU _Toc419959598  � SEITENREF _Toc419959598 �37��

5.11 Liveness in reversible nets (Proposition)	� GEHEZU _Toc419959599  � SEITENREF _Toc419959599 �37��

6 Linear algebra for Petri nets	� GEHEZU _Toc419959600  � SEITENREF _Toc419959600 �38��

6.1 Free modules and monoids (Remark)	� GEHEZU _Toc419959601  � SEITENREF _Toc419959601 �38��

6.2 Incidence maps of a place/transition net (Remarks)	� GEHEZU _Toc419959602  � SEITENREF _Toc419959602 �38��

6.3 Positivity (Definition)	� GEHEZU _Toc419959603  � SEITENREF _Toc419959603 �40��

6.4 Parikh vector (Definition)	� GEHEZU _Toc419959604  � SEITENREF _Toc419959604 �40��

6.5 Marking equation (Remark)	� GEHEZU _Toc419959605  � SEITENREF _Toc419959605 �41��

6.6 Reachability (Corollary)	� GEHEZU _Toc419959606  � SEITENREF _Toc419959606 �41��

6.7 Potential reachability (Definition)	� GEHEZU _Toc419959607  � SEITENREF _Toc419959607 �41��

6.8 Potential reachability (Example)	� GEHEZU _Toc419959608  � SEITENREF _Toc419959608 �41��

6.9 Net invariants (Definition)	� GEHEZU _Toc419959609  � SEITENREF _Toc419959609 �43��

6.10 Invariants and conservation theorems (Proposition)	� GEHEZU _Toc419959610  � SEITENREF _Toc419959610 �43��

6.11 Net invariants (Remark)	� GEHEZU _Toc419959611  � SEITENREF _Toc419959611 �44��

6.12 Net invariants (Example)	� GEHEZU _Toc419959612  � SEITENREF _Toc419959612 �44��

6.13 Invariants of P-subnets (Corollary)	� GEHEZU _Toc419959613  � SEITENREF _Toc419959613 �46��

6.14 Minimal invariant (Definition)	� GEHEZU _Toc419959614  � SEITENREF _Toc419959614 �46��

6.15 Representation by minimal invariants (Lemma)	� GEHEZU _Toc419959615  � SEITENREF _Toc419959615 �47��

6.16 Minimal invariants (Examples)	� GEHEZU _Toc419959616  � SEITENREF _Toc419959616 �48��

7 Convex analysis for Petri nets	� GEHEZU _Toc419959617  � SEITENREF _Toc419959617 �49��

7.1 Duality for linear equations (Remark)	� GEHEZU _Toc419959618  � SEITENREF _Toc419959618 �49��

7.2 Ordered vector space (Definition)	� GEHEZU _Toc419959619  � SEITENREF _Toc419959619 �49��

7.3 Linear programming problems (Definition)	� GEHEZU _Toc419959620  � SEITENREF _Toc419959620 �49��

7.4 Duality for the linear programming problem (Theorem)	� GEHEZU _Toc419959621  � SEITENREF _Toc419959621 �50��

7.5 Farkas alternative (Corollary)	� GEHEZU _Toc419959622  � SEITENREF _Toc419959622 �51��

7.6 Existence of strictly positive invariants (Corollary)	� GEHEZU _Toc419959623  � SEITENREF _Toc419959623 �52��

7.7 Existence of strictly positive invariants (Theorem)	� GEHEZU _Toc419959624  � SEITENREF _Toc419959624 �53��

8 Structure and behaviour of Petri nets	� GEHEZU _Toc419959625  � SEITENREF _Toc419959625 �55��

8.1 Structurally boundedness (Lemma)	� GEHEZU _Toc419959626  � SEITENREF _Toc419959626 �55��

8.2 Structure and behaviour (Definition)	� GEHEZU _Toc419959627  � SEITENREF _Toc419959627 �55��

8.3 Structure and behaviour (Remark)	� GEHEZU _Toc419959628  � SEITENREF _Toc419959628 �55��

8.4 Well-structuredness implies strong connectedness (Theorem)	� GEHEZU _Toc419959629  � SEITENREF _Toc419959629 �55��

8.5 Circuit arbiter (Definition)	� GEHEZU _Toc419959630  � SEITENREF _Toc419959630 �57��

8.6 Conflict resolution by circuit arbiters (Proposition)	� GEHEZU _Toc419959631  � SEITENREF _Toc419959631 �58��

8.7 The rank inequality (Theorem)	� GEHEZU _Toc419959632  � SEITENREF _Toc419959632 �61��

8.8 Rank inequality (Examples)	� GEHEZU _Toc419959633  � SEITENREF _Toc419959633 �61��

9 P-nets and T-nets	� GEHEZU _Toc419959634  � SEITENREF _Toc419959634 �63��

9.1 P-net (Definition)	� GEHEZU _Toc419959635  � SEITENREF _Toc419959635 �63��

9.2 P-invariants of a P-net (Proposition)	� GEHEZU _Toc419959636  � SEITENREF _Toc419959636 �63��

9.3 Structurally boundedness of P-nets (Corollary)	� GEHEZU _Toc419959637  � SEITENREF _Toc419959637 �63��

9.4 Reachability in P-nets (Proposition)	� GEHEZU _Toc419959638  � SEITENREF _Toc419959638 �63��

9.5 Structural liveness of P-nets (Corollary)	� GEHEZU _Toc419959639  � SEITENREF _Toc419959639 �64��

9.6 Well-structured P-nets are well-formed (Proposition)	� GEHEZU _Toc419959640  � SEITENREF _Toc419959640 �64��

9.7 Well-behavedness of P-nets (Proposition)	� GEHEZU _Toc419959641  � SEITENREF _Toc419959641 �64��

9.8 T-net (Definition)	� GEHEZU _Toc419959642  � SEITENREF _Toc419959642 �64��

9.9 Well-structured T-nets are well-formed (Proposition)	� GEHEZU _Toc419959643  � SEITENREF _Toc419959643 �65��

9.10 Well-formed T-nets have live and safe markings (Genrichs theorem)	� GEHEZU _Toc419959644  � SEITENREF _Toc419959644 �65��

9.11 Well-behaved T-systems (Proposition)	� GEHEZU _Toc419959645  � SEITENREF _Toc419959645 �65��

10 Allocations	� GEHEZU _Toc419959646  � SEITENREF _Toc419959646 �66��

10.1 Coupled synchronization relation (Definition)	� GEHEZU _Toc419959647  � SEITENREF _Toc419959647 �66��

10.2 Coupled conflict and coupled synchronization (Remark)	� GEHEZU _Toc419959648  � SEITENREF _Toc419959648 �66��

10.3 Existence of semi-positive invariants (Proposition)	� GEHEZU _Toc419959649  � SEITENREF _Toc419959649 �67��

10.4 P-allocation (Definition)	� GEHEZU _Toc419959650  � SEITENREF _Toc419959650 �68��

10.5 P-allocatability (Proposition)	� GEHEZU _Toc419959651  � SEITENREF _Toc419959651 �68��

10.6 P-components (Definition)	� GEHEZU _Toc419959652  � SEITENREF _Toc419959652 �69��

10.7 P-allocations and P-components (Proposition)	� GEHEZU _Toc419959653  � SEITENREF _Toc419959653 �69��

11 The rank-theorem for free-choice nets	� GEHEZU _Toc419959654  � SEITENREF _Toc419959654 �71��

11.1 Free-choice net (Definition)	� GEHEZU _Toc419959655  � SEITENREF _Toc419959655 �71��

11.2 Free-choice net (Remark)	� GEHEZU _Toc419959656  � SEITENREF _Toc419959656 �71��

11.3 Reverse-dualizing respects free-choice (Corollary)	� GEHEZU _Toc419959657  � SEITENREF _Toc419959657 �71��

11.4 Deadlock-Freeness and Liveness (Theorem)	� GEHEZU _Toc419959658  � SEITENREF _Toc419959658 �72��

11.5 P-allocatability and strictly positive P-invariants (Proposition)	� GEHEZU _Toc419959659  � SEITENREF _Toc419959659 �72��

11.6 Liveness and P-allocatability (Proposition)	� GEHEZU _Toc419959660  � SEITENREF _Toc419959660 �74��

11.7 The rank theorem	� GEHEZU _Toc419959661  � SEITENREF _Toc419959661 �74��

11.8 Duality for free choice nets (Corollary)	� GEHEZU _Toc419959662  � SEITENREF _Toc419959662 �76��

12 Bibliography	� GEHEZU _Toc419959663  � SEITENREF _Toc419959663 �77��

12.1 Theoretical computer science	� GEHEZU _Toc419959664  � SEITENREF _Toc419959664 �77��

12.2 Petri-Nets	� GEHEZU _Toc419959665  � SEITENREF _Toc419959665 �77��

12.3 Linear Algebra	� GEHEZU _Toc419959666  � SEITENREF _Toc419959666 �77��

12.4 Topology	� GEHEZU _Toc419959667  � SEITENREF _Toc419959667 �77��

12.5 Convex Analysis	� GEHEZU _Toc419959668  � SEITENREF _Toc419959668 �78��

��Preface

These notes are an extended version� of my lectures about Petri nets delivered at the university of Munich during the winter course 1997/98. The lectures have been adressed to graduate students, who were about to specialize in the field of computer science.

The lectures are based mainly on two textbooks and one research article�:

Starke, Peter: Analyse von Petri-Netz-Modellen. [Sta1990]

Desel, Jörg; Esparza, Javier: Free choice Petri nets. [DE1995]

Teruel, Enrique; Silva, Manuel: Well-formedness of Equal Conflict Systems. [TS1994]

Even if these lectures consider only ordinary nets, most of the statetements can be generalized to weighted nets.

The aim of these lectures is to consider classical Petri net theory from a mathematical point of view and to emphazise the input from linear algebra, topology and linear optimization.

�Why Petri nets?

Petri nets are a mathematical language to model processes and a theoretical means for their analysis. Petri nets are particularly well suited to model situations like concurrency, conflict, choice and synchronization.

Concurrency: Two actions, triggered by the same event, occur either independent from each other or synchronize later.

Conflict: Two actions are possible, but the execution of one of them hinders the execution of the other.

Choice: The system chooses between the execution of two possible actions, the selection is not determined by the surrounding of the system.

Synchronization: A given action can only be executed, if two or more independent actions have successfully terminated before.

For each concept we will give a formal definition within Petri theory.

Different classes of Petri nets (Examples)

In analogy with the expressive power of programming languages like assembler, 3rd generation languages or special purpose languages one can divide Petri nets into different net classes. The following � REF _Ref403403146 \* FORMATVERBINDEN �Figure 1� shows three often used types of Petri nets:

Place/transition nets (p/t nets): All tokens are of equal type

High-level nets: Tokens are individual items, arcs and transitions can be annotated.

Timed and stochastic nets: Transitions take time.

�

Figure � SEQ Figure \* ARABISCH �1� Different classes of Petri nets

A particular form of Petri nets, mostly used for business processes, is the method of event-driven process chains. An other - more axiomatic - method are process algebras.

The present lecture concentrates on p/t nets.

System properties and net types (Example)

The following � REF _Ref395754427 \* FORMATVERBINDEN �Figure 2� shows different p/t net structures, which are used to model different dynamical net properties.
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Figure � SEQ Figure \* ARABISCH �2� System properties and net types



Petri nets as a mathematical model (Remark)

A Petri net is a directed bipartite graph together with an initial marking. Considering the analogy with the theory of differential equations the net corresponds to the differential equation and the initial marking to the initial condition. While differential equations as

� EINBETTEN Equation.2  ���

are the paradigma of deterministic and continous system evolution, Petri nets are capable to model indeterministic changes and represent a discrete model. The current state of a Petri net is represented by a distribution of tokens. Triggered by the firing of activated transitions these tokens flow through the net (token game) and model the change of the system state, i.e. a process.

For a linear differential equation one asks i.e. for the dimension of the space of solutions, for the dependency of the solutions on the initial conditions resp. on parameters, one can ask questions about how far local solutions can be extended to global ones etc.

Transferred to Petri nets the first type of questions considers structural properties of Petri nets, properties which hold independent from a given marking, the second type of questions consider the behaviour of the net under a given initial marking. The analogy of a trajectory is the firing sequence of transitions.

Scenario Car-Service (Example)

A customer delivers his car at a repair station in order to get the following services: Change the sparkin plugs, check the exhaust gas and examine the lock of the right door. From his order there result four different actions for the repair station:

Accept the order

Change the sparking plug

Check the exhaust gas

Examine the door lock.

The execution of the different actions within a station with at least 3 employeers - one clerk in the office and two staff members in the garage - can be modeled by a Petri net according to � REF _Ref403021918 \* FORMATVERBINDEN �Figure 3�.





�



Figure � SEQ Figure \* ARABISCH �3� Work schedule within a repair station



Based on this simple model one can discuss questions like the following: 

What happens to the workmen after they have finished their job, are they ready for new orders?

When the places p1 resp. p3 model the two workmen as two different resources, what does a token at place p2 mean: A clerk waiting in the office for his next task, a customer order, or both?

Shall one close the net, in order to obtain a cyclic process?

Fundamental properties of Petri nets (Remark)

The first and fundamental properties, Petri nets can have, are:

Boundedness: There exists a constant bounding the token load on every place in any reachable state.

Liveness: Every transition can be activated from every reachable system state again and again.

Reversibility: From every intermediate state the initial state can be reached again.

Conservation law: The weighted number of tokens is conserved during the token game.

How to analyze Petri nets? (Remark)

Today there exists no unique method to analyze successfully all properties of Petri nets mentioned in Remark � REF _Ref397395707 \n �1.5�. Rather one has to switch between different mathematical methods, the most important are:

Linear algebra

Convex analysis

Graph theory

Logic

Topology.

�Petri topology of bipartite graphs

Bipartite graph (Definition)

A non empty set X ( ( together with a relation D ( X x X is called bipartite graph (or undirected net)

N = ( X, D)

iff

domain (D) ( range (D) = X

domain (D) ( range (D) = (.

We call the set P:= domain (D) the set of places, the set T:= range (D) the set of transitions and the relation D ( X x X the adjacency relation on the set X of nodes.

Undirected net (Remark)

i) The adjacency relation defines a partition on the set X of nodes: One sort is called places, represented by circles, the other is called transitions, represented by boxes, cf. � REF _Ref407729121 \* FORMATVERBINDEN �Figure 4�.





�



Figure � SEQ Figure \* ARABISCH �4� Bipartite graph with places and transitions



ii) Due to Definition � REF _Ref414982977 \n �2.1� every net has no isolated nodes and contains at least a place and a transition.

Morphism between bipartite graphs (Definition)

i) A morphism

f: N1 ( N2

between to bipartite graphs Ni = ( Xi, Di), i = 1,2, is defined by a map f: X1 ( X2, which respects the adjacency relation, i.e.

