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Abstract: Bipolar synchronization systems (BP-systems) constitute a class of coloured 

Petri nets, well suited for modelling the control flow of discrete dynamical systems. Every 

BP-system has an underlying ordinary Petri net, a T-system. It further has a second 

ordinary net attached, a free-choice system. We prove that a BP-system is safe and live if 

the T-system and the free-choice system are safe and live and the free-choice system in 

addition has no frozen tokens. This result is the converse of a theorem of Genrich and 

Thiagarajan and proves an old conjecture. As a consequence we obtain two results about 

the existence of safe and live BP-systems with prescribed ordinary Petri nets. For the 

proof of these theorems we introduce the concept of a morphism between Petri nets as a 

means of comparing different Petri nets. We then apply the classical theory of free-choice 

systems. 

Keywords: Bipolar synchronization system, free-choice system, frozen token, Petri net 

morphism, structurally free of blocking. 

Introduction 
Bipolar synchronization systems (BP–systems) constitute a class of coloured Petri nets, well suited 

for modelling the control flow of discrete distributed dynamical systems. BP-systems have been 

introduced in 1984 by Genrich and Thiagarajan [GT1984]. 

BP–systems have two token colours, high-tokens and low-tokens, and they have coloured 

transitions with firing modes depending on the combination of high- and low-tokens at their pre-

places. As a consequence a transition decides not only on enabling a subsequent activity but also 

about skipping it. The flow of high-tokens shows the pattern of activation, the flow of low-tokens 

the pattern of skipping activities. The firing modes of a given transition obey either an AND-rule 

or a XOR-rule. 

BP-systems have seldom been studied in the context of Petri nets since 1984. Today however they 

are used implicitly in many commercial projects which focus on business process modelling: 

Because the prevalent language for business process modelling in Germany is the language of 

Event-driven Process Chains (EPCs), invented in 1992 by Keller, Nüttgens and Scheer (cf. 

[Sch1994]). EPCs model the control flow of a business process by using the logical connectors 

AND, XOR and OR. The semantics of EPCs can be formalized by translation into the class of 

Boolean Petri nets [LSW1998]. Hereby EPCs with only AND or XOR-connectors translate into 

BP-systems. Therefore any analysis of a BP-system clarifies the behaviour of an AND/XOR-EPC 
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[Weh2007]. The concept of low-tokens has also been transferred separately to EPCs by different 

authors [GL2005], [MA2006]. 

Genrich and Thiagarajan observed that the flow of high-tokens of a BP-system projects onto the 

token flow of a corresponding free-choice system. We call it the high-system of the BP-system. 

Abstracting from the colours of a BP-system leads to a second ordinary Petri net. This T -system 

however keeps the net structure of places, transitions and directed arcs. We call it the skeleton of 

the BP-system. Forgetting about the colours is formalized by a canonical Petri net morphism from 

the BP-system to its skeleton. Due to this morphism the safeness of a BP-system follows from the 

safeness of its skeleton. Conversely, safeness and liveness of a BP-system imply the analogous 

properties of its skeleton, thanks to a lifting lemma for the morphism. 

Genrich and Thiagarajan already proved that the high-system of a safe and live BP-system is safe 

and live itself. Moreover the high-system has no frozen tokens. Both results follow from a second 

lifting lemma. The new result of the present paper proves the converse of the theorem of Genrich 

and Thiagarajan. Our main result (Theorem 4.6): 

A BP-system is safe and live iff its high-system is safe and live without frozen tokens and its 

skeleton is safe and live. 

For the proof of Theorem 4.6 we conclude from the lifting lemma that deadlock-freeness is 

sufficient for the liveness of the BP-system. This result has also already been shown by Genrich 

and Thiagarajan. But safeness and liveness of high-system and skeleton do not suffice to exclude a 

deadlock of the BP-system. Therefore we intensify the concept of a deadlock to the stronger 

concept of a deadlocking circle. It consists of an alternating series of closing XOR- 

and AND-transitions. Firing the AND-transition in the high-system presupposes firing 

the XOR-transition, yet firing the XOR-transition in the skeleton presupposes firing the 

AND-transition. Therefore the transitions in the BP-system block each other. We prove that every 

dead BP-system has a deadlocking circle if its high-system and skeleton are safe and live. On the 

other hand, any deadlocking circle is excluded by the absence of frozen tokens. 

The essential means for proving the latter result is a theorem about restricted free-choice nets: The 

high-net of a BP-system belongs to a subclass class of free-choice nets, where well-formedness is 

characterized by the absence of certain handles on elementary circuits. Using circuits allows us to 

carry a common type of reasoning from T -systems to the high-system of a BP-system. A further 

input for our proof is the simple observation that an activated T -component in a free-choice 

system without frozen tokens must already contain all tokens. This result has the structural 

analogy that in the underlying net T -components and P -components intersect each other. 

Subsequently, we draw two conclusions from Theorem 4.6 concerning the existence of safe and 

live BP-systems with prescribed high-system (Theorem 5.3) or prescribed skeleton (Theorem 5.5). 