(p, t) ( D1 ( [ f(p) = f(t) or (f(p), f(t)) ( D2 ].

ii) A morphism f: N1 ( N2 is called homomorphism iff it preserves the adjacency relation, i.e.

(p, t) ( D1 ( (f(p), f(t)) ( D2.

iii) A morphism f: N1 ( N2 is called isomorphism iff there exists a morphism g: N2 ( N1 with

g o f = idN1 and f o g = idN2

with respect to the obvious composition of morphisms.

Morphisms of bipartite graphs (Remark)

i) Every isomorphism is a homomorphism.

ii) Note that the adjacency relation is defined on P x T, not on P x T ( T x P. Therefore a map, which respects the adjacency relation, either identifies two nodes or respects their sorts.

iii) Obviously the set of all bipartite graphs together with all morphisms constitutes a category, the category BG of bipartite graphs. The subcategory BGhom of bipartite graphs and homomorphisms has a terminal object, the bipartite graph

1 = ( {p, t}, {(p, t)} ),

cf. � REF _Ref404937586 \* FORMATVERBINDEN �Figure 5�, because for every bipartite graph N there exists a unique homomorphism N ( 1.





�

Figure � SEQ Figure \* ARABISCH �5� Terminal object in the category BPhom

Topology (Definition)

i) A topology on a set X is a subset T ( 2X of the powerset of X, i.e. a set of subsets of X, such that:

( ( T, X ( T

U1, U2 ( T => U1 ( U2 ( T (closed with respect to finite intersections)

(Ui)i(I with Ui ( T, i(I  => (i(IUi ( T (closed with respect to arbitrary unions).

The elements U ( T are called open subsets of the topological space (X, T). A subset A ( X is called closed iff X \ A is open. The interior Vo of an arbitrary subset V ( X is defined as the largest open subset of V, i.e. as the union of all open subsets of V.

ii) A map f: (X1, T1) ( (X2, T2) between two topological spaces is continous iff the inverse image f-1(U) of every open set U ( X2 is open in (X1, T1).

Metric space (Example)

i) A subset U ( X of a metric space (X, d) is called open iff U contains with every point x ( U also a ball with radius ( > 0 around x, i.e.

{ y ( X: d(y, x) < ( } ( U.

If we define Td as the set of all subsets of X, which are open in the sense just defined, then the pair (X, Td) is a topological space.

ii) A map

f: (X1, d1) ( (X2, d2)

between two metric spaces is continous iff the inverse image f�1(B) of every open ball B of (X2, d2) is open in (X1, d1).

Continuity (Remark)

For a map f: (X1, T1) ( (X2, T2) between topological spaces we have the equivalence:

f is continous

For every set A ( X1 holds f(A—) ( f(A)—.

Proof.

Because

f-1(X2 \ V) = X1 \  f-1(V), V ( X2,

the continuity of f is equivalent to the condition: The inverse image of any closed set is closed.

i) Assume f to be continous. For a given set A ( X1 we consider the closed set f(A)—. By continuity the inverse image f-1(f(A)—) is closed. It contains A, hence also the closure A—. Now

A— ( f-1(f(A)—) implies f(A—) ( f(A)—.

ii) Assume f(A—) ( f(A)— for every set A ( X1. For a given closed set B ( X2 we set A := f�1(B). By assumption we have

f(A—) = f((f�1(B)—) ( f(A)— = f(f�1(B))— ( B— = B, because B is closed.

Hence A— ( f�1(B) = A. The other inclusion A ( A— holds by definition. Hence A = A—, i.e. A is closed, QED.

Petri topology (Definition)

i) For a given bipartite graphs N = ( X, D) a subset U ( X of nodes is called open iff U contains with every node x ( U also the set

{ y ( X: (y, x) ( D } ( U.

The set of all open subsets forms a topology on X, which is called the Petri topology of N.

ii) Denote by Ni = ( Pi, Ti, Fi ) two bipartite graphs with nodes Xi := Pi ( Ti, i = 1,2. A map

f: X1 ( X2

is continous iff it is continous with respect to the Petri topologies, i.e. iff the inverse image f�1(U) of every open set U of N1 is open with respect to the Petri topology of N2.

Petri topology (Remark)

Denote by N = (X, D) a bipartite graph.

i) For a subset U ( X the following properties are equivalent:

U is open

U is place bounded, i.e. all nodes at the boundary of U are places:

{ x ( U: ((x ( x() ( (X \ U) ( ( } ( P.

U contains with every transition t also its pre- and postset (t ( t(.

A subset A ( X is closed iff it is transition bounded.

ii) Every singleton { p } with a place p ( P is open, and for every transition t ( T the set

{ t } ( (t ( t( = { t } ( { p ( P: (p, t) ( D }

is the smallest open set containing t. The family of all singletons ({p})p(P together with all sets ({ t } ( (t ( t()t(T is a basis of the Petri topology.

Every singleton { t } with a transition t ( T is closed, and for every place p ( P the set

{ p } ( (p ( p( = { p } ( { t ( T: (p, t) ( D } = { p }—

is the smallest closed set containing p, i.e. the closure of { p }.

iii) With respect to the Petri topology arbitrary intersections of open sets are open: Assume a family (Ui)i(I of open sets and a node

x ( (i(I Ui.

Without loss of generality we assume x a transition. By assumption

{ y ( X: (y, x) ( D } ( Ui for all i(I,

hence

{ y ( X: (y, x) ( D } = (i(I { y ( X: (y, x) ( D } ( (i(I Ui.

Considering the complement we derive that arbitrary unions of closed sets are closed. Hence the Petri topology has a natural dual: The dual of the Petri topology is the topology with open sets the transition bounded subnets. They are exactly the closed sets with respect to the Petri topology.

iv) Petri topology and adjacency relation are two equivalent concepts. The Petri topology of the bipartite graph determines the adjacency relation D: For a place p ( P and transition t ( T we have

(p, t) ( D ( t ( { p }—.

Morphism of bipartite graphs (Lemma)

A map

f: X1 ( X2

between two bipartite graphs Ni = ( Xi, Di ), i = 1,2, is continous with respect to the Petri topology iff it respects the adjacency relation.

Proof.

i) Suppose f to be continous. Consider a pair (p, t) ( D1, i.e. t ( { p }—. Due to Remark � REF _Ref404938415 \n �2.7� we have by continuity of f

f( { p }— ) ( f( { p } )—.

From t ( { p }— we get 

f(t) ( f( { p }— ) ( f( { p } )—.

Either f(p) ( P2, then f(p) = f(t) or ( f(p), f(t) ) ( D2,

or f(p) ( T2, then f( { p } )— = f(p), hence f(t) = f(p).

ii) Suppose f to respect the adjacency relation. Consider an open set V ( X2. We have to prove the set U := f�1(V) to be open, i.e. we have to show for a transition t ( U and a place p ( P1 with (p, t) ( D1 that p ( U. If f(p) ( f(t) then ( f(p), f(t) ) ( D2, hence f(p) ( V, equivalently p ( f�1(V) = U. If

f(p) = f(t) ( f(U) ( V,

we get trivially p ( f�1(V) = U, QED.

Subgraph (Definition)

Denote by N = (X, D) a bipartite graph.

i) A subgraph of N is a bipartite graphN’ = (X’, D’) with

P’ ( P

T’ ( T

F’ = F | X’ := F ( ( P’ x T’ ( T’ x P’ ) (Induced relation).

For a subgraph we use the notation N’ ( N.

ii) A subgraph N’ of N is called open (resp. closed) subgraph of N iff XN’ ( XN is open (resp. closed).

iii) For a subset Y ( X := P ( T of nodes we denote by NY := ( PY, TY, FY ) with

PY := P ( Y

TY := T ( Y

FY := F | Y := F | ( PY x TY ( TY x PY )

the subgraph NY ( N generated by Y.

Subgraph (Remark)

Denote by N = (XN, DN) a bipartite graph.

i) We can provide a given subset Y ( X := PX ( TX of nodes with the topology TY induced from the Petri topology of X: A subset U ( Y is open with respect to TY, iff there exists an open set UX ( X such that

U = UX ( Y.

Taking into consideration the bijective correspondence between the adjacency relation and the Petri topology from Remark � REF _Ref404437898 \n �2.9�, the resulting topological space (Y, TY) is just the counterpart - translated into the language of topology - of the restriction of the adjacency relation

DY := DX | Y,

i.e. the subspace topology TY provides Y with the full set of undirected edges induced from X. 

ii) Every subset P’ ( P of places generates a closed subgraph N’ = (P’, T’, F’) of N if we set

T’ = (P’ ( P’(

F’ := F | X’.

iii) Every subset T’ ( T of transitions generates an open subgraph N’ = (P’, T’, F’) of N if we set

P’ = (T’ ( T’(

F’ := F | X’.

Image of a morphism (Definition)

i) For a morphism

f: N1 ( N2

between two bipartite graphs Ni = (Pi, Ti, Fi), i = 1,2, we define the image of f as the subgraph f(N1) of N2, which is generated by f(X1), i.e.

f(N1) := ( f(P), f(T), F2 | f(X1) ).

ii) An injective morphism f: N1 ( N2 is called an embedding iff f induces an isomorphism

N1 ( f(N1)

onto the subgraph f(N1) of N2.

�Nets and morphisms

Net (Definition)

1. A net N = ( P, T, F ) is a directed bipartite graph. Here

P denotes one sort of nodes (places),

T denotes the other sort (transitions),

and the flow relation

F ( ( P x T ( T x P )

denotes the oriented edges, i.e. the arcs.

The set of all nodes is denoted by

X := P ( T.

Moreover we assume P ( T = (, P ( T ( ( and exclude isolated nodes, i.e. we assume

X = domain (F) ( range (F).

In order to show the explicit dependence from a given net N we use subcripts N = (PN, TN, FN) as well as XN and DN. We will assume in general all nets N to be finite, i.e. XN to be a finite set of nodes.

2. If we forget about the orientation of N, we consider only the adjacency relation

D := F ( F-1 | (P x T)

and recover the underlying undirected net (P, T, D).

3. The following � REF _Ref407730487 \* FORMATVERBINDEN �Figure 6� shows the difference between the adjacency and the flow relation on a given set of nodes.The adjacency relation defines the two types of nodes, while the flow relation provides the set of arcs with an orientation. Both relations together define the structure of a net.

�



�



Figure � SEQ Figure \* ARABISCH �6� Adjacency and flow relation on a given set



Incidence maps and rank (Definition)

Denote by N = ( P, T, F ) a net.

i) The incidence maps of N are defined as

w+: P x T ( N, w+(p, t) := � EINBETTEN Equation.2  ���,

w-: P x T ( N, w-(p, t) := � EINBETTEN Equation.2  ���

w: P x T ( Z, w:= w+ - w-.

Obviously the above mentioned maps can be represented by matrices from M(n x m, Z) with n = card (P) rows and m = card (T) columns. These matrices are called the incidence matrices of N.

ii) The rank of N is defined as the rank of its incidence map, i.e.

rank(N) := rank (w). 

Incidence map (Example)

The net from Example � REF _Ref404061121 \n �1.4� has the following incidence matrix according to the numbering of places and transitions from � REF _Ref404061987 \* FORMATVERBINDEN �Figure 7�:



� EINBETTEN Equation.2  ���( M(9 x 5, Z).
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Figure � SEQ Figure \* ARABISCH �7� Strucutre of the net modeling the repair station



Incidence maps (Remark)

1. Obviously the two characterizations of a net N, either by its flow relation N = ( P, T, F ) or by its incidence maps N = ( P, T, w+, w- ), are equivalent.

2. For pure nets, i.e.

w+(p,t) w-(p,t) = 0 for all (p, t) ( P x T,

both of the incidence maps w+, w- can be reconstructed from the incidence map w as its positive resp. negative part. The net from � REF _Ref404062324 \* FORMATVERBINDEN �Figure 8� is not pure.

�
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Figure � SEQ Figure \* ARABISCH �8� Non pure net



Preset, postset (Definition)

Denote by N = (P, T, F) a net. For a node x ( X we define the 

preset (x := { y ( X: ( y, x ) ( F }

and the postset x( := { y ( X: ( x, y ) ( F }.

More general, for a subset U ( X we define

the preset (U := ( { (x: x ( U }

and the postset U( := ( { x(: x ( U }.

P-net and T-net (Definition)

i) A net N = (P, T, F) is called P-net iff transitions have input and output and do not branch, i.e. for every transition t ( T:

card ( (t ) = card ( t( ) = 1.

ii) A net N = (P, T, F) is called T-net iff places have input and output and do not branch, i.e. for every place p ( P:

card ( (p ) = card ( p( ) = 1.

Net morphism (Definition)

i) A morphism f: N1 ( N2 between two nets Ni = ( Pi, Ti, Fi ), i = 1,2, is a map

f: X1 ( X2

respecting the adjacency relation and the flow relation, i.e. for all x, y ( X1:

(x, y) ( D1 => f(x) = f(y) or ( f(x), f(y) ) ( D2, (Adjacency),

(x, y) ( F1 => f(x) = f(y) or ( f(x), f(y) ) ( F2, (Flow).

We call f an isomorphism iff there exists a morphism g: N2 ( N1 with

g o f = idN1 and f o g = idN2

with respect to the obvious composition of net morphisms.

ii) A morphism f: N1 ( N2 is called homomorphism iff it preserves adjacency and flow relation, i.e. iff for all x, y ( X1:

(x, y) ( D1 => ( f(x), f(y) ) ( D2

(x, y) ( F1 => ( f(x), f(y) ) ( F2.

iii) A surjective homomorphism f: N1 ( N2 is called a folding. In this case the net N2 is called a folding of N1 resp. N1 an unfolding of N2.

Net morphism (Remarks)

i) A net morphims f: N1 ( N2 is a homomorphism iff it respects the sorts, i.e. f (P1) ( P2 and f (T1) ( T2. It is a folding iff in addition f (P1) = P2 and f (T1) = T2.

ii) The following � REF _Ref403404333 \* FORMATVERBINDEN �Figure 9� shows a morphism between two nets, which is not a homomorphism. The morphism is surjective, the image net is coarser than the original net.
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Figure � SEQ Figure \* ARABISCH �9� Morphism between two nets

Duality of nets (Definition)

Consider a net N = (P, T, F).

i) The reverse net of N is obtained by reversing the arcs as the net Nrev := (Prev, Trev, Frev) with

Prev := P, Trev := T, Frev := F-1. 

ii) The dual net of N is obtained by interchanging the role of places and transitions as the net Nd := (Pd, Td, Fd) with

Pd := T, Td := P, Fd := F

as a relation on Pd ( Td = P ( T. 

iii) The reverse-dual of N is defined as the net N*:= (Nrev)d = (Nd)rev = (P*, T*, F*)with

P* := T, T* := P, F* := F-1.

Duality of nets (Remark)

i) The identity map on the nodes does not define a morphism N ( Nrev, because it does not respect the orientation, whereas it respects - even preserves - the adjacency.

ii) The identity map on the nodes does not define a morphism N ( Nd, because it does not respect the adjacency, whereas it respects - even preserves - the orientation.

iii) The identity map on the nodes does not define a morphism N ( N*, because it respects neither the adjacency nor the orientation.

iv) The incidence matrix wN* of the reverse dual is the transpose of the incidence matrix wN of the original net.
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Figure � SEQ Figure \* ARABISCH �10� A net N with its dual Nd, reverse Nrev and reverse-dual N*



The incidence matrices of the nets from � REF _Ref404063661 \* FORMATVERBINDEN �Figure 10� are

wN = � EINBETTEN Equation.2  ��� ( M(1 x 2, Z)

wNd = (-wN)T = � EINBETTEN Equation.2  ���( M(2 x 1, Z)

wNrev = - wN = � EINBETTEN Equation.2  ��� ( M(1 x 2, Z)

WN* = (wN)T = � EINBETTEN Equation.2  ���( M(2 x 1, Z) , transpose of the incidence matrix of the original net.

v) Assume N to be a P-net. Then its dual Nd is a T-net, the reverse net Nrev is a P-net and the reverse-dual N* is a T-net.

Connectedness and strong connectedness (Definition)

A directed graph is connected iff any two nodes can be joined by a path, which is not necessarily directed. It is called strongly connected iff any two nodes can be joined by a directed path. .�Fundamentals of Petri net theory

The concept of a Petri net integrates the static concept of a net as a directed bipartite graph and the dynamic property of the token game along the arcs of the net, which is controlled by the occurrence rule.

Petri net (Definition)

i) A marking of a net N = ( P, T, F ) is a map

M: P ( N.

The natural number M(p) is called the number of tokens at the place p ( P.

ii) A pair (N, M) with a connected net N and a corresponding marking M is called a place/transition system (p/t system) or Petri net.

Ocurrence rule (Definition)

The occurrence rule of a net N = ( P, T, F ) consists of two parts, the first part is the activation condition, the second determines the token flow due to the occurrence of transitions:

i) A given transition t ( T is activated (is enabled, can occur) at a marking M, iff M marks every place in the preset of t, i.e.

M(p) ( 1 for every p ( (t.

We write M [ t >, spelled „the transition t is activated at the marking M“.

ii) If the transition t ( T is activated at the marking Mpre, its occurrence (firing) creates the new marking Mpost with

Mpost (p) := Mpre (p) + w(p, t) for all p ( P.

We write Mpre [t > Mpost.

Sequential semantics of a Petri net (Definition)

Denote by N = ( P, T, F ) a net.

i) Consider the set T as alphabet and denote by WN the set of finite words over T. By induction on the lenght of the words ( ( WN we define for any two markings Mpre, Mpost the expression 

Mpre [( > Mpost,

which is spelled „( is activated at Mpre and its occurrence creates the marking Mpost.“

For the empty word ( = ( we define: Mpre [( > Mpost :<=> Mpre = Mpost 

For the induction step we define: Mpre [ ( t > Mpost :<=> There exists a marking M with

Mpre [ ( > M and M [ t > Mpost.

On the set of markings of N we define the reachability relation [* > as follows:

Mpre [* > Mpost := There exists a word ( ( WN with Mpre [( > Mpost.

An infinite sequence ( ( TN is activated at a marking Mpre iff every finite prefix of ( is activated at Mpre.

ii) For a given Petri net (N, M) we define the set of all reachable markings or cases

RN(M) := { Mpost: M [ * > Mpost }.

The language of (N, M) is

LN(M) := { ( ( W(T): M [( > Mpost for a suitable marking Mpost },

the words ( ( LN(M) are called the finite occurrence sequences of (N, M). The infinite sequences ( ( TN, which are activated at M, are called the infinite occurrence sequences of (N, M).

Note: For a word ( ( WN and a subset V ( T of transitions we denote by card ((, V) the number of occurrences of transitions from V in (.

Case graph of a Petri net (Definition)

The case graph of a Petri net (N, M) is the directed graph GN(M) := (C, A) with

the cases as nodes, i.e. nodes C = RN(M)

and the firing of transitions as arcs, i.e. (Mpre, t, Mpost) ( A, t ( T, iff Mpre [t > Mpost.

Case graph and language (Examples)

i) The language of the Petri net from � REF _Ref404776532 \* FORMATVERBINDEN �Figure 11� is the free language with two generators t1 and t2.





�



Figure � SEQ Figure \* ARABISCH �11� Petri net and case graph



ii) The Petri net from � REF _Ref404778536 \* FORMATVERBINDEN �Figure 12� shows two concurrent transitions t2 and t3 and their synchronisation at t1. The case graph shows occurrence sequences containing the sequence t2 t3 and others containing the sequence t3 t2. Both alternatives interleave the firing of t2 and t3. But this interleaving does not exhaust all possibilities. Due to the concurrency of both transitions there does not exist any order relation between the firing of both transitions. This shortcut is considered as one of the main drawbacks of case graphs as a theoretical concept to capture the behaviour of Petri nets. Hence the sequential semantics is not sufficient to describe the behaviour of Petri nets. Better suited is the causal semantics as reflected by the universal occurrence net, cf. [Win1984].

�
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Figure � SEQ Figure \* ARABISCH �12� Petri net and case graph

iii) The case graph of the Petri net from � REF _Ref404778593 \* FORMATVERBINDEN �Figure 13� is infinite.





�



Figure � SEQ Figure \* ARABISCH �13� Petri net with infinite case graph



iv) The Petri net from � REF _Ref405303290 \* FORMATVERBINDEN �Figure 14� has the same language as the net from � REF _Ref404778593 \* FORMATVERBINDEN �Figure 13�, but a finite case graph. Moreover the different Petri nets from � REF _Ref404776532 \* FORMATVERBINDEN �Figure 11� and � REF _Ref405303290 \* FORMATVERBINDEN �Figure 14� have the same set of reachable markings.





�



Figure � SEQ Figure \* ARABISCH �14� Petri net with case graph

The language of closed subnets (Lemma)

Denote by N1 = ( P1, T1, A1 ) ( N = ( P, T, F ) a subnet of a p/t net N. By cancellation of transitions not in T1 we define a projection

pr: WN ( WN1

from the words of N to the words of N1. Any marking M of N defines by restriction a marking M1 := M | N1 of N1.

i) If N1 is closed in N then we get from the projection pr: WN ( WN1 an induced map between the languages of the two Petri nets (N, M) and (N1, M1)

prL1: LN(M) ( LN1(M1), ( ( pr(().

ii) If N1 is closed in N, then every occurrence sequence (1 ( LN1(M1), which contains only transitions from the interior of N1, can be lifted to an occurrence sequence ( ( LN(M) with pL1(() = (1.

Proof.

ad i) We prove the claim by induction on the length of a given occurrence sequence ( ( LN(M). The claim is true for length (() = 0. For the induction step assume

( = (0 t ( LN(M) with (0 ( LN(M) and t ( T.

By induction assumption pr((0) ( LN1(M1). Because N1 is closed, the complement N \ N1 is open, such that preset and postset of every transition from T \ T1 is disjoint from P1. Hence the occurrence of any transition from (0, which belongs to T \ T1, does not change the token load of N1:

M [ (0 > Mpost ( (M | N1) [ pr((0) > (Mpost | N1).

Finally: If Mpost [ t >, then (Mpost | N1) [ pr(t) >, because all places from the preset of t, which are contained in P1, are marked at Mpost | N1. Therefore the restriction pr(t) ( T1 is activated at Mpost | N1.

ad ii) We consider the special case (1 = t with a transition t ( T1, such that

(t ( t( ( P1.

We define ( := t and get ( ( LN(M) because (t ( P1. Because t( ( P1 the firing of t in N does not change the token load of N \ N1:

M [ ( > Mpost ( (M | N1) [ (1 > (Mpost | N1).

Now the general case follows from an iterated application of the special case, because every occurrence sequence from LN1(M1), which has to be considered, is a concatenation of transitions from the interior of N1, QED.

Language of subnets (Remark)

i) The example from � REF _Ref405222506 \* FORMATVERBINDEN �Figure 15� shows, that the assumption about the closedness of the subnet cannot be dropped in Lemma � REF _Ref405214893 \n �4.6�, part i):
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Figure � SEQ Figure \* ARABISCH �15� Net N with different subnets



The subnet N1, which is generated by { p2, t2 } is not closed in the net N. Concerning the marking M with a single token on the place p1 we have 

( = t1 t2 ( LN(M),

but pL1(() = t2 ( LN1(M1).

ii) The assumption in Lemma � REF _Ref405214911 \n �4.6�, part ii), about the occurrence sequence (1, to contain only transitions from the interior of N1, is necessary, too. This time we define N1 as the subnet generated by { t1, p2, t2 }, which is closed. We set (1 = t1, where t1 does not belong to the interior of N1, and choose the zero marking M. Then (1 ( LN1(M1), but there is no occurrence sequence ( ( LN(M) with pL1(() = (1.

Concurrency (Definition)

Denote by N = (P, T, F) a net.

i) A set of transitions U ( T is concurrent (deutsch: nebenläufig) at a marking M of N, iff

M ( (t(U w�(-,t)

considered as maps P ( N.

ii) U ( T is structurally concurrent iff U is concurrent at any marking M of N, which activates all transitions t ( U, i.e.

M ( w�(-,t) for all t ( U ( M ( (t(U w�(-,t).

Structural concurrency (Proposition)

Denote by N = (P, T, F) a net and by U ( T a set of transitions.

A subset U ( T of transitions is structurally concurrent iff any two transitions t1, t2 ( U have disjoint presets, i.e. (t1 ( (t2 = (.

Proof.

i) Assume U to be structurally concurrent. Consider the marking M := (p((U p*. Obviously M activates every transition from U. If two different transitions t1 ( t2 ( U have a common place

p ( (t1 ( (t2

in their preset, then we get the contradiction

1 = M(p) ( (t(U w�(p, t) ( w�(p, t1) + w�(p, t2) = 2.

ii) If all transitions from U have pairwise disjoint presets, then for any p ( P there exists at most a single transition t ( U with p ( (t, i.e. w�(p, t) > 0, hence for any marking M:

M(p) ( w�(p, t) ( M(p) ( (p((U w�(p, t), QED.

Conflict (Definition)

Denote by N = (P, T, F) a net.

i) A set of transitions U ( T is conflicted (deutsch: im Konflikt) at a marking M of N, iff M activates every transition t ( U, without U beeing concurrent at M.

ii) The set U ( T is structurally conflicted (deutsch: strukturell konfliktbehaftet), iff there exists a marking M of N, such that U is conflicted at M.

Concurrency and conflict (Remark)

i) The above definition captures the concept of concurrency in the language of Petri nets: Concurrency of a set of transitions at a given marking means that there are enough token to activate all transitions simultaneously, and the firing of one transition does not change the activation of all other transitions.

ii) � REF _Ref405217369 \* FORMATVERBINDEN �Figure 16�, shows a set U = {t1, t2}, which is conflicted at the current marking M1, whereas U is concurrent at the marking M2 from � REF _Ref405217383 \* FORMATVERBINDEN �Figure 17�. Therefore U is structurally conflicted, in accordance with Proposition � REF _Ref397396252 \n �4.9�. Note: Even in the conflicted case of � REF _Ref405217369 \* FORMATVERBINDEN �Figure 16� both transitions can occurrence in arbitrary order.

�
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Figure � SEQ Figure \* ARABISCH �16� Conflict activation of {t1, t2} at a marking
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Figure � SEQ Figure \* ARABISCH �17� Concurrent activation of {t1, t2} at a marking



�Concurrency in pure nets (Proposition)

For a pure net N = ( P, T, F ) the following equivalence holds concerning a marking M and a subset U ( T:

U ( T is concurrent at M

All transitions of U can occur at M in arbitrary order.

Proof. Assume U is not concurrent at M, but M activates every transition from U. Then there exists a place p ((U with

1 ( M(p) < (t(U w�(p, t).

Because the net is pure, for all transitions t ( U with p ((t holds w+(p, t) = 0, i.e. the occurrence of t consumes tokens from p without adding new tokens. Hence not all transitions t ( U with p ((t can fire in sequence at M.

Concurrency in pure nets (Example)

� REF _Ref405219622 \* FORMATVERBINDEN �Figure 18� shows a net and a set { t1, t2 } of transitions, which are activated, but not concurrently activated at the given marking. Both transitions cannot fire in arbitrary order, because the firing of the first transition, deactivates the second. The place p can be considered as a shared ressource, which must be used exclusively upon entering each of the critical sections between the transitions t1 and t3 resp. between t2 and t4.

Moreover � REF _Ref405530527 \* FORMATVERBINDEN �Figure 19� shows a marking M, such that the set { t1, t2, t3 } is not concurrent at M, but the transitions can fire in different, but not in all orders

M [ t1 t3 t2 >

M [ t3 t1 t2 >

but not M [ t2 t1 t3 >.
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Figure � SEQ Figure \* ARABISCH �18� Transitions, which cannot fire in arbitrary order
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Figure � SEQ Figure \* ARABISCH �19� Non concurrency

�Conflict relations (Definition)

Denote by N = ( P, T, F ) a p/t net.

i) Two transitions t, t’ ( T are in coupled conflict, iff t = t’ or there exists a sequence (ti)i= 0,...,n of transitions such that

(ti ( (ti+1 ( (, i = 0,...,n-1, and r0 = t, rn = t’.

The corresponding equivalence relation is called coupled conflict relation and its equivalence classes the coupling conflict sets of N. The set of all coupled conflict sets of N is denoted by C(N).

ii) Two transitions t1, t2 ( T are in equal conflict iff t1 = t2 or

w�(-, t1) = w�(-, t2) ( 0.

The corresponding equivalence relation is called equal conflict relation and its equivalence classes the equal conflict sets of N. We denote by E(N) the set of all equal conflict sets of N and by e(N) its number.

The subnet generated by an equal conflict set together with its preset is called a cluster of N.





�



Figure � SEQ Figure \* ARABISCH �20� Transitions in coupled, but not in equal conflict

�Boundedness and Liveness

We assume all nets in the following to be finite, i.e. to have a finite set of nodes.

Boundedness (Definition)

1. A Petri net (N, M0) is bounded, iff there exists a constant K ( N, such that every reachable marking M ( RN(M0) satisfies

max M(p) ( K for all places p of N.

A bounded system is called save or 1-bounded, iff the choice K = 1 is possible.

2. A net N is structurally bounded, iff the Petri net (N, M0) is bounded for every marking M0.

Finiteness of the case graph (Lemma)

The case graph of a Petri net is finite iff the Petri net is bounded.

Proof.

i) For a bounded net N = (P, T, F) there exists a constant K bounding the token load of every single place. Hence the number of cases is bounded by

( K + 1 )card(P).

ii) If the case graph is finite, then there exist only finite many cases, hence the token load of all places is bounded by a global constant, QED.