The present paper uses results for free-choice systems which were not at the disposal of Genrich 

and Thiagarajan in 1984. They were developed afterwards by Best, Desel, Esparza and Silva. 
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1 Components and handles in free-choice 
systems 

We will assume that the reader is familiar with the basic properties of Petri net theory, in particular 

that one knows finite ordinary Petri nets ( )µ,N . Here the net ( )FTPN ,,=  comprises a finite 

set P  of places, a finite set T  of transitions and a set ( ) ( )PTTPF ×∪×⊆  of directed arcs, 

while N→P:µ  denotes the initial marking of the net. But often we will dispense with an 

explicit notation for the set of places, transitions and arcs; we use the shorthand Nx ∈  for a 

node TPx ∪∈ . We shall write ( ) xxpre •=:  for the pre-set and ( ) •= xxpost :  for the post-set of 

a node Nx ∈  and extend this notation to subsets TPX ∪⊆  by setting 

( ) ( )U
Xx

xpreXpre

∈

=:  and ( ) ( )U
Xx

xpostXpost

∈

=: . 

For the convenience of the reader and to fix the notation we recall some concepts which are used 

throughout the paper. Clusters group conflicting transitions and their pre-set. 

1.1 Definition (Cluster) 

Consider a net ( )FTPN ,,= . The cluster of a node TPx ∪∈ , denoted ( )xcl , is the minimal set 

of nodes so that 

• ( )xclx ∈ , 

• if a place Pp ∈  belongs to ( )xcl , then also ( ) ( )xclppost ⊆ , and 

• if a transition Tt ∈  belongs to ( )xcl , then also ( ) ( )xcltpre ⊆ . 

For a subset TPX ∪⊆  we denote the union of all clusters of nodes from X  by 

( ) ( )U
Xx

xclXcl

∈

=:  

A path ( )nxxx ,...,, 10  with nodes TPxi ∪∈  is named elementary, if ji xx ≠  for all pairs ji ≠ . A 

circuit is a path ( )nxxx ,...,, 10  with 0xxn = , it is named elementary circuit if the 

path ( )110 ,...,, −nxxx  is elementary. The concatenation of two paths ( )nxxx ,...,, 10=α  and 

( )myyy ,...,, 10=β  with 0yxn =  is the path ( )mn yyxxx ,...,,,...,,: 110=∗ βα . 

The concatenation of two occurrence sequences 1σ  and 2σ  is denoted by 21 σσ ⋅ . A partial 

subnet of ( )FTPN ,,=  is a net ( )',','' FTPN =  with ( ) ( )[ ]''''',',' PTTPFFTTPP ×∪×∩⊆⊆⊆ . 

In case ( ) ( )[ ]''''' PTTPFF ×∪×∩=  the net 'N  is named subnet of N . If two nodes of a subnet are 

incident in the ambient net, they are also incident in the subnet. While two nodes of a partial 

subnet, which are incident in the ambient net, are not necessarily incident in the partial subnet. 

If TPX ∪⊆  is a set of nodes of the net ( )FTPN ,,=  then the 

triple ( )( )XXFTXPX ×∩∩∩ ,,  is a subnet of N , called the subnet of N  generated by X . 
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To simplify the notation we will not distinguish between an elementary path ( )nxx ,...,0  in N  and 

the partial subnet of N  with nodes nixi ,...,0, = , and directed arcs ( ) 1,...,0,, 1 −=+ nixx ii . 

Consider a net N  and two partial subnets NNN ⊆21, . A handle on 1N  is an elementary path 

in N  

( )nxx ,...,0=α  with { }nxxN ,01 =∩α . 

In case of a transition 0x  and a place nx  the handle is called a TP -handle. Analogously one 

defines a PT -handle. A bridge from 1N  to 2N  is an elementary path in N  

( )nxx ,...,0=α  with { }01 xN =∩α  and { }nxN =∩ 2α . 

In case of a transition 0x  and a place nx  the bridge is called a TP -bridge. 

A Petri net is live if for any transition and for any reachable marking µ  an occurrence 

sequence σ  exists, which is enabled at µ , such that firing σ  creates a marking, which enables 

the given transition. A Petri net is bounded if a natural number exists, which bounds the token 

content of every place at every reachable marking. The Petri net is safe if the bound can be chosen 

equal to 1. A net N  is well-formed if it has a marking µ , so that the Petri net ( )µ,N  is live and 

bounded. 

Petri nets with branched places but unbranched transitions are sufficient to model processes with 

alternative runs, but they fail to capture concurrent process runs. A Petri net with unbranched 

transitions is named P -system, its underlying net is named P -net. Complementary to that, Petri 

nets with branched transitions but unbranched places are sufficient to model processes with 

concurrency, but they fail for processes with alternative runs. A Petri net with unbranched places is 

named T -system, its underlying net is named T -net. A basic circuit of a T -system is an 

elementary circuit marked with a single token. 

A marking µ  of a Petri net is a home state if any reachable marking enables an occurrence 

sequence, the firing of which creates µ . A Petri net ( )µ,N  is cyclic if its initial marking µ  is a 

home state. Live and bounded P -systems and T -systems are cyclic. 

Neither P -systems nor T -systems are sufficient to model real world processes. In general one has 

an interplay of choice and concurrency of actions. To facilitate the study of general ordinary Petri 

nets ( )µ,N  one searches for subnets of N  which are P -nets or T -nets. These subnets are named 

components (cf. [DE1995], Definition 5.1 and Definition 5.11). 

1.2 Definition (Components) 

Consider a net N . 

i) A subnet PN  of N  which is generated by a nonempty subset X  of nodes, is a P -component 

of N  if PN  is a strongly connected P -net with 

( ) ( ) Xppostppre ⊆∪  for all places Xp ∈ . 
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A subnet TN  of N  which is generated by a nonempty subset X  of nodes, is a T -component 

of N  if TN  is a strongly connected T -net with 

( ) ( ) Xtposttpre ⊆∪  for all transitions Xt ∈ . 

ii) A P -component of N  which is marked with a single token at a marking µ  of N  is a basic 

component of the Petri net ( )µ,N . 

iii) A marking µ  of N  activates a T -component TN  of N  if the T -system ( )TTN µ,  is live, 

where TT N|: µµ =  denotes the restriction of the marking µ  to the places of TN . 

 

A P -component of N  is distinguished in that its token content does not change, when firing an 

arbitrary transition of N . And firing all transitions of a T -component reproduces the original 

marking of N . 

A first common generalization of P -systems and T -systems are free-choice systems. They allow 

the combination of alternatives and concurrency as long as a certain conflict condition is satisfied: 

If one transition from a set of transitions in structural conflict is enabled, then all other conflicting 

transitions are enabled too. From the theory of free-choice systems as presented in [DE1995]
1
 we 

will now explicitly state some concepts and theorems fundamental for the present paper. 

1.3 Definition (Free-choice system) 

A net ( )FTPN ,,=  is a free-choice net if for every two transitions Ttt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( )21 tpretpre = . 

A restricted free-choice net is a net which satisfies the stronger condition: For every two 

transitions Ttt ∈21,  

either ( ) ( ) ∅=21 tpretpre I  or ( ) ( ) { }ptpretpre == 21  

with a single place Pp ∈ . A marked (restricted) free-choice net ( )µ,N  is named (restricted) free-

choice system. 

1 token

t_0

p_2

t_1

t_3

p_4p_3 p_5 p_6

t_4 t_5 t_6 t_7

p_7 p_8

t_8

p_0

p_1

t_2

 

Fig. 1: Live and safe restricted free-choice system 

 

                                                           

1
 Different from [DE1995] we talk about P -components instead of S -components. 
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The restricted free-choice system from Fig. 1 is safe and live, therefore its underlying net is well-

formed. It shows a non-trivial entangling of alternatives and concurrency. Free-choice systems and 

in particular restricted free-choice systems are one of the two essential classes of Petri nets in the 

present paper. They will be used in the main part of the paper to derive properties of BP-systems, 

which are certain coloured Petri nets and form the second class of Petri nets considered in this 

paper. 

Fig. 2 shows a type of conflict which is forbidden in free-choice nets: There are three transitions in 

structural conflict and markings are possible which enable only one of the transitions. All 

transitions together with their pre-places form a single cluster. 

 

Fig. 2: Type of structural conflict which is forbidden for  free-choice nets 

 

P -components and T -components are of fundamental importance for free-choice nets and we 

will heavily rely on them. The free-choice net N  from Fig. 1 has two P -components and two 

T -components. One P -component is the subnet PN  of N  generated by the set 

{ }8543210753210 ,,,,,,,,,,,, tttttttpppppp . 

One T -component is the subnet TN  of N  generated by the set 

{ }87431086420 ,,,,,,,,,, ppppppttttt . 

Both P -components are basic components of ( )µ,N  and both T -components are activated at µ . 

 

For the convenience of the reader we reproduce the simple proof of the following Lemma 1.4. 

1.4 Lemma (Intersection of components) 

The intersection of a P -component PN  with a T -component TN  of a net is a set of disjoint 

elementary circuits. Possibly the set is empty. 

Proof. Consider a place TPPT NNNp ∩=∈ : . Because TNp ∈  the place has only a single pre-

transition and only a single post-transition in TN . Because PN  is a P -component, all pre-

transitions and all post-transitions of TNp ∈  belong to PN . Therefore PTNp ∈  has a unique 

pre-transition ( ) PTpre Nppret ∩∈  as well as a unique post-transition ( ) PTpost Nppostt ∩∈ . 

Analogously a transition PTNt ∈  has a unique pre-place ( ) PTpre Ntprep ∩∈  and a unique post-

place ( ) PTpost Ntpostp ∩∈ . Therefore PTN  is the disjoint union of elementary circuits, q. e. d. 
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A key term of the present paper is the concept of frozen tokens: A token in a Petri net is frozen at a 

given place iff there is an enabled infinite occurrence sequence, which does not move the token. 

The following Definition 1.5, i) is equivalent to ([BD1990], Def. 6.1). Here we employ for two 

markings µν ,  of a net ( )FTPN ,,=  the following notation: µν <  iff ( ) ( )pp µν ≤  for all places 

Pp ∈  and ( ) ( )00 pp µν <  for at least one place Pp ∈0 . 

1.5 Definition (Frozen tokens, structurally free of blocking) 

i) A Petri net ( )0,µN  has no frozen tokens iff for every reachable marking µ  the following holds: 

For every marking µν <  the Petri net ( )ν,N  has no enabled infinite occurrence sequence. 

ii) A net is structurally free of blocking iff every P -component intersects every T -component in 

a non-empty set. 