Unboundedness (Proposition)

A Petri net (N, M0) with N = (P, T, F) is unbounded iff there exist two markings M1 ( RN(M0) and M2 ( RN(M1) with

M2 > M1 ,

considered as mappings P ( N, i.e. with

M2 ( M1 and M2(p) - M1(p) > 0 for at least one place p.

Proof.

i) Assume M1 [ ( > M2 for an occurrence sequence ( ( LN(M1) with

( := M2 - M1 > 0.

The occurence sequence ( is activated at M2, too, its firing generates the new marking

M3 = M2 + ( = M1 + 2( .

After n firings of ( we get a marking

M = M1 + n (.

Hence the token load at the place p can exceed any given bound.

ii) Assume the Petri net to be unbounded. Its case graph GN(M0) is infinite by Lemma � REF _Ref405532904 \n �5.2�. Hence there exists infinitely many directed, simple paths ( in GN(M0), which start at the node M0. Because only finitely many arcs originate at M0, we select one , which is contained in infinitely many paths (. This arc leads to a node M1. We repeat the construction and get a second arc leading from M1 to a node M2 and contained in infinitely many paths (. Iterating the constructions produces an infinite sequence of markings

(Mn: P ( N)n(N,

which are pairwise different. We select a subsequence (Mnk)k(N, which is monotonically increasing, i.e.

Mnk+1 > Mnk, k(N.

In order to perform this construction, we choose a first place p1 ( P and consider the sequence (Mn(p1))n(N of numbers bounded from below. We select a subsequence of (Mn)n(N, which is monotonically increasing at p1. Continuing with this subsequence we iterate the construction at a second place etc., QED.

Live resp. deadlock-free Petri net (Definition)

i) A Petri net (N, M0) is live, iff for every transition t and every reachable marking Mpre ( RN(M0) there exists a marking Mpost ( RN(Mpre), which enables t.

ii) A p/t net N is structurally live, iff it has a marking M0, such that the system (N, M0) is live.

iii) A Petri net (N, M0) deadlock-free, iff every reachable marking M ( RN(M0) activates at least one transition from N.

Liveness implies place-livenes (Remark)

i) A live Petri net is deadlock-free: Consider a reachable marking M of the Petri net (N, M0). Because N containts at least one transition t, there exists a follower marking M ( RN(M) activating t.

ii) A weaker concept then liveness is the concept of place-liveness: A Petri net is place-live, iff for every place p and every reachable marking Mpre there exists a follower marking Mpost ( RN(Mpre), which marks p.

iii) A live Petri net is place-live: Choose a transition t with p ( (t ( t(.

iv) The Petri net of � REF _Ref405221904 \* FORMATVERBINDEN �Figure 21� is place-live and deadlock-free, but not live. Transition t is even dead at the initial marking M, i.e. no reachable marking Mpost ( RN(M) enables it.
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Figure � SEQ Figure \* ARABISCH �21� Place-live Petri net, which is deadlock-free but not live



Replication of live and bounded nets (Lemma)

For a live and bounded Petri net (N, M0) there exists a reachable marking M and an occurrence sequence ( containing every transition of N, such that 

M [ ( > M.

Proof. Because (N, M0) is live, there exists an occurrence sequence (0 containing every transition of T such that M [ (0 > M1. Now (N, M1) is live again, yielding an occurrence sequence (1 containing every transition of T such that M1 [ (1 > M2. Iterating the construction we get a sequence ((i)i(N of occurrence sequences, each containing all transitions of N, and a sequence of corresponding markings (Mi)i(N such that Mi [ (i > Mi+1. Because (N, M0) is bounded, only finitely many markings can be different, i.e. there exist two indices i < j such that

Mi = Mj := M.

Set

( := (i ... (j-2 (j-1.

Obviously also ( contains every transition of N, QED.

Exchange Lemma

Consider a net N = (P, T, F) and two non-empty, disjoint subsets U, V ( T of transitions with

(U ( V( = (.

Assume ( to be a sequence of transitions from U ( V, which is activated at a marking M. Then:

i) If ( is finite and M [( > = M’, then also

M [ (( | U) (( | V) > M’,

i.e. reordering the component transitions with respect to U and V does not destroy their activation.

ii) If ( is infinite, but the restriction (( | U) is finite, then also (( | U) is activated at M and (( | V) is activated at M [ (( | U) >.

iii) If ( and its restriction (( | U) are both infinite, then also (( | U) is activated at M.

Proof.

The proof makes use of the following fact: Each pair of transitions (u, v) ( U x V commutes with respect to activation, i.e.

if L [ v > K and K [ u > L’ then also L [ u > K’ and K’ [ v > L’.

Because L activates v, we have

L(p) ( 1 for all p ( (v.

Because K activates u and (u ( v( = (, we derive

L(p) ( 1 for all p ( (u and L(p) ( 2 for all p ( (u ( (v.

Hence L activates u and K’ activates v. The Parikh vector is independent from the order of the occurrence of u and v, hence

L [ u v > L’ and L [ v u > L’.

ad i) The statement follows by finite iteration of the preceding remark.

ad ii) We split

( = (fin (V

with a finite prefix (fin containing all transitions from U and an occurrence sequence (V, which contains only transitions from V. The prefix (fin can be choosen to be finite, because every transition from U has only finitely many predecessors in (. We apply part i) to the finite occurrence sequence (fin.

ad iii) We have to prove, that every finite prefix of (( | U) is activated at M. We consider a finite prefix (U of (( | U) and choose a finite prefix (pre from ( with

(pre | U = (U.

We apply part i) to (pre and derive, that M activates (U, QED.

Liveness and boundedness imply strong connectedness (Theorem)

A live and bounded Petri net is strongly connected.

Proof. Assume (N, M) to be a live and bounded Petri net. By assumption the N = (P, T, F) is connected, i.e. any two nodes from N can be connected by a path, which is not necessarily directed. Hence it suffices to prove, that for any arc ( u, v ) ( F there exists a directed path back from v to u.
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Figure � SEQ Figure \* ARABISCH �22� Strong connectedness



By Lemma � REF _Ref400686433 \n �5.6� there exists a reachable marking M of N and an occurrence seqence (, which contains every transition from T and reproduces M:

M [ ( > M.

In particular M activates the infinite sequence ( := ( ( ... .

Case 1: The node v is a transition.

Obviously it suffices, to find a transition w from (u and a directed path from v to w. We define

V := { t ( T: There exists a directed path from z to t } and U := T \ V

and consider the non-trivial case U ( (. By construction

(U ( V( = (.

Applying the Exchange Lemma � REF _Ref418143496 \n �5.7�, part iii) to the infinite transition sequence ( and its infinite restriction ( | U we conclude, that ( | U is activated at M, too. In particular, firing of the finite prefix ( | U at M creates a new marking M’, which activates the infinite sequence ( | U again. Hence M’ ( M, which implies M’ = M by Proposition � REF _Ref418144035 \n �5.3�.

Applying the Exchange Lemma � REF _Ref418143496 \n �5.7�, part i) to the finite transition sequence ( and its restriction ( | U we conclude

M [ (( | U) (( | V) > M.

Because M [ ( | U > M we conclude

M [ ( | V > M.

We have v ( V, hence v occurs at ( | V. Because ( | V reproduces the marking M, there exists a transition w ( (u, which occurs at ( | V. Hence w belongs to V, i.e. there exists a directed path from v to w.

Case 2: The node u is a transition.

Obviously it suffices, to find a transition w from v( and a directed path from w to u. We define

U := { t ( T: There exists a directed path from t to u } and V := T \ U

and consider the non-trivial case U ( (. By construction

(V ( U( = (.

Similar to case 1 we show M [ ( | U > M. We have u ( U, hence u occurs at ( | U. Because ( | U reproduces the marking M, there exists a transition w ( v(, which occurs at ( | U. Hence w belongs to U, i.e. there exists a directed path from w to u, QED.

Reversibility (Definition)

A Petri net (N, M0) ist reversible iff for every reachable marking M ( RN(M0) there exists an occurrence sequence ( reproducing the initial marking, .i.e.

M [ ( > M0.

Reversibility (Proposition)

A Petri net is reversible iff its case graph is strongly connected.

Proof.

Remember that the nodes of the case graph of the Petri net(N, M0) correspond bijectively to the reachable markings RN(M0).

i) Assume the Petri net to be reversible. By construction every node of the case graph can be reached from M0 by a directed path. On the other hand, every node of the case graph can be joined to M0 by a directed path due to the reversibility of the Petri net. Hence any two nodes of the case graph can be joined by a directed path.

ii) Assume the case graph to be strongly connected. Hence any given marking M ( RN(M0) can be joined by a directed path to any other node of the case graph, in particular to the initial marking M0, QED.

Liveness in reversible nets (Proposition)

A reversible Petri net is already live if for every transition there exists a reachable marking, which activates the transition.

Proof.

Denote by (N, M0) the Petri net. Assume a transition t and a marking Mt ( RN(M0). Due to the reversibility we have M0 ( RN(Mt). By assumption there exists a marking Mpre ( RN(M0) activating the transition t. From the transitiveness of the reachability relation we get Mpre ( RN(Mt) as a marking, which activates t, QED.

�Linear algebra for Petri nets

Free modules and monoids (Remark)

We denote by R a fixed commutative ring with unit, e.g. R = Z, Q, R, C. 

i) There is a standard construction to provide a given set X with the structure XR of a R�module: One has to form the free R-module with base X

XR := { (x(X nx x: nx ( R and nx = 0 for all but finitely many x ( X }.

For an element ( = (x(X nx x ( XR the set 

supp(() := { x ( X: nx ( 0 }

is called the support of (.

ii) The analogous construction XN in the category of modules over monoids, the free monoid with base X, is often named the set of all multisets of X resp. bags over X. Remember: A monoid (M, +, 0) is a set M together with an inner composition „+“, which is associative, and has a two-sided neutral element „0“.

iii) The above construction is natural in the sense of category theory, because free objects are characterized by a certain universal property.

Incidence maps of a place/transition net (Remarks)

Denote by N = (P, T, w+, w-) a place/transition net with a set P of places, a set T of transitions and incidence maps w+ and w-.

1. We define the Z-modules

C1(N) := PZ, the module of places, and C0(N) := TZ, the module of transitions.

Due to the distinguished bases (p)p(P of C1(N) resp. (t)t(T of C0(N) both Z-modules show up with a scalar product

<-,->: Ci(N) x Ci(N) ( Z, i = 0 resp. i = 1,

such that each distinguished base forms an orthonormal system. For a given Z-module M and i = 0,1 we define the Z-modules

Ci(N, M) := Ci(N) (Z M,

and the dual modules - with upper index -

Ci(N, M) = HomZ(Ci(N), M).

In particular, we have the module of Z-linear functionals

C1(N, Z) = HomZ(PZ, Z) := { f: PZ ( Z | f is Z-linear },

which is called the module of integer markings. This definition is a slight generalization of the original concept from Definition � REF _Ref409754350 \n �4.1�, which considers markings as maps from the set of places to the set N of non negative integers.

We recall, that any submodule of a free Z-module is free itself. The rank of a free Z-module M equals the dimension of the corresponding rational vector space:

rank (M) = dimQ (M (Z Q).

2. The incidence maps in the category of Z-modules are defined on basis elements as

wT: C0(N) ( C1(N, Z), wT(t): [ p ( w(p, t) ]

wP: C1(N) ( C0(N, Z), wP(p): [ t ( w(p, t) ].

Because the free Z-modules Ci(N) are reflexive, the canonical maps

Ci(N) ( HomZ(Ci(N, Z), Z), x ( [ ( ( ((x) ], i = 0, 1,

are isomorphisms. Hence both maps wT and wP are dual concerning the application of the dualizing functor HomZ( -, Z).

3. If we write the evaluations as bilinear maps

<-,->P: C1(N, Z) x C1(N) ( Z, <M, (>P := M(()

<-,->T: C0(N) x C0(N, Z) ( Z, <(, S>T := S((),

then we have the „adjointness“

<wT((), (>P = <(, wP(()>T for all ( ( C1(N), ( ( C0(N).

Proof.

Due to the bilinearity it suffices to consider the special case ( = t ( T and ( = p ( P. Then

<wT(t), p>P = w(p, t) = <t, wP(p)>T, QED.

4. The following � REF _Ref414894926 \* FORMATVERBINDEN �Table 1� summarizes our translation of Petri net concepts into linear algebra.

�

Category of sets�Category of Z-modules��Net N = (P, T, w�, w+)��Set of places P�Z-module of places 

PZ = C1(N) := { (p(P np p: np ( Z }��Set of transitions T�Z-module of transitions

PT = C0(N) := { (t(T nt t: nt ( Z }��Markings M: P ( N�Z-module of integer markings

C1(N, Z) = HomZ(C1(N), Z) := 

{ f: PZ ( Z | f is Z-linear }��Incidence map

w: P x T ( Z, w = w+ - w��Z-linear incidence maps

wT: C0(N) ( C1(N, Z), wT(t)(p) := w(p,t)

wP: C1(N) ( C0(N, Z), wP(p)(t) := w(p,t)��Table � SEQ Table \* ARABISCH �1� Net concepts expressed in the category of Z-modules



Positivity (Definition)

i) An element x ( C1(N) (resp. x ( C0(N)) is called semi-positive (x ( 0) iff 

< x, p > ( 0 for all p ( P (resp. < x, t > ( 0 for all t ( T)

concerning the scalar product from Remark � REF _Ref375888181 \n �6.2�, part 1. The set of semi-positive elements is denoted by Ci(N)+, i = 0, 1.

ii) A semi-positive element x ( C1(N)+ (resp. x ( C0(N)+) is called strictly positive (x >> 0) iff

< x, p > > 0 for all p ( P (resp. < x, t > > 0 for all t ( T). 

The set of strictly positive elements is denoted by Ci(N)++, i = 0, 1.

iii) For two elements x, y ( C1(N) (resp. x, y ( C0(N)) we set

x ( y iff x - y ( 0 and x >> y iff x - y >> 0.

Parikh vector (Definition)

Denote by N = ( P, T, F) a net and by M a marking of N. To every occurrence sequence ( ( LN(M) we associate a semi-positive element ((() ( C0(N)+, its Parikh vector:

((() := (t(T card((, t) t.

Marking equation (Remark)

Denote by N a net. 

i) A transition t occuring at a marking M creates the new marking

Mpost = M + wT(t) ( C1(N, Z)+.

ii) More general: An occurrence sequence ( ( LN(M) creates the new marking

Mpost = M + wT( ((() ) ( C1(N, Z)+.

Reachability (Corollary)

Denote by (N, M) a Petri net. Every reachable marking Mpost ( RN(M) has the form

Mpost = M + wT(()

with a Parikh vector from C0(N)+.

Potential reachability (Definition)

Denote by (N, M) a Petri net. A marking Mpost is potentially reachable, iff there exists a semi-positive vector ( ( C0(N)+ such that

Mpost = M + wT(() ( C1(N, Z)+.