 

For a live free-choice system the absence of frozen tokens is equivalent to the structural property 

from Definition 1.5, cf. [BD1990], Theor. 6.2. 

1.6 Lemma (Frozen tokens, structurally free of blocking) 

A live free-choice system has no frozen tokens iff it is safe and the underlying net is structurally 

free of blocking. 

 

The net underlying the free-choice system from Fig. 1 is structurally free of blocking, as all its 

components contain the place 0p . 

1 token 1 token

t_1

t_2

q_1

t_4

t_3

N_P N_T

q_2p_1 p_2

 

Fig. 3: Free-choice system with a frozen token 

 

The net underlying the free-choice system from Fig. 3 is not structurally free of blocking. Its 

P -component PN  with nodes { }2211 ,,, tptp  is disjoint from the T -component TN  with 

nodes { }4231 ,,, tqtq . The two free-choice systems from Fig. 1 and Fig. 3 are live and safe. The 

first one has no frozen tokens. In contrast the system from Fig. 3 has a frozen token at the 

place 2p : The marking from Fig. 3 activates the T -component TN  and therefore also an infinite 

occurrence sequence, which does not move the token at 2p . The system from Fig. 3 will be 

studied later in a broader context. 

 

Any strongly connected T -net is structurally free of blocking. In particular, a safe and live 

T -system has no frozen tokens. Even a much stronger result holds: Every enabled infinite 
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occurrence sequence of a strongly connected T -system fires each transition of the net an infinite 

number of times (cf. [DE1995], Proof of Theor. 3.17). 

 

For the class of restricted free-choice nets – but not for free-choice nets in general – there exists a 

characterization of well-formedness in terms of handles and bridges. This characterization in 

Theorem 1.7 is the second main ingredient for the proof of Theorem 4.6. The result is due to 

Esparza and Silva, after preparatory work of Desel (cf. [ES1990], Theor. 4.2). 

1.7 Theorem (Well-formedness of restricted free-choice nets) 

A restricted free-choice net is well-formed iff it is strongly connected, no elementary circuit has 

a TP -handle and every PT -handle on an elementary circuit has a TP -bridge from the handle to 

the circuit. 

 

With the help of Theorem 1.7 one easily confirms that the underlying net of the restricted free-

choice net from Fig. 1 is well-formed. For a restricted free-choice net which is not well-formed we 

refer to Fig. 4: Each of its four elementary circuits has a TP -handle. The free-choice net will be 

studied in the context of BP-systems in Chapter 2. 

 

Fig. 4: Restricted free-choice net, which is not well-formed 

 

As a corollary to Theorem 1.7 the following Proposition 1.8 states the main result about the 

intersection of components in a well-formed restricted free-choice net which is structurally free of 

blocking. 

1.8 Proposition (Intersection of components) 

Consider a well-formed restricted free-choice which is structurally free of blocking. 

i) Each pair ( )TP NN ,  with a P -component PN  and a T -component TN  intersects in a single 

elementary circuit TP NN ∩=γ . 

ii) Each elementary circuit γ  is the intersection TP NN ∩=γ  of a P -component PN  with 

a T -component TN . 

Proof. According to Lemma 1.4 the intersection TP NN ∩  is either empty or a set of disjoint 

elementary circuits. 
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ad i) In case of N  being structurally free of blocking the intersection TPPT NNN ∩=:  is non-

empty. Assume that PTN  contains two disjoint circuits 21 γγ ≠ . Within TN  there exists a 

bridge 12α  from 1γ  to 2γ . It starts with a transition, because places of a T -component do not 

branch. Analogously within PN  there exists a bridge 21α  from 2γ  to 1γ , which ends with a 

place. Let γ  be the segment of 2γ  from the end of 12α  to the start of 21α . The 

concatenation 2112 αγα ∗∗  induces a TP -handle on 1γ . It contradicts the well-formedness of the 

restricted free-choice net according to Theorem 1.7 which finishes the proof. 

ad ii) Any elementary circuit γ  of a well-formed free-choice net is contained in the intersection of 

a P -component PN  with a T -component TN . This result is due to Thiagarajan and Voss (cf. 

[TV1984], Chap. 5). According to part i) the intersection TP NN ∩  is a single elementary circuit. 

Therefore TP NN ∩=γ , q. e. d. 

 

Fig. 1 illustrates Proposition 1.8: The free-choice net has four elementary circuits. Each of them is 

the intersection of a P -component and a T -component. There are two P -components and two 

T -components. 

1.9 Corollary (An activated T-component implies liveness) 

Consider a free-choice net N  which is well-formed and structurally free of blocking and a 

T -component TN  of N . If a marking µ  of N  activates TN , then ( )µ,N  is live. 

Proof. As a consequence of Commoners Theorem a free-choice system ( )µ,N  with well-formed 

free-choice net N  is live iff it is covered by a set of marked P -components (cf. [DE1995], 

Theor. 5.8). Any P -component PN  of N  intersects TN  in an elementary circuit according to 

Proposition 1.8. Liveness of ( )TT NN |, µ  implies that each of these elementary circuits is marked. 

Therefore PN  is marked, q. e. d. 

 

Another important application of Theorem 1.7 is Proposition 1.10. 

1.10 Proposition (Obstruction against being well-formed and 
structurally free of blocking) 

Consider a restricted free-choice net N . Assume a T -component TN , a P -component PN  and a 

path ( )PnT xxxx ,,...,, 1=α  from a node PTT NNx −∈  to a node TPP NNx −∈ , such that 

∅=∩∩ PT NN'α  

with ( )nxx ,...,:' 1=α  the path resulting from α  by excluding the endpoints. Then N  cannot be 

well-formed and structurally free of blocking. 

Proof. We argue by means of an indirect proof and assume that N  is well-formed and structurally 

free of blocking. The intersection PT NN ∩=:γ  is an elementary circuit according to 

Proposition 1.8. Within TN  there exists a bridge Tα  from γ  to Tx  and within PN  a bridge Pα  
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from Px  to γ . The bridge Tα  starts with a transition, because branched nodes of TN  are 

transitions, and Pα  ends with a place, because branched nodes of PN  are places. The 

concatenation PT ααα ∗∗  is a TP -handle on γ , possibly after shortening it to an elementary 

path, keeping fixed its start and end. According to Theorem 1.7 this fact contradicts N  being well-

formed, q. e. d. 

 

The following Proposition 1.11 is the main result about T -components in live and bounded free-

choice systems. We will apply it to live and safe free-choice systems without frozen tokens. Here 

it serves to collect all tokens of a reachable marking within a given T -component. 

1.11 Proposition (Activation of T-components) 

Every T -component TN  of a live and bounded free-choice system can be activated by a reachable 

marking. In particular, an enabled occurrence sequence σ  without any transition from ( )TNcl  

exists, so that the firing of σ  creates a marking, which activates TN . 

Proof. [DE1995], Theor. 5.20 shows the existence of an enabled occurrence sequence σ  without 

transitions from TN , such that firing σ  creates a marking, which activates TN .But their proof 

also demonstrates the stronger version of Proposition 1.11 which excludes from σ  even 

transitions from ( )TNcl , q. e. d. 

 

A marking which enables only transitions from a single cluster is a blocking marking. 

1.12 Definition (Blocking marking) 

A blocking marking associated to a cluster from a free-choice system is a reachable marking which 

enables every transition from the cluster but no other transition of the system. 

 

1.13 Lemma (Blocking markings in the absence of frozen 
tokens) 

Any cluster of a safe and live restricted free-choice system without frozen tokens has a blocking 

marking, which can be reached without firing any transition from the cluster. The blocking 

marking is uniquely determined and is a home state. 

Proof. Denote by c  the given cluster. 

i) Existence of blocking markings: Let ( )µ,NFCS =  be the given free-choice system. 

Because FCS  has no frozen tokens, for any cluster of N  and at every reachable marking an 

enabled occurrence sequence exists, the firing of which creates a blocking marking of the given 

cluster. Obviously one can assume that the occurrence sequence does not contain any transition 

from the cluster. 

ii) Every T -component with one place of c  is activated at a blocking marking blockµ  of c  and 

contains all tokens of blockµ : Otherwise TN  could be activated according to Proposition 1.11 by 
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firing a non-empty enabled occurrence sequence with no transition from ( )TNcl . But such 

occurrence sequences do not exist, because blockµ  is a blocking marking and the only transitions 

activated at blockµ  belong to ( )TNclc ⊂ . 

Because TN  is activated at blockµ , there exists an infinite occurrence sequence of the 

T -system ( )TblockT NN |, µ  and a posteriori of ( )blockN µ, . The fact that FCS  has no frozen 

tokens, implies that all tokens of blockµ  mark places of TN . 

iii) Uniqueness of blocking markings: We consider two blocking markings block,1µ  and block,2µ  

associated to the cluster c . They can be considered as markings of a suitable T -component TN  

according to part ii). We prove that block,2µ  is reachable in ( )blockTN ,1, µ . Due to the Reachability 

Theorem for live T -systems ([DE1995], Theor. 3.21) we have to prove that block,1µ  and block,2µ  

agree on every elementary circuit γ  of TN , i.e. ( ) ( )γµγµ blockblock ,2,1 = . Due to Proposition 1.8 

there exists a P -component PN  with TP NN ∩=γ . The equality ( ) ( )PblockPblock NN ,2,1 µµ =  

and part ii) imply ( ) ( )TPblockTPblock NNNN ∩=∩ ,2,1 µµ . Blocking markings of the safe and live 

T -system ( )blockTN ,1, µ  are unique ([GT1984], Theor. 1.15), which implies blockblock ,2,1 µµ = . 

iv) The uniqueness of blocking markings and part i) imply that any blocking marking is a home 

state, q. e. d. 

 

Lemma 1.13 has a far reaching generalization. The reachability of unique blocking markings in a 

bounded and live free-choice system is a deep theorem of Gaujal, Haar and Mairesse 

([GHM2003], Theor. 3.1). The proof is much more difficult than our proof of Lemma 1.13. Their 

theorem shows, that the two concepts “blocking marking” and “structurally free of blocking” are 

independent: Bounded and live free-choice systems have unique blocking markings independently 

from the underlying net being structurally free of blocking or not. Therefore one should not 

confuse the two different concepts “blocking marking” and “structurally free of blocking”, the 

common use of the word “blocking” is misleading. 