Potential reachability (Example)

A potentially reachable marking is not necessarily reachable. Consider the Petri net from � REF _Ref406663011 \* FORMATVERBINDEN �Figure 23�. The marking

Mpost = p3* + p4*

is potentially reachable from the initial marking M0 = p1*, because

Mpost = M0 + wT(2t1 + t2 + t5).

But the case graph in � REF _Ref414861065 \* FORMATVERBINDEN �Figure 24� shows, that Mpost is not reachable from M0: Starting from M0 it is not possible to activate the transition t1 two times by using only the transitions t2 and t5. The case graph shows that one also needs at least the transition t3.
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Figure � SEQ Figure \* ARABISCH �23� Petri net
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Figure � SEQ Figure \* ARABISCH �24� Case graph



�Due to the finiteness of the case graph the Petri net (N, M0) from � REF _Ref406663011 \* FORMATVERBINDEN �Figure 23� is bounded, and due to the strong connectedness it is reversible according to Proposition � REF _Ref409754494 \n �5.10�. Obviously every transition t1,...,t6 is activated by a reachable marking, hence the Petri net is live according to Proposition � REF _Ref409754522 \n �5.11�.

We have C0(N) ( Z6 and C1(N) ( Z5. The incidence map wT: C0(N) ( C1(N) has the following matrix with respect to the canonical bases

M(wT ) = � EINBETTEN Equation.2  ��� ( M(5 x 6, Z).

We compute

rank wT = 4.

Hence the incidence map wT has a 2-dimensional kernel

ker wT = spanZ< t1 + t2 + t3 + t5, t1 + t2 + t4 + t6 >.

The incidence map wP, beeing the dual of wT according to Remark � REF _Ref375888181 \n �6.2�, is represented by the transposed matrix, hence it has the same rank. Therefore wP has a 1-dimensional kernel, namely

ker wP = spanZ< 2p1 + p2 + p3 + p4 + p5 >.

Net invariants (Definition)

Denote by N a net and by wP resp. wT its incidence maps in the category of Z-modules. The elements of the kernel

Z1(N) := ker [ wP: C1(N) ( C0(N, Z) ]

are called place invariants (P-invariants or P-flows) of N, the elements of the kernel

Z0(N) := ker [ wT: C0(N) ( C1(N, Z) ]

are called transition invariants (T-invariants or T-flows) of N.

Invariants with all coefficients from N, i.e. elements from Zi(N)+, i = 0,1, are called semiflows.

Invariants and conservation theorems (Proposition)

Consider a Petri net (N, M0) with N = (P, T, F).

i) Every place invariant ( ( Z1(N) induces a conservation law on the set of potentially reachable markings:

<M, (>P = <M0, (>P ( Z is constant for all potentially reachable markings.

ii) For an occurrence sequence ( ( LN(M0) we have the equivalence:

( reproduces the marking M0, i.e. M0 [ ( > M0

The Parikh vector ((() ( C0(N) is a T-semiflow, i.e. ((() ( Z0(N)+.

Proof.

ad i) If

M = M0 + wT(t)

for a transition t ( T, then

<M, (>P = <M0 + wT(t), (>P = <M0, (>P + <wT(t), (>P =

 <M0, (>P + <t, wP(()>T = <M0, (>P.

The case of a general ( ( C0(N)+ follows by linearity.

ad ii) The statement follows at once from the marking equation in Remark � REF _Ref406259087 \n �6.5�, QED.

Net invariants (Remark)

Let N = ( P, T, w ) be a net.

i) For an element

( = (p(P np p ( C1(N)

we have the equivalence:

( is a P-invariant, i.e. ( ( Z1(N),

(p(t( np = (p((t np for all transitions t ( T.

ii) Analogously: For an element

( = (t(T nt t ( C0(N)

we have the equivalence:

( is a T-invariant, i.e. ( ( Z0(N),

(t(p( nt = (t((p nt for all places p ( P.

Proof.

ad i)

wP(() = (p(P np wP(p) = 0 ( C0(N) ( For all t ( T: (p(P np wP(p) (t) = 0 ( Z

( For all t ( T: (p(P np w(p, t) = (p(P np ( w+(p, t) - w((p, t) ) = 0

( For all t ( T: (p(P np w+(p, t) = (p(P np w((p, t)

( For all t ( T: (p(t( np = (p((t np, QED.

ad ii) Analogously.

Net invariants (Example)

1. The net N from Example � REF _Ref406667172 \n �6.8�, cf. � REF _Ref406663011 \* FORMATVERBINDEN �Figure 23�, has a 2-dimensional module of T-invariants, which is generated by the two semi-positive elements

(1 = t1 + t2 + t3 + t5 and (2 = t1 + t2 + t4 + t6 ( Z0(N)+.

Every occurence sequence with Parikh vector from Z0(N)+ reproduces the original marking. The net has the strictly positive P-invariant

( = 2p1 + p2 + p3 + p4 + p5 ( Z0(N)++.

The corresponding conservation theorem implies

<M, (> = <M0, (> = 2.

Because ( ( Z0(N)++ is strictly positive, every marking, which is potentially reachable from M0, contains at most 2 tokens. This result is much stronger than the general boundedness statement from the finiteness of the case graph due to Lemma � REF _Ref405532904 \n �5.2�.

2. The Petri net (N, M0) from � REF _Ref406668513 \* FORMATVERBINDEN �Figure 25� models a system with two processes sharing a common ressource. The net has the incidence matrix

M(wT) = � EINBETTEN Equation.2  ���( M(5 x 4, Z).

We compute

rank wT = rank wP = 2, dim ker wT = 2

Z0(N) = ker wT = spanZ< t1 + t2, t3 + t4 >.

The invariance of the marking means, that the completion of each process restores the original marking. Moreover

dim ker wP = 3

Z1(N) = ker wP = spanZ< (1 = p2 + p3, (2 = p4 + p5, (3 = p1 + p2 + p4 >.

The semi-positive P-invariant (3 ( Z1(N)+ assures for every reachable marking M ( RN(M0)

<M, (> = <M0, (> = 1,

i.e. at most one of the places p2 or p4 is marked, hence both processes cannot be in state on simultaneously. The other invariants

<M, (i> = <M0, (i> = 1, i = 1,2,

corrrespond to the fact, that each process is either in state on or in state off. Note that the net has a strictly positive P-invariant

( = (1 +(2 + (3 = p1 + 2p2 + p3 + 2p4 + p5 ( Z1(N)++.





�



Figure � SEQ Figure \* ARABISCH �25� Two processes with a shared ressource



Invariants of P-subnets (Corollary)

Let N1 = ( P1, T1, F1 ) ( N = ( P, T, F ) be a closed subnet.

i) The natural inclusion C1(N1) ( C1(N) restricts to an inclusion of P-invariants

j: Z1(N1) ( Z1(N).

ii) The natural projection

C0(N) ( C0(N1), (t(T n(t) t ( (t(T1 n(t) t

restricts to a map of T-invariants

pr: Z0(N) ( Z0(N1).

Proof.

The proof uses the characterization of invariants from Remark � REF _Ref390781193 \n �6.11�, QED.

Minimal invariant (Definition)

Denote by N = (P, T, F) a net. For i = 0, 1 a non-zero semi-positive invariant

x ( Zi(N)+ \ 0,

is called minimal, iff

supp(x) is minimal, i.e. there does not exist a semi-positive invariant y ( Zi(N)+ \ 0 with

supp(y) ( supp(x), but supp(y) ( supp(x),

and the coefficients (np)p(P of x = (p(P np p (resp. (nt)t(T of x = (t(T nt t) have no common divisor ( 1.

Representation by minimal invariants (Lemma)

For i = 0, 1:

i) Every semi-positive invariant with the same support as a minimal invariant x is a non-negative integer multiple of x, two minimal invariants with the same support are equal:

For x ( Zi(N)+ minimal and y ( Zi(N)+ with supp (x) = supp (y) there exists ( ( Z+ with y = ( x. If y is minimal too, then ( = 1.

ii) Every rational semi-positive invariant is a combination of minimal invariants with non-negative rationals, i.e.

Zi(N, Q)+ ( spanQ+ < x ( Zi(N)+: x minimal >.

iii) If there exists a strictly positive invariant, then every rational invariant is a rational combination of minimal invariants, i.e.

Zi(N)++ ( 0 ( Zi(N, Q) = spanQ < x ( Zi(N)+: x minimal >.

Proof.

We treat the case of P-invariants, the statement about T-invariants can be proved analogously.

ad i) Assume a minimal invariant x and a semi-positive invariant y, both having the same support P’,

x = (p(P’ xp p and y = (p(P’ yp p ( Z1(N)+.

We choose a place p ( supp(x) with minimal value

yp/xp = min { yp’/xp’ ( Q: p’ ( supp(x) = supp(y) }

and set yp/xp = r/s with positive integers r, s ( Z, which we assume relatively prime. We define

z := s y - r x ( Z1(N).

By definition r/s ( yp’/xp’, i.e. s yp’ - r xp’ ( 0 for all p’ ( P, hence z ( Z1(N)+ is semi-positive. Obviously

supp(z) ( supp(x) and supp(z) ( supp(x), because p*(z) = 0.

By minimality of supp(x) we have z = 0, hence

s y = r x.

Because s and r have no common primes, the integer s divides every coefficient xp’, p’ ( P. The minimality of x implies s = 1, i.e. y = r x.

If y is minimal, too, the same argument gives r = 1, i.e. y = x.

ad ii) We prove the statement by induction on the support of the given invariant

y = (p(P yp p ( Z1(N, Q)+.

Without loss of generality we can assume y ( Z1(N)+ with relatively prime integer coefficients (yp)p(P.

If card supp(y) = 1, then y = p is minimal.

Assume card supp(y) = n and the proposition to hold for all invariants with support containing less than n places. If y is not minimal, then there exists a minimal invariant

x = (p(P xp p ( Z1(N)+ with supp(x) ( supp(y) and card supp(x) < n.

We choose a place p ( supp (x) with minimal value

yp/xp = min { yp’/xp’: p’ ( supp (x) }

and define the semi-positive invariant

z = y - (yp/xp) x( Z1(N, Q)+.

Because p*(z) = 0 we have card supp(z) < n. The induction hypothesis allows to represent z and x as sum of minimal invariants, which proves the result for

y = z + (yp/xp) x.

ad iii) Assume the existence of a strictly positive invariant x0 ( Z1(N)++. If y ( Z1(N, Q) is an arbitrary P-invariant, then

y + n x0 ( Z1(N, Q)++

for a suitable integer n ( N. By part ii) both elements y + n x0, x0 ( Z1(N, Q)++ belong to spanQ+ < x ( Zi(N)+: x minimal >. Hence

y = ( y + n x0 ) - n x0 ( spanQ < x ( Zi(N)+: x minimal >, QED.

Minimal invariants (Examples)

i) The net N from � REF _Ref406663011 \* FORMATVERBINDEN �Figure 23� has two minimal T-invariants

(1 = t1 + t2 + t3 + t5 and (2 = t1 + t2 + t4 + t6 ( Z0(N)+,

which add up to a strictly positive T-invariant

( = (1 + (2 ( Z0(N)++.

The net has a single minimal P-invariant

( = 2p1 + p2 + p3 + p4 + p5 ( Z1(N)++,

which is even strictly positive.

ii) The net N from � REF _Ref406668513 \* FORMATVERBINDEN �Figure 25� has two minimal T-invariants

(1 = t1 + t2 and (2 = t3 + t4 ( Z0(N)+,

which add up to a strictly positive T-invariant

( = (1 + (2 ( Z0(N)++.

The net has three minimal P-invariants

(1 = p2 + p3, (2 = p4 + p5, (3 = p1 + p2 + p4,

which add up to a strictly positive P-invariant

( = (1 + (2 + (3 ( Z0(N)++.

�Convex analysis for Petri nets

Duality for linear equations (Remark)

Concerning the solution of linear equalities with a matrix A ( M( m x n, K) and a vector b ( Km we have the well-known alternative, cf. [Fis1975], Lemma 3.1.13:

Either there exists a solution x ( Kn of the equality

A x = b (Primal alternative),

or a solution y ( Km of the equality

AT y = 0 (Dual alternative)

with bT y = 0.

This theorem can be paraphrased: A given vector belongs to the image of a linear map iff every linear functional from the kernel of the dual map vanishes on it.



In the following we denote by K an ordered field, e.g. K = Q, R.

Ordered vector space (Definition)

i) An ordered K-vector space is a K-vector space V equipped with a partial ordering „(“, such that

v1, v2 ( V, v1 ( 0 and v2 ( 0 ( v1 + v2 ( 0

( ( K, ( ( 0, and v ( V, v ( 0 ( ( v ( 0.

ii) A functional ( ( V* is non-negative, ( ( 0, iff

v ( V, v ( 0 ( ((v) ( 0.

Linear programming problems (Definition)

Consider the following linear data (f, (, v):

A linear map f: U ( V between finite dimensional ordered K-vector spaces

a linear functional ( ( U*

a vector v ( V.

i) The corresponding primal linear programming problem LPprim asks for

a vector u0 ( H(v) := { u ( U: f(u) ( v } maximizing (, i.e. 

((u0) = sup { ((u): u ( H(v) }.

The corresponding dual linear programming problem LPdual considers the dual linear map f*: V* ( U* and asks for

a linear functional (0 ( H(() := { ( ( V*: ( ( 0, f*(() = ( } minimizing v, i.e.

(0 (v) = inf { ( (v): ( ( H(() }.

iii) The elements of the half-spaces H(v) (resp. H(()) are called the feasible solutions of the primal (resp. the dual) problem, every vector u0 (resp. functional (0) is called an optimal solution. The primal (resp. the dual) problem is called bounded iff it has a feasible solution and the functional ( ( U* (resp. the vector v ( V) is bounded on the set of all feasible solutions, i.e.

sup { ((u): u ( H(v) } < + (

(resp. inf { ( (v): ( ( H(() } > - ().

Duality for the linear programming problem (Theorem)

Consider the linear programming problems defined by the linear data (f, (, v).

i) If the primal and the dual problem both have feasible solutions, then

((u) ( ((v) for all u ( H(v), ( ( H((),

both problems have optimal solutions and the equality

((u0) = (0(v)

holds for every pair (u0, (0) of optimal solutions.

ii) If one of the two programs has no feasible solution, then the other is either unbounded or has no feasible solution.

iii) If one of the programs is unbounded, then the other has no feasible solution.

The following � REF _Ref396303468 \* FORMATVERBINDEN �Table 2� illlustrates the possible combinations.



�LPprim bounded�LPprim feasible,�but unbounded�LPprim not feasible��LPdual bounded�max(LPprim) = min(LPdual)����LPdual feasible,�but unbounded���possible��LPdual not feasible

��possible�possible��Table � SEQ Table \* ARABISCH �2� Duality for linear programming problems



Proof. Cf. [GLS1993], Theorem (0.149).



Theorem � REF _Ref407793884 \n �7.4� implies the Farkas alternative, which is even equivalent to Theorem � REF _Ref407793884 \n �7.4�. For a direct proof of the Farkas alternative cf. [Wer1992], Kapitel 6, Lemma 3.4.