A marking µ  with the properties from Definition 1.12 is named “blocking marking”, because it 

blocks every transition, which does not belong to the given cluster. Those transitions are not 

enabled at µ . 

Beeing “structurally free of blocking” is a structural property of the net, it does not refer to a 

distinguished marking. The name can be explained by Lemma 1.6: At any live and safe marking of 

the net it is impossible to mark a pre-place of a transition with a token and to fire afterwards an 

infinite occurrence sequence, which does not move the token: It is not possible to block a 

transition with a token with respect to an infinite occurrence sequence. 
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2 BP-Systems and their derived ordinary 
Petri nets 

A BP-system is a coloured Petri net. It collects the two truth values “true, false” into a global set 

BOOLE of token colours, while the firing modes of its transitions represent the Boolean logic of 

AND and XOR. A token with the colour “high (= true)” is called a high-token and a token with the 

colour “low (= false)” is called a low-token. Fig. 5 shows an example of a BP-system. It is marked 

with one high-token. 

AND

XORXOR

ANDAND

XOR

BOOLE
BOOLE

BOOLE
BOOLE

BOOLEBOOLE

BOOLEBOOLE

1 high

BOOLE

 

Fig. 5: BP-system 

 

BP-systems are coloured Petri nets (cf. [Jen1992]) but for the present paper we do not need the 

latter concept in full generality. 

2.1 Definition (BP-system) 

i) A bipolar synchronization graph (BP-graph) BPG  is a coloured net. It extends a 

T -net ( )FTPN ,,=  by attaching to each place Pp ∈  the fixed set 

( ) { }lowhighBOOLEpC ,:==  

with two token colours and provides each transition Tt ∈  with one from two types of logic: 

• An AND-transition ANDtt =  has a set of firing modes ( ) { }lowhightB ,=  with two elements: 

The high-mode (respectively low-mode) is enabled iff all pre-places of ANDt are marked with 

at least one high-token (respectively low-token). Its firing consumes one high-token 

(respectively low-token) from each pre-place and creates one high-token (respectively 

low-token) on every post-place. 

• An XOR-transition XORtt =  with n  pre-places and m  post-places has a set of firing 

modes ( )tB  with mn ⋅  high-modes ( )jib ,  and one low-mode: The high-mode with 

index ( ) mjniji ≤≤≤≤ 1,1,, , is enabled iff the i -th pre-place is marked with at least one 

high-token and all other pre-places with at least one low-token. Firing the high-mode 

consumes a high-token from the i -th pre-place and a low-token from every other pre-place 

and creates a high-token at the j -th post-place and a low-token at every other post-place. The 

low-mode is enabled iff all pre-places are marked with at least one low-token. Firing the 
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low-mode consumes a low-token from each pre-place and creates a low-token at every post-

place. 

Adhering to the common notation of coloured nets we call a pair ( ) ( )pCcPpcp ∈∈ ,with, , a 

token element and a pair ( ) ( )tBbTtbt ∈∈ ,with, , a binding element. A binding element is named 

low binding element, if its firing consumes and creates only low-tokens. Otherwise it is named 

high binding element. 

A transition with a single pre-place and two or more post-places is an opening transition, a 

transition with a single post-place and two or more pre-places is called a closing transition. 

Opening transitions with exactly two post-places and closing transitions with exactly two pre-

places are called binary transitions. The BP-graph is called binary if all its transitions are binary. 

ii) A bipolar synchronization system (BP-system) is a coloured Petri net ( )µ,BPGBPS =  with a 

BP-graph BPG  and an initial marking µ  with at least one high-token. 

 

The binary BP-graph underlying the BP-system from Fig. 5 contains one opening XOR-transition 

and two closing XOR-transitions. There are no XOR-pairs, formed by an opening and a closing 

XOR-transition. Similarly there are no AND-pairs. Instead AND-transitions and XOR-transitions 

are crosslinked. 

 

The present paper deals with questions of liveness of high binding elements. All BP-systems we 

are dealing with in the final theorems will be strongly connected, therefore each transition will 

have at least one pre-place and at least one post-place. If the initial marking of a strongly 

connected BP-graph had no high-tokens, one could enable at most the low -modes of its 

transitions. Their firing creates again low-tokens only. Therefore we excluded initial markings 

without any high tokens in Definition 2.1, part ii). Actually there is no need to consider markings 

without high-tokens. Such a Petri net would model a system, where each activity is skipped. This 

can be achieved already with the simpler model of the corresponding T -system. 

 

As is well known, the semantics of coloured Petri nets can be given in terms of TP / -systems. In 

particular, every BP-graph BPG  expands into an ordinary net flatBPG : Places and transitions 

of flatBPG  are by definition the token elements and binding elements of BPG . Any token from a 

marking of BPG  induces a token at that place of flatBPG , which corresponds to the token colour. 

Therefore any marking µ  of BPG  induces a marking flatµ  of flatBPG  and the occurrence 

sequences of the BP-system ( )µ,BPGBPS =  and the ordinary Petri net 

( )flatflatflat BPGBPS µ,:= , 

its flattening, correspond bijectively. The flattening of the binary closing AND- and 

XOR-transitions of BPG  are the ordinary nets from Fig. 6. An analogous flattening is obtained 

for the opening transitions just by reversing the arcs. 

The white components of the ordinary nets in Fig. 6 form part of an ordinary Petri net 
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( )lowlowlow BPGBPS µ,= , 

which is called the low-system of BPS . The net lowBPG  is the subnet of flatBPG  generated by 

all low-places and all low-transitions. 

Factoring out the low-system from the flattening leaves as quotient the ordinary net 

( )highhighhigh BPGBPS µ,= , 

the high-system of BPS . The net highBPS  is generated by the shaded components from Fig. 6, i.e. 

by all high-places and high-transitions of flatBPG . It is a restricted free-choice system. 

AND
1,1 0,0

1

1

1 00

0

ANDAND
1,1 0,0

1

1

1 00

0

1,1 0,0

1

1

1 00

0  

XOR
1,0 0,0

1

1

00

0

0,1

1

XOR
1,0 0,0

1

1

00

0

0,1

1

 

 

Fig. 6. Flattening of closing transitions of different logical type (1 = high, 0 = low) 

 

If one forgets about all colours of BPS , i.e. about the difference between token colours and about 

the difference between firing modes, one obtains a further ordinary Petri net, the skeleton 

( )skelskelskel BPGBPS µ,= , 

of BPS . The skeleton is a T -system. Accordingly, BP-systems generalize T -systems. They add 

the possibility of choice and represent the omission of actions by a second type of tokens. 

 

We illustrate the different ordinary Petri nets attached to a BP-system by a series of figures. Fig. 7 

(left hand side) shows a simple BP-system BPS , which represents an XOR-alternative. The figure 

shows the state after deciding for the left alternative. The two tokens indicate by their different 

colour, which alternative has been chosen. Fig. 7 (right hand side) is the corresponding 

skeleton skelBPS , a T -system. The branching does not indicate, if it results from XOR- 

transitions or from AND-transitions. And the marking of skelBPS  does not indicate, which of the 

two alternatives has been chosen in BPS . 

XOR

XOR

1 token1 token1 low

BOOLE

1 high

BOOLEBOOLE

 

Fig. 7. BP-system BPS  (left) and its skeleton 
skelBPS  (right) 

 

The flattening flatBPS  from Fig. 8 is an ordinary Petri net. It contains the same information as the 

coloured Petri net BPS , but the representation is less compact. 
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lowhighhighlow

0,00,11,0

0,00,11,0

1 token1 token

lowhigh

 

Fig. 8. Flattening 
flatBPS  of the BP-system from Fig. 7 (left) 

 

Eventually Fig. 9 (left hand side) shows the low-system lowBPS  and Fig. 9 (right hand side) the 

high-system highBPS . The low-system is a T -system, which is not live. The high-system is a live 

and safe P -system. Alike to BPS  it represents the alternatives and indicates, which of the two 

alternatives has been chosen. 

0,11,0

0,11,0

0,0

0,0

1 token1 token

 

Fig. 9. Low-system 
lowBPS  (left) and high-system 

highBPS  (right) of the BP-system from Fig. 7 

 

The definition of safeness translates literally from ordinary Petri nets to BP-systems: A BP-system 

is safe if the token content of any place at any reachable marking does not exceed the bound 1. We 

now extend the concept of liveness and deadness to BP-systems. 

2.2 Definition (Live, dead, synchronization-deadlock) 

Consider a BP-graph BPG , a marking µ  of BPG  and the BP-system ( )µ,: BPGBPS = . 

i) A binding element of BPG  is live at µ  iff for every reachable marking 1µ  the 

BP-system ( )1, µBPG  has a reachable marking which enables the given binding element. BPS  is 

live with respect to all its high bindings iff every high binding element of BPG  is live at µ . 

ii) A transition of BPG  is high-live at µ  iff it has a high-mode which is live at µ . BPS  is 

high-live iff each transition is high-live at µ . 

iii) The BP-graph BPG  is well-formed iff a marking 1µ  exists, such that the 

BP-system ( )1, µBPG  is safe and high-live. 
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iv) A transition of BPG  is dead at µ  iff no reachable marking of BPS  enables any firing mode 

of the given transition. The marking µ  is dead iff all transitions of BPG  are dead at µ . BPS  is 

dead iff the initial marking µ  is dead. 

v) If BPS  is safe, then a transition BPGt ∈  is in a synchronization-deadlock at µ  iff 

• either t  is an AND-transition with at least one pre-place high-marked at µ  and one pre-place 

low-marked at µ  

• or t  is a XOR-transition with at least two pre-places high-marked at µ . 

BPS  is free of synchronization-deadlocks iff no transition of BPG  is in a synchronization-

deadlock at a reachable marking. 

 

In order to illustrate, how high-liveness of a BP-system may depend on certain properties of its 

high-system, we present three examples of safe BP-systems. The BP-system 1BPS  from Fig. 10 is 

safe and high-live, its high-system 
high

BPS1  in Fig. 11 is live and safe without frozen tokens. 