Farkas alternative (Corollary)

Consider a matrix A ( M( m x n, K) and a vector b ( Km.

i) There holds the following alternative:

Either there exists a solution x ( Kn of the inequality

A x ( b (Primal alternative),

or a solution y ( Km, y ( 0, of the equality

AT y = 0 (Dual alternative)

with bT y > 0.

ii) There holds the following alternative:

Either the inequality

AT y ( 0

has a solution y ( Km with bT y > 0 (Primal alternative)

or the equality

A x = b,

has a solution x ( Kn with x ( 0 (Dual alternative).

Proof.

ad i) In order to derive the Farkas alternative we consider the following linear data (f, (, v):

Set U := Kn, V := Km and define a linear map f: U ( V by the matrix M(f) := A.

Set ( := 0 ( U*.

Set v := -b ( V.

The primal problem considers the feasible solutions

H(-b) = { x ( Kn: A x ( -b }

and asks for a feasible solution maximizing the zero-functional (. Hence the primal problem is bounded iff it is feasible. Moreover, feasibility of the primal problem is equivalent to the existence of a vector x ( Kn with A x ( b, i.e. to the solvability of the primal Farkas alternative.

The dual problem considers the feasible solutions

H(0) = { y ( Km: y ( 0 and AT y = 0 }

and asks for a feasible solution y ( H(0) with minimal value < y, -b >, which is equivalent to a maximal value < y, b >. Note that the dual problem always has the feasible solution y = 0, hence it is unbounded iff there exists a feasible solution y ( H(0) with < y, b > > 0. Hence the dual problem is unbounded iff the dual Farkas alternative is solvable.

Now Theorem � REF _Ref407793884 \n �7.4� restricts the possibilities for the solutions of the linear programming problems corresponding to (f, (, v) to the following two alternatives:

Either the primal problem is feasible and the dual is bounded.

Then there exists a solution of the primal Farkas alternative, but no solution of the dual Farkas alternative.

or the primal problem is not feasible and the dual problem is unbounded.

Then the primal Farkas alternative is unsolvable and the dual Farkas alternative is solvable.

ad ii) In order to derive the Farkas alternative we define the following linear data (f, (, v):

Set U := Km, V := Kn and define a linear map f: U ( V by the matrix M(f) := AT.

Set ( := b ( U*. 

Set v := 0 ( V.

First we assume, that the primal Farkas alternative is unsolvable. Then every y ( Km with AT y ( 0 satisfies bT y ( 0. This means, that the dual programming problem is bounded: It has the feasible solution u = y = 0 and the functional ( = b is bounded on all feasible solutions. By Theorem � REF _Ref407793884 \n �7.4� the primal programming problem must be bounded, too. Hence there exists a vector ( = x ( Kn, ( ( 0, with f*(() = ( and maximal ((0) = 0. The condition on boundedness is empty, because every feasible solution is bounded on the vector v = 0. Therefore the primal Farkas alternative is solvable.

Secondly we assume, that the primal Farkas alternative is solvable. Then the primal programming problem has a feasible solution, but it is not bounded. By Theorem � REF _Ref407793884 \n �7.4� the dual problem is not feasible: There does not exists a vector ( = x ( Kn, ( ( 0, with f*(() = (, i.e. the dual Farkas alternative is not solvable, QED.

Existence of strictly positive invariants (Corollary)

For a net N we have the equivalence concerning two strictly positive elements ( ( C1(N)++ and ( ( C0(N)++:

( ( Z1(N)++ and ( ( Z0(N)++.

wP(() ( 0 and wT(() ( 0 (resp. wP(() ( 0 and wT(() ( 0).

Proof.

In order to prove the non-trivial direction, we assume

wP(() ( 0 and wT(() ( 0.

We apply the Farkas alternative in the version of Corollary � REF _Ref407959317 \n �7.5�, part ii): Consider the matrix A = M(wP) and the vector b := wP(() ( Z0(N)+.

Either: There exists (’ ( C0(N, Q) with wT((’) ( 0 and < (’, wP(() >T > 0

or: There exists (’ ( C1(N, Q)+ with wP((’) = wP(().

Because the second alternative holds with (’ = ( , the first alternative is excluded. In particular, the given element ( ( C0(N)++ with wT(() ( 0 must satisfy

< (, wP(() >T ( 0.

But ( ( 0 and wP(() ( 0 imply < (, wP(() >T ( 0, hence

< (, wP(() >T = 0.

Because ( is strictly positive and wP(() semi-positive, we conclude wP(() = 0, i.e. ( ( Z1(N)++. Moreover

< wT((), ( >P = < (, wP(() >T = 0.

Because ( is strictly positive and wT(() semi-positive, we conclude wT(() = 0, i.e. ( ( Z0(N)++, QED.

Existence of strictly positive invariants (Theorem)

A net, which is structurally live and structurally bounded, has strictly positive invariants

( ( Z0(N)++ and ( ( Z1(N)++.

Proof.

Denote the given net by N = ( P, T, w).

i) By assumption N has a live and bounded marking M0. Hence by Lemma � REF _Ref400686433 \n �5.6� there exists an occurrence sequence ( ( LN(M0), which contains every transition of T and reproduces M0. The Parikh vector ( =((() is strictly positive, hence (( Z0(N)++ by Proposition � REF _Ref405470716 \n �6.10�.

ii) In order to produce an element ( ( Z1(N)++ it is sufficient to find a rational element (Q ( Z1(N, Q)++: If ( ( Z+ denotes a common denominator of (Q then

( := ( (Q ( Z1(N, Z)++.

For every place p ( P we have to find an element (p ( Z1(N, Q)+ with p*((p) > 0. Then

(Q := (p(P (p ( Z1(N, Q)++

is the required element.

In order to find (p, we consider the Farkas alternative, Corollary � REF _Ref407959317 \n �7.5�, part i): Set A := M(wT) and b = p*.

Either: There exists (p ( C0(N, Q) with wT((p) ( p*.

Or: There exists (’ ( Z1(N, Q)+ with < p*, (p’ >P > 0.

We want to prove, that the dual Farkas alternative holds. Reasoning by indirect proof we assume the primal Farkas alternative to hold: There exists an element

(p ( C0(N, Q) with wT((p) ( p*.

Replacing (p by

(p + n (

with a positive multiple n ( N, we can assume (p to be strictly positive without loss of generality, i.e.

(p = (t(T (p,t t ( C0(N, Q)++ and wT((p) ( p*.

Denote by ( ( Z+ a common denominator of ((p,t)t(T and set

( (p = (p,Z.

Then wT((p,Z) ( ( p* > 0. We want to produce a marking Mpre and an occurence sequence ( ( LN(Mpre) with Parikh vector (p,Z = (((). Then the firing of ( produces the marking

Mpost = Mpre + wT((p,Z) > Mpre,

and the Petri net (N, Mpre) is unbounded due to Proposition � REF _Ref410110395 \n �5.3�. But we can easily activate any occurrence sequence ( with Parikh vector (p,Z by marking every place in the preset of a transition t with at least t*((p,Z) tokens. Therefore we define

Mpre := (t(T t*((p,Z) ( (p’((t p’* ) ( C1(N, Z)+.

This contradiction to the structural boundedness of N rules out the primal Farkas alternative, hence the dual Farkas alternative must hold, which proves the existence of a rational strictly positive P�invariant, QED.

�Structure and behaviour of Petri nets

In the present chapter we investigate the interplay between the behavior of a Petri net (N, M) and structural properties of its underlying net N. Most of the results will be proved by techniques from convex analysis.

Structurally boundedness (Lemma)

A net N is structurally bounded, if it has a strictly positive P-subinvariant, i.e. an element

( ( C1(N)++ with wP(() ( 0.

Proof.

Consider a marking M0 of the net N = ( P, T, F ) and a transition t ( T activated at M0. The firing of t generates the new marking Mpost. Due to the marking equation from Remark � REF _Ref406259087 \n �6.5� we have

Mpost = M0 + wT(t).

Due to Remark � REF _Ref375888181 \n �6.2�

(p(P Mpost(p) = < Mpost, (p(P p >P ( < Mpost, (>P = < M0, ( >P + < wT(t), ( >P =

< M0, ( >P + < t, wP(() >T ( < M0, ( >P.

The bound is independent from the transition t, hence for every occurrence sequence ( ( RN(M0) and M0 [ ( > Mpost holds

Mpost ( < M0, ( >P, QED.

Structure and behaviour (Definition)

i) A live and bounded Petri net is called well-behaved.

ii) A net, which is structurally live and structurally bounded, is called well-formed.

iii) A connected net N is called well-structured, iff it has a strictly positive P-invariant and a strictly positive T-invariant, i.e. iff there exist

( ( Z1(N)++ and ( ( Z0(N)++.

Structure and behaviour (Remark)

i) Due to Corollary � REF _Ref408141121 \n �7.6� well-structuredness is equivalent to the existence of a strictly positive P�super-invariant together with a strictly positive T-sub-invariant.

ii) Due to Theorem � REF _Ref408229639 \n �7.7� well-formedness implies well-structuredness.

ii) The underlying net of a well-behaved Petri net needs not to be well-formed.

Well-structuredness implies strong connectedness (Theorem)

Every well-structured net is strongly connected.

Proof.

Denote by N = (P, T, F) the given net. Like in the proof of Theorem � REF _Ref411317610 \n �0� it suffices to consider an arc (v, u) ( F and to prove the existence of a directed path back from u to v.





�



Figure � SEQ Figure \* ARABISCH �26� Construction of J



By assumption there exists a strictly positive P-invariant

( = (p(P (p p ( Z1(N)++

as well as a strictly positive T-invariant

( = (t(T (t t ( Z0(N)++.

By Remark � REF _Ref390781193 \n �6.11� we have for every place p ( P

(t((p (t = (t(p( (t.

i) Assume the node u to be a transition. We define a new element J = (t(T Jt t ( C0(N)+ by

Jt := � EINBETTEN Equation.2  ���.

We claim J ( Z0(N)+, i.e. wT(J)(p) = 0 for all p ( P. Consider an arbitrary place p ( P.

If no transition in the preset of p can be reached by a directed path from u, then

Jt = 0 for all t ( (p,

and

0 = (t((p Jt ( (t(p( Jt.

On the other hand: If there exists a transition in the preset of p, which can be reached by a directed path from u, then every transition in the postset of p can be reached by a directed path, too, i.e. Jt = (t for all t ( p(. Hence

(t((p Jt ( (t((p (t = (t(p( (t = (t(p( Jt.

In both cases we obtain the inequality

(t((p Jt ( (t(p( Jt,

which is equivalent to

wT(J)(p) = wT+(J)(p) ( wT((J)(p) ( 0.

According to Remark � REF _Ref375888181 \n �6.2� we have

< wT(J), ( >P = < J, wP(() >T = 0.

Because ( ( C1(N)++ is strictly positive and wT(J) ( 0, we conclude wT(J) = 0. In particular for the place v ( P we have

(t((v Jt = (t(v( Jt ( Ju = (u > 0.

Hence there exists a transition t ( (v with Jt > 0, i.e. the transition t is reachable by a directed path from u. Now the place v can be reached too, which proves the existence of a directed path from u to v.

ii) The case of a place u and a transition v is treated analogously by interchanging the role of ( and (, QED.

Circuit arbiter (Definition)

i) Denote by N = (P, T, F) a net and by e ( T an equal conflict set of N with card(e) ( 2. A circuit arbiter for e is a directed circuit net Ne = ( Pe, e, Fe ) along the transitions of e.

ii) The net

Nres := � EINBETTEN Equation.2  ���

resulting from the fusion of N and Ne at the transitions of e is called the conflict resolution for e by the circuit arbiter Ne.





�



Figure � SEQ Figure \* ARABISCH �27� Equal conflict set with circuit arbiter Ne and conflict resolution



Conflict resolution by circuit arbiters (Proposition)

Denote by N1 = (P1, T1, F1) a well-formed net and by e ( T1 an equal conflict set of N1 with card(e) ( 2. The conflict resolution

N := � EINBETTEN Equation.2  ���

for the equal conflict set e by a circuit arbiter Ne = ( Pe, e, Fe ) has the following properties:

i) N is well-formed, too.

ii) N satisfies the rank condition:

rank (N) = rank (N1) + rank (Ne) ( card (T1) - 1, rank (Ne) = card (e) - 1

Proof.

We observe, that N contains the nets N1 resp. Ne as closed subnets.

ad i) Both nets N1 and Ne are well-structured according to Theorem � REF _Ref408229639 \n �7.7�. Therefore each net has a strongly positive P-invariant, and both P-invariants add up to a strongly positive P�invariant of N. By Lemma � REF _Ref408233190 \n �8.1� the net N is structurally bounded.

Next we have to show the existence of a live marking for N. By assumption there exists a marking M1, such that the Petri net (N1, M1) is live and bounded. Hence for every reachable marking M1,pre ( RN1(M1) and for every transition t ( T1 there exists an occurrence sequence ( ( LN1(M1) enabling t, i.e.

M1,pre [ ( t >.

We denote by

r = r(N1, M1) := max { min { card(e, (): ( ( LN1(M1,pre) activates t }: t ( T1, M1,pre ( RN1(M1)}

the minimal firing number of transitions from e, which is necessary to enable an arbitrary transition of T1 from any reachable marking of the system (N1, M1). In order to activate within the Petri net (N1, M1) any given transition from any reachable marking one can find an occurrence sequence, which fires transitions from the equal conflict set e at most r times. Boundedeness of (N1, M1) implies the finiteness of r.

Now we provide every preset in Ne of the transitions from e with the necessary number of tokens by defining the marking

Me := r (p(Pe p* ( C1(Ne, Z)++.

Setting

M := M1 + Me ( C1(N, Z)+ = C1(N1, Z)+ ( C1(Ne, Z)+

we claim, that the Petri net ( N, M ) is live.

For the proof we consider a reachable marking

Mpre ( RN(M)

and select a transition t ( T. We have to find a reachable marking

Mpost( RN(Mpre),

which activates t.

There exists a marking M’’ ( RN(Mpre) with M’’| Pe = Me:

The Petri net (Ne, Me) is reversible due to the circuit structure of Ne. Hence there exists an occurrence sequence (e ( LNe(Me | Pe) reproducing Me, i.e. such that

(Mpre | Pe) [ (e > Me.

We claim, that (e can be lifted to an occurrence sequence

( ( LN(Mpre) with pLe(() = (e

with respect to the canonical projection

pLe: LN(Mpre) ( LNe(Mpre | Pe).

Without loss of generality we assume (e = te with a single transition te ( e, otherwise we have to iterate the current step. Because M1 is live, there exists an occurrence sequence

(’ ( LN1(Mpre | P1)

activating the transition te. Because e is an equal conflict set, we can assume, that (’ does not contain any transition from e, hence even

(’( LN(Mpre).

We define M’1 as the marking of N1, which results from the firing of (’, i.e.

(Mpre | P1) [ (’1 > M’1.

With respect to the Petri net (Ne, Me) the transition te is activated at Me and with respect to the Petri net (N1, M1) it is activated at M’1. Therefore - with respect to the Petri net (N, M) - the transition te is activated at the marking of N

M’ := M’1 + (Mpre | P1) ( C1(N, Z)+ = C1(N1, Z)+ ( C1(Ne, Z)+,

and in N holds

Mpre [ (’ > M’, in particular M’ ( RN(Mpre).

We have ( := (’ t ( LN(Mpre) with pLe(() = (e. The firing of t at M’ creates the new marking M’’ ( RN(Mpre) with (M’’ | Pe ) = Me. 

Every occurrence sequence ( LN1(M’’| P1), which in N1 activates t with a minimal firing of transitions from e, can be considered as an occurence sequence ( ( LN(M’’) in N, which in N activates t:

From M’’ ( RN(Mpre) and Mpre ( RN(M) follows M’’ ( RN(M). Because N1 is a closed subnet of N, the natural projection

pL1: LN(M) ( LN1(M1),

is well-defined due to Lemma � REF _Ref405214893 \n �4.6� and

(Mpre | P1) ( RN1(M1) as well as (M’’ | P1) ( RN1(M1).

Because (N1, M1) is live, we can find an occurrence sequence ( ( LN1(M’’| P1), which in N1 activates t with a minimal firing of transitions from e. Because M’’| Pe = Me and due to the choice of r, we have ( ( LN(M’’).

Summing up both results: M’’ ( RN(Mpre) is reachable and Mpost ( RN(M’’) defined by

M’’ [ ( > Mpost

activates in N the transition t. This completes the proof for the liveness of the Petri net (N, M).

ad ii) We define the Q-vector spaces

V1 := Im [ wP | C1(N1, Q) ( C0(N, Q) ] and Ve := Im [ wP | C1(Ne, Q) ( C0(N, Q) ]

and show

dim Ve = card (e) - 1 =: n

V1 ( Ve = 0.

The first claim follows easily by inspecting the incidenc matrix M(we) of the net Ne concerning the canonical bases in a suitable numbering, cf. � REF _Ref408417708 \* FORMATVERBINDEN �Figure 27�:

M(we) = � EINBETTEN Equation.2  ���( M( n+1 x n+1, Z).

Obviously rank (Ne) = n.

In order to prove the second claim, we argue by indirect reasoning assuming a non-zero element

(p(P1 (p wP(p) = (p(Pe (p wP(p) ( V1 ( Ve.

Due to the closedness of both subnets N1 and Ne it makes no difference for any place p ( P to compute the incidence map wP with respect to the net N or with respect to N1 resp Ne. Due to the first claim we have

Q wPe(p0) ( spanQ< wPe(pi): i =1,...,n >.

Hence we can assume the existence of an index k from { 1,...,n }, such that the above equation can be resolved for wPe(pk):

wPe(pk) = (p(P1 (p wP1(p) + (i=1,..,n;i(k (i wPe(pi) ( 0 ( C0(N, Q).

Due to the well-formedness of N1 we can choose a marking M1, such that the Petri net (N1, M1) is well-behaved. For a given constant K we can find an occurrence sequence ( ( LN1(M1), which fires K-times all the transitions

ti-1 = (pi, i = 1,...,k,

but fires no other transition from e: Each time a marking activates a transition from e we fire one of ti-1, i = 1,...,k. This possibility is guarantied by by the free-choice property of the equal-conflict set e. Hence we have

K = < wT((), pk >P = < (, wP(pk) >T =

< (, (p(P1 (p wP1(p) >T1 + < (, (i=1,..,n;i(k (i wPe(pi) >Te =

< wT1((), (p(P1 (p p >T1 + < wTe((), (i=1,..,n;i(k (i pi >Te =

< wT1((), (p(P1 (p p >T1

Due to the boundedness of (N1, M1) the functional wT1(() is bounded independently from (, therefore we get a contradiction by choosing arbitrarily large values for K. This contradiction proves the second claim.

The dimension formula

dim Im [ wP: C1(N, Q) ( C0(N, Q) ] = dim (V1 + Ve) = dim V1 + dim Ve - dim V1 ( Ve

proves

rank (N) = rank (N1) + rank (Ne).

The net N is well-formed due to part i), hence well-structured due to Theorem � REF _Ref408229639 \n �7.7�. In particular there exists a non-zero T-invariant, which implies

rank (N) = dim C0(N) - dim Z0(N) ( card (T1) - 1, QED.

The rank inequality (Theorem)

A well-formed net N satisfies the rank inequality

rank (N) < e(N)

with e(N) denoting the number of equal conflict sets of N.

Proof. We choose a numbering of e1,...,en of the equal conflict sets e ( E(N) and we choose for every equal conflict set a circuit arbiter Ne and apply successively Proposition � REF _Ref391382560 \n �8.6�.

Setting N0 := N we define by induction succesively conflict resolutions

Ni := � EINBETTEN Equation.2  ���, i = 1,....n.

Due to Proposition � REF _Ref391382560 \n �8.6�, part i) every net Ni, i = 1,....n, is well-formed, and due to part ii)

rank (Ni) = rank(Ni-1) + rank(Nei) for i = 1,...,n.

Hence

card (T) - 1 ( rank (Nn) = rank (N0) + (e(E(N) rank(Ne) = rank (N) + (e(E(N) (card(e) - 1) =

rank (N) + card (T) - e(N),

which implies

rank (N) ( e(N) - 1, QED.

Rank inequality (Examples)

1. The net N from Example � REF _Ref406667172 \n �6.8�, � REF _Ref406663011 \* FORMATVERBINDEN �Figure 23�, has the equal conflict sets { t1 }, { t2 }, { t3, t4 }, { t5 }, { t6 }. We have

rank (N) = 4 = e(N) - 1 = 5 - = 4

2.The net N from Example � REF _Ref409753265 \n �6.12�, � REF _Ref406668513 \* FORMATVERBINDEN �Figure 25�, has the equal conflict sets { t1 }, { t2 }, { t3 }, { t4 }. We have

rank (N) = 2 < e(N) - 1 = 4 - 1 = 3.

Note: Both nets are not free-choice.

�P-nets and T-nets

P-net (Definition)

i) A p/t net N = ( P, T, F) is called P-net iff

card ((t) = card (t() = 1 for all t ( T.

ii) A Petri net (N, M) is called P-system (or state machine graph) iff the underlying net N is a P-net.

P-invariants of a P-net (Proposition)

Consider a connected P-net N = ( P, T, F ). Then

Z1(N) = spanZ < ( := � EINBETTEN Equation.2  ��� >

and ( ( Z1(N)++ is the well-determined minimal P-invariant.

Proof. We use the characterization of a P-invariant ( = (p(P (p p ( Z1(N) from Remark � REF _Ref390781198 \n �6.11�. Because N is a P-net, every transition t ( T has a unique place ppre ( *t and a unique place ppost ( t*. The invariant satisfies (ppre = (ppost. Therefore the coefficients (p are constant along any undirected path, and because N is connected, all coefficients (p are equal. Obviously the coefficients of ( have no common factor. Because dim Z1(N) = 1, also supp(() is minimal, QED.

Structurally boundedness of P-nets (Corollary)

Every P-net is structurally bounded, moreover: The token number of a marking does not change under the firing of a transition.

Proof.

Structural boundedness follows from Lemma � REF _Ref408233190 \n �8.1�. Obviously the firing of a transition t with card (*t) = card (t*) = 1 does not change the token number, QED.

Reachability in P-nets (Proposition)

Consider a strongly connected P-system (N, M0) and set ( := (p(P p ( Z1(N)++. Then

RN(M0) = { M ( C1(N, Z)+: < M, ( > = < M0, ( > },

i.e. every marking with the same token number as the initial marking is reachable.

Proof.

The necessity of the condition follows from Proposition � REF _Ref405470716 \n �6.10�.

ii) In order to prove the sufficiency we assume a marking M of N with

< M, ( > = < M0, ( >.

The proof uses induction on the total token number

n = < M0, ( >.

The statement holds for n = 0, because then M = M0 = 0. For the induction step we assume card < M0, ( > = n+1 and assume, that the statement holds for n. We decompose both markings as

M0 = M0’ + M0’’, M = M’ + M’’

with

< M’0, ( > = < M’, ( > = n-1, and supp(M0’’) = p0, supp(M’’) = p.

By assumption there exists an occurrence sequence (’ with

M0‘ [(’> M‘.

Because N is strongly connected, there exists a path from p0 to p. Because N is a P-net, the transitions along the path define a second occurrence sequence (’’ with

M0’’ [(’’> M’’.

We define the occurrence sequence ( as the composition ( := (’ (’’ and obtain

M0 [(> M, QED.

Structural liveness of P-nets (Corollary)

Every strongly connected P-System is structurally live.

Well-structured P-nets are well-formed (Proposition)

For a connected P-net N we have the equivalence:

N is strongly connected

N is well-formed

N is well-structured.

Proof.

Well-behavedness of P-nets (Proposition)

A strongly connected P-system (N, M0) is well-behaved iff M0 ( 0.

Proof.

T-net (Definition)

i) A p/t net N = ( P, T, F) is called T-net iff

card ((p) = card (p() = 1 for all p ( P.

ii) A Petri net (N, M) is called T-system (or synchronization graph or marked graph) iff the underlying net N is a T-net.

Well-structured T-nets are well-formed (Proposition)

For a connected T-net N we have the equivalence:

N is strongly connected

N is well-formed

N is well-structured.

Proof.

Well-formed T-nets have live and safe markings (Genrichs theorem)

Every well-formed T-net has a live marking which is even safe, i.e. 1-bounded.

Proof.

Well-behaved T-systems (Proposition)

i) A T-system (N, M) is live iff every cycle is marked at M.

ii) A live T-system (N, M) is bounded by a constant K iff every place lies on a cycle containing at most K tokens at M.

Proof.

�Allocations

We recall Definition � REF _Ref414858716 \n �4.14� about the coupled conflict relation on the set of transitions of a net N = (P, T, F): Two transitions t, t’ ( T are in coupled conflict, iff t = t’ or there exists a sequence (ti)i= 0,...,n of transitions such that

(ti ( (ti+1 ( (, i = 0,...,n-1, and r0 = t, rn = t’.

The corresponding equivalence relation is called coupled conflict relation and its equivalence classes the coupling conflict sets of N. The set of all coupled conflict sets is denoted by C(N), its cardinality by c(N). The reverse-dual concept of conflict is coupled synchronisation.

Coupled synchronization relation (Definition)

Denote by N = (P, T, F) a net. Two places p, p’ ( P are in coupled synchronization relation, iff p = p’ or there exists a sequence (pi)i= 0,...,n of places such that

pi( ( pi+1( ( (, i = 0,...,n-1, and p0 = p, pn = p’.

The corresponding equivalence classes are called the coupled synchronization sets of N, the set of all coupled synchronization sets of N is denoted by S(N), its cardinality by s(N), cf. � REF _Ref410970653 \* FORMATVERBINDEN �Figure 28�.
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Figure � SEQ Figure \* ARABISCH �28� Places with coupled synchronization



Coupled conflict and coupled synchronization (Remark)

We have a natural bijective map between the set of coupled conflict sets and the set of coupled synchronization sets of a net N

C(N) ( S(N), c ( (c

with inverse map

S(N) ( C(N), s ( s(,

if N = (P, T, F) has no sink places and no source transitions, i.e. there does not exist p ( P with p( = ( and it does not exist t ( T with (t = (. In particular c(N) = s(N) for a strongly connected net.

Existence of semi-positive invariants (Proposition)

Consider a net N = (P, T, F) without synchronization, i.e. all coupled synchronization sets have cardinality one.

If the net has a strictly positive T-invariant ( ( Z1(N)++, then every non-zero P-invariant ( ( Z1(N) can be shrinked to a non-zero, semi-positive P-invariant

(+ ( Z1(N)+ \ 0 with supp((+) ( supp(().

Proof.

We decompose ( ( Z1(N) into its positive and negative part

( = (+- ((

with (+, (( ( C1(N)+, supp ((+) ( supp ((() ( ( and without loss of generality (+ ( 0.

Obviously supp ((+) ( supp ((). We claim that even (+ ( Z1(N)+ is an P-invariant. Because wP(() = 0 we have

wP((+) = wP((().

First we prove that wP((+) ( 0 by indirect reasoning: Assume the existence of a transition t ( T with

wP((+) (t) = wP((() (t) < 0.

Because the net has no synchronization, there exists at most a single place p ( (t, i.e. wP(p) (t) < 0 for at most one place p ( P, cf. � REF _Ref409162723 \* FORMATVERBINDEN �Figure 29�. Because both elements (+, (( are semi-positive, we conclude

p ( supp ((+) ( supp (((),

which is a contradiction.
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Figure � SEQ Figure \* ARABISCH �29� Proof of Proposition � REF _Ref409069654 \n �10.3�



By Remark � REF _Ref375888181 \n �6.2� we have

< wP((+), ( >T = < (+, wT(() >P = 0.

Therefore the strict positiveness of ( and the semi-positiveness wP((+) ( 0 imply wP((+) = 0, hence (+ ( Z1(N)+, QED.

P-allocation (Definition)

Denot by N = (P, T, F) a net.

i) A P-allocation over N is a map

(: S(N) ( 2P,

where each ((s) ( s is a maximal subset of decoupled places, i.e.

p ( p’ ( ((s) ( p( ( p’( ( (.

The transitions from (c(C ((c) (resp. places from (s(S ((s)) are called allocated by (.

ii) The net N is called P�allocatable iff for every P�allocation over N, the subnet generated by the allocated nodes has a non-zero semi-positive P�invariant.

P-allocatability (Proposition)

A strongly connected net N with a strictly-positive T�invariant ( ( Z0(N)++ is P-allocatable, if it satisfies the rank inequality

rank(N) < c(N).

Proof.

Consider a P-allocation

(: S(N) ( 2P

over N and denote by N( = (P(, T(, F() the closed subnet of N generated by the allocated places P( := (s(S(N) ((s). By construction and due to Remark � REF _Ref410994674 \n �10.2�

card (P() ( card ( S(N) ) = card ( C(N) ) = c(N),

hence

rank (N() ( rank (N) < c(N) ( card (P().

Translating the result into the dimension formula of the incidence map of the net N(

w(,P: C1(N() ( C0(N(, Z) 

we conclude

Ker w(,P = Z1(N() ( 0.

By Corollary � REF _Ref408157861 \n �6.13� the T�invariant ( ( Z0(N)++ restricts to a T�invariant (( ( Z0(N()++, which is strictly positive, too. By construction the net N( has no synchronizations. Therefore we can apply Proposition � REF _Ref409069654 \n �10.3� and obtain a non-zero P�invariant (+( ( Z1(N()+ \ 0, QED.

P-components (Definition)

A P-component of a net N is a closed  subnet, which is a strongly connected P�net.



By construction the allocated places of a P-allocation ( over N generate a closed subnet N( without synchronizations. Under additional assumptions N( contains even a P-component.



P-allocations and P-components (Proposition)

Consider a net N with a strictly positive T-invariant. If the subnet N(, which is generated by the allocated places of a P-allocation (, has a non-zero semi-positive P-invariant

(( ( Z1(N()+ \ 0,

then supp((() generates a family of disjoint P-components of N.

Proof.

By definition the subnet N( of N is closed. We denote by

CP( = ( P(, T(, F( )

the subnet of N(, which is generated by P( := supp((().

The net CP( is closed in N(, hence closed in N. By Corollary � REF _Ref408157861 \n �6.13� the strictly positive T�invariant of N restricts to a strictly positive T-invariant

( = � EINBETTEN Equation.2  ��� ( Z0(CP()++

of the closed subnet CP(.

By construction CP( has the strictly positive P-invariant (( ( Z1(CP()++.

Because the net CP( is well-structured, every connected component of CP( is strongly connected by Theorem � REF _Ref408685948 \n �8.4�.

By construction N( and a posteriori also CP( have no synchronizations, because allocated places are decoupled, i.e. for arbitrary places p ( p’ of N( holds p( ( p’( ( (.

CP( is a P-net: Because it has no synchronizations and because each transition of CP( is neither a source nor a sink due to the strong connectedness, we have

card ((t) = 1 and card (t() ( 1 for all t ( T(.

Hence

card ( t( ) - card ( (t ) ( 0 for all t ( T(.

From

0 = wT(() = � EINBETTEN Equation.2  ���

we conclude

0 = < wT((), � EINBETTEN Equation.2  ��� >P = � EINBETTEN Equation.2  ���P =

� EINBETTEN Equation.2  ���P = � EINBETTEN Equation.2  ���,

which implies

card ( t( ) - card ( (t ) = 0 for all t ( T(.

Hence card ( t( ) = 1 for all t ( T(, and CP( as well as all its connectedness components are P�nets, QED.

�The rank-theorem for equal conflict nets

The judge of Paris.

The present chapter treats one of the most important classes of Petri nets: Equal conflict nets. Free-choice nets generalize P-nets (Finite automata) and T-nets (Synchronization graphs) and allow a satisfying theory based on Linear Algebra and Convex Analysis.

In the present chapter we will often make use of the principle of reverse-dualizing, which expresses the fundamental duality of Petri net theory, namely the duality between places and transitions, conflict and synchronization etc. 

Free-choice net (Definition)

i) A net N = (P, T, w+, w() is called free-choice net, if every coupled conflict set is an equal conflict set, i.e. if for any two transitions t, t’ ( T holds:

(t ( (t’ ( ( ( w((-, t) = w((-, t’).

ii) A free-choice Petri net (N, M0) is a Petri net with underlying free-choice net N.

Free-choice net (Remark)

i) A net N = (P, T, F) is a free-choice net, iff for all places p and transitions t holds:

(p, t) ( F => (t x p( ( F.

ii) Definition � REF _Ref411317213 \n �11.1� carries over to weighted nets, i.e. to nets with arc weights w+(p, t) resp. w((p, t) from N. The resulting class of nets is called equal-conflict nets. Also many results about free-choice Petri nets carry over to equal-conflict Petri nets, cf. [TS1994].

Proof.

ad i) First assume N to be free-choice. Select a pair (p, t) ( F together with a place p’ ( (t and a transition t’ ( p(. Because p ( (t ( (t’ ( ( we have

1 = w((p’, t) = w((p’, t’),

hence (p’, t’) ( F.

Secondly assume, that for all places p and transitions t holds

(p, t) ( F => (t x p( ( F.

Select two transitions t, t’ ( T and a common place p ( (t ( (t’ ( (. We have to show

w((p’, t) = w((p’, t’)

for all places p’ ( P. If w+(p’, t) = 1, then p’ ( (t. Because t’ ( p( we have (p’, t’) ( F, hence w((p’, t’) = 1, QED.

Reverse-dualizing respects free-choice (Corollary)

The reverse-dual of a free-choice net is free-choice.

Proof.

Denote by N = (P, T, F) the given free-choice net and by

N* = (P*, T*, F*) = (T, P, F-1)

its reverse-dual. We claim: In N* holds for a place p* = t ( P* = T and a transition t* = p ( T* = P with (p*, t*) ( F* the inclusion

((t*) x (p*)( ( F*.

We have the equivalence

((t*) x (p*)( = (p x t( ( F* = F-1 ( t( x (p ( F,

and the last condition is satisfied due to the free-choice property of N, QED.

Deadlock-Freeness and Liveness (Theorem)

For a bounded and strongly-connected free-choice Petri net (N, M) we have the equivalence:

(N, M0) is live

(N, M0) is deadlock-free.

Proof.

ad i) Liveness implies deadlock-freeness for general nets, cf. Remark � REF _Ref412987228 \n �5.5�.

ad ii) Assume (N, M0) to be not live. Then there exists a transition t1 from N and a reachable marking M1 ( RN(M0), such that no occurrence sequence from LN(M1) activates t1, i.e. t1 is dead at M1. All transitions from the equal conflict set e1 ( E(N) of t1 are also dead at M1, hence all tokens arriving at an input place of e1 will be conserved. Because the Petri net is bounded, the input transitions to these places must become dead at last: There exists a reachable marking M2 ( RN(M1), such that no occurrence sequence from LN(M2) activates any equal conflict set e ( E(N) with e( ( (e1 ( (. If we iterate the argument for the corresponding equal conflict sets we finally catch every equal conflict set of N due to the strong connectedness of N. Hence there exists a reachable marking Mdead ( RN(M0), such that no transition of T is activated at Mdead. Therefore (N, M0) is not deadlock-free, QED.

P-allocatability and strictly positive P-invariants (Proposition)

A strongly connected free-choice net has a strictly positive P-invariant if it is P-allocatable.

Proof.

Denote by N = (P, T, F) the given free-choice net. It suffices to find for every place p ( P a semi-positive P-invariant (p ( Z1(N)+ with (p ( p, then

( := (p(P (p ( Z1(N)++

is a strictly positive P-invariant.

Consider an arbitrary place pin ( P. We will prove, that the algorithm from � REF _Ref411320211 \* FORMATVERBINDEN �Figure 30� generates a P�allocation ( over N, such that the corresponding P-invariant (( ( Z1(N()+ is supported at the place pin.

For any subset P’ ( P we denote by � EINBETTEN Equation.2  ��� ( P the subset of all places, which are equivalent to an element of P’ under the coupled synchronization relation.



P0 = { pin }, i = 0.��While � EINBETTEN Equation.2  ��� ( P���Choose a place p ( P \ � EINBETTEN Equation.2  ��� with p ( Pi((���Pi+1 = Pi ( { p }���i = i+1��Figure � SEQ Figure \* ARABISCH �30� Construction of the P-allocation



The algorithm terminates correctly:

Assume i ( N and � EINBETTEN Equation.2  ��� ( P. We choose an arbitrary place pe ( P \ � EINBETTEN Equation.2  ��� and a directed path ( from an arbitrary place of � EINBETTEN Equation.2  ��� to pe. Denote by pb ( � EINBETTEN Equation.2  ��� the last place on (, which belongs to � EINBETTEN Equation.2  ���, and denote by (be the segment on ( from pb to pe. By construction there exists a well-determined place pa ( Pi, which is equivalent to pb with respect to the coupled synchronization relation. Because pa( = pb( due to the free-choice property of N there exists a path (ae from pa to pe, which differs from (be only by the first segment. In particular (ae contains no place from � EINBETTEN Equation.2  ��� different from pa. Therefore we can choose p = pa(( ( (ae.



Set Pin := (n(N Pn and define

(: S(N) ( P, ((s) := s ( Pin.

as a P-allocation over N. We denote by N( the subnet of N, which is generated by the allocated places, and by (( ( Z1(N()+ the corresponding semi-positive P-invariant. Because N( is a closed subnet of N, we can assume (( ( Z1(N)+ after extension by zero, cf. Corollary � REF _Ref408157861 \n �6.13�.

We have pin ( supp ((():

We choose an arbitrary place ps ( supp (((). Due to the condition p ( Pi(( in the construction of the algorithm from � REF _Ref411320211 \* FORMATVERBINDEN �Figure 30� there exists within N( a directed path ( from pin to ps. For all transitions t from N( we have card ((t ( N() = 1, because N( contains only a single place from every coupled synchronization set. The local characterization from Remark � REF _Ref390781193 \n �6.11� applied to the P-invariant (( = (p(P( (p ( Z1(N()+ gives:

(p((t(N( (p = ((t = (p(t((N( (p for every transition t from N(.

We evaluate this equation successively for every transition on (, moving backwards from the last transition te. Beginning with ps ( supp ((() we obtain ((te > 0. We finally arrive at (pin > 0, i.e. pin ( supp (((), QED.

Liveness and P-allocatability (Proposition)

A free-choice Petri net (N, M) with N

strongly connected

P�allocatable

and with a strictly positive T-invariant

is live if the restriction to every P-component is live, i.e. if for every P�component N’ of N the Petri net (N’, M’), M’ := M | N’, is live.

Proof.

Set N = (P, T, F). By Proposition � REF _Ref409087817 \n �11.5� and by Lemma � REF _Ref408233190 \n �8.1� the net N is structurally bounded. By assumption it is strongly-connected. Hence liveness of (N, M) is equivalent to deadlock-freeness by Theorem � REF _Ref409087933 \n �11.4�. We assume the existence of a reachable marking Mdead ( RN(M), which activates no transition from T, and produce a P�component N’, such that (N’, M’) is not live: The places which are not marked at Mdead define a P-allocation over N

(: S(N) ( P, ((s) := p for a place p ( s with Mdead(p) = 0.

By assumption the subnet N(, which is generated by the allocated places, has a non-zero semi-positive P�invariant (( ( Z1(N()+. According to Proposition � REF _Ref409090783 \n �10.7� its support supp((() generates a non-empty family of P�components. We choose such a P�component  N’ of N. The subnet N’ is closed, hence the restriction

LN(M) ( LN’(M’)

is well-defined according to Lemma � REF _Ref405214893 \n �4.6�. In particular the marking

Mdead’ := Mdead | N’ ( RN’(M’)

is reachable. But Mdead’ = 0, because N’ is contained in N( and Mdead | N( = 0 by construction. Hence no transition of N’ is activated at Mdead’ and the Petri net (N’, M’) cannot be live, QED.

The rank theorem

For a free-choice net N the following properties are equivalent:

Well-formedness.

Well-structuredness together with the rank-equality rank (N) = e(N) - 1.

Proof.

Set N= (P, T, w+, w().

1 ( 2. Assume N to be well-formed.

Well-formedness implies well-structuredness by Theorem � REF _Ref408229639 \n �7.7�.

Well-formedness implies due to Theorem � REF _Ref408553190 \n �8.7� the rank inequality

rank (N) ( e(N) - 1.

In order to prove equality we choose for every equal conflict set e ( E(N) a circuit arbiter Ne and denote by

Nres := N � EINBETTEN Equation.2  ���

the resulting conflict resolution of all equal conflict sets of N. The net Nres is well-formed by Proposition � REF _Ref391382560 \n �8.6�. Like in the proof of Theorem � REF _Ref408553190 \n �8.7� we obtain by applying successively Proposition � REF _Ref391382560 \n �8.6�

rank (Nres) = rank (N) + (e(E(N) rank(Ne) = rank(N) + card(T) - e(N),

hence

rank (N) = e(N) + rank (Nres) - card(T),

which reduces the proof to the claim

rank (Nres) = card(T) - 1, i.e. dim Z0(Nres) = 1.

By Proposition � REF _Ref391382560 \n �8.6�

card(T) - 1 ( rank (Nres),

hence we know dim Z0(Nres) ( 1. Because Nres is well-structured by Theorem � REF _Ref408229639 \n �7.7�, it has a strictly positive T-invariant and by Lemma � REF _Ref408679861 \n �6.15� the set of minimal invariants generates Z0(Nres, Q). Therefore it suffices to prove, that Nres has a unique minimal T-invariant:

Consider a minimal T-invariant ( ( Z0(Nres)+ \ 0. We start with an arbitrary transition t ( supp ((). Now supp (() contains with any given transition also all other transitions from the same equal conflict set e ( E(N), which follows from the local characterization in Remark � REF _Ref390781193 \n �6.11� applied to the places of the corresponding circuit arbiter. By the same remark every outplace p ( e( has at least one output transition from supp ((). Hence, as just observed, supp (() contains even all output transitions of p. By Theorem � REF _Ref408685948 \n �8.4� the net Nres is strongly connected, hence supp (() contains all transitions of the net. Due to Lemma � REF _Ref408679861 \n �6.15� the minimal invariant ( is uniquely determined by its support, which finally proves the rank equation.

2 ( 1. Assume N to be well-structured and to satisfy the rank equality.

Well-structuredness implies strong connectedness due to Theorem � REF _Ref408685948 \n �8.4�.

The existence of a strictly positive P-invariant implies the structural boundedness according to Lemma � REF _Ref408233190 \n �8.1�.

The existence of a strictly positive T-invariant together with the rank-equality imply P�allocatability by Proposition � REF _Ref409069635 \n �10.5�.

P�allocatability together with strong connectedness and the existence of a stricly-positive T�invariant reduce the question of structural liveness of N to the question of structural liveness of every P�component, cf. Proposition � REF _Ref411327454 \n �11.6�.

We claim, that the marking M ( C1(N, Z)++ defined by

M(p) := 1 for all p ( P

induces a live marking on every P-component: For a given a P-component N’ of N we consider the restriction M’ := M | N’. Then the P-system (N’, M’) is live because it is strongly connected and marked by at least one token, cf. Proposition � REF _Ref416347567 \n �9.7�, QED.

Duality for free choice nets (Corollary)

A free-choice net is well-formed iff its reverse dual is well-formed, too.

Proof.

Due to Corollary � REF _Ref410926032 \n �11.3� the reverse-dual N* of a free-choice net N is free-choice, too. By Theorem � REF _Ref412987280 \n �0� the net N is strongly connected. By Remark � REF _Ref410994674 \n �10.2� the equal conflict sets in both nets correspond bijectively to each other, hence e(N) = e(N*). We have rank (N) = rank (N*), because the incidence matrices of both nets are transposed to each other according to Remark � REF _Ref412987741 \n �3.10�. In particular the P-invariants of N equal the T-invariants of N* and vice versa. Hereby positivity is respected. Therefore the Corollary follows from Theorem � REF _Ref410926333 \n �11.7�, QED.

Liveness in equal conflict systems (Theorem)

Denote by (N, M) a live equal conflict system. Then every potentially reachable marking of (N, M) is also live.

Proof.

Rank condition and well-formedness (Corollary)

If the well-structured p/t net N satisfies the rank equation

rank (N) = c(N) - 1,

then N is well-formed.

Proof.
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