AND

XORXOR

ANDAND

XOR

BOOLE
BOOLE

BOOLE
BOOLE

BOOLEBOOLE

BOOLEBOOLE

1 high

BOOLE

 

Fig. 10: Safe and high-live BP-system 1BPS

1 token

Fig. 11: Safe and live high-system 
high

BPS1  

 

The second example is the BP-system 2BPS  obtained from 1BPS  by interchanging 

AND-transitions and XOR-transitions while keeping all arc-directions. Fig. 12 on the left 

shows 2BPS . On the right of Fig. 12, there is a reachable marking dead,2µ  of 2BPS  with the two 

closing AND-transitions in a synchronization-deadlock. 

AND

XOR

AND

AND

XORXOR

XOR

ANDAND

XORXOR

AND

1 low

BOOLE

BOOLE
BOOLE

1 high

BOOLE

1 low

BOOLEBOOLE

BOOLEBOOLE

1 high

BOOLE

BOOLE

BOOLE

BOOLEBOOLEBOOLEBOOLE

BOOLEBOOLE

1 high

BOOLE

 

Fig. 12: BP-system 2BPS  (left) with a reachable synchronization-deadlocks dead,2µ  (right) 
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Both BP-systems 1BPS  and 2BPS  have same the skeleton, which is a safe and live T-system. But 

their high-systems are different. Fig. 13 shows the dead marking 
high

dead,2µ  of the high-

system 
high

BPS2 . 

1 token1 token

 

Fig. 13:Dead marking 
high

dead,2µ  of the high-system 
high

BPS2  

 

As a third and last example we consider the BP-system 3BPS  from Fig. 14 (left hand side). 

t_AND

XOR

XORAND

AND

XOR

XOR

AND

AND

1 low

BOOLE

BOOLE

1 high

BOOLE
BOOLE

1 high

BOOLE
BOOLE

1 low

BOOLEBOOLE

BOOLE

BOOLE

BOOLE

1 high

BOOLE

pq

t_AND

 

Fig. 14: BP-system 3BPS  (left) with a reachable synchronization-deadlock dead,3µ  (right) 

On the right of Fig. 14, there is a reachable marking dead,3µ  of 3BPS  with the closing AND-

transition ANDt  in a synchronization-deadlock. Even though 3BPS  is not high-live, its high-

system 
high

BPS3  in Fig. 15 (left hand side) is safe and live. 

p_highq_high

1 token 1 token 1 token

 

Fig. 15: High-system 
high

BPS3  (left) and marking 
high

3µ  with a frozen token at place 
highq  (right) 
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On the right side of Fig. 15 the reachable marking ( )dead
high

high ,33 : µµ =  of the high-

system 
high

BPS3  is not dead. But liveness of the high-system from Fig. 15 is not “fair”: 
high

3µ  

enables an infinite occurrence sequence which loops and moves only the token on the place highp , 

while the token on the place highq  is frozen. 

Supported by examples like those from Fig. 14 and Fig. 15 the conjecture came up that the 

existence of frozen tokens in the high-system is the decisive obstruction against liveness of a safe 

BP-system. We shall prove this conjecture in Theorem 4.6. 

3 Lifting along Petri net morphisms 
Between a BP-system ( )µ,BPGBPS =  and its derived ordinary Petri nets canonical morphisms 

exist: 

1. The morphism BPSBPS
colflat →  maps places and transitions of the flattening flatBPS  onto 

their defining token and binding elements of BPS . The inverse image of a place of BPG  has two 

token elements, while the inverse image of a transition of BPG  consists of its different binding 

elements. With the help of this morphism we identify the coloured Petri net BPS  and the ordinary 

Petri net flatBPS  with respect to their behaviour, in particular with respect to all their markings 

and occurrence sequences. 

2. The morphism skelskel
BPSBPS  →  projects token and binding elements of BPS  onto their 

respectively place and transition: 

( )( ) ( )( ) tbtskelpcpskel == :,,:,  

for a token element ( )cp,  with ( )pCc ∈  and a binding element ( )bt,  with ( )tBb ∈ . The 

morphism forgets about all colours of BPS  but keeps places, transitions and directed arcs. 

3. The morphism flatlowlow BPSBPS →  embeds the low-system into the flattening as a subnet. 

4. The morphism highhighflat BPSBPS  →  projects the flattening onto the high-system. It removes 

all low token elements and all low binding elements. 

 

In the present paper we have introduced morphisms between a BP-system and its derived ordinary 

Petri nets in an informal way. In particular, the notation highhighflat BPSBPS  →  is a shorthand 

for a morphism PNBPS
highflat  →  onto a coloured Petri net PN  with the same places, 

transitions and arcs as flatBPS , but the zero-module of token and binding elements for all places 

and transitions of the low-net. For more insight into our definition of morphisms between Petri 

nets we refer the reader to [Weh2006]. 

For a node x  from BPG  we will often use highx  as a shorthand for ( )xhigh  and skelx  as a 

shorthand for ( )xskel . For a path γ  in BPG  from a node 1x  to a node 2x  we define an induced 

path highγ  in highBPG : In highBPG  we first choose start and end ( )( )i
high

i xcolhighx 1−∈ , 2,1=i . 
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Then a unique path highγ  exists from 
high

x1  to 
high

x2  with ( )( ) γγ =− highhighcol 1 . 

Prescribing 
high

ix  is necessary if the node ix  is an XOR-transition, but often these nodes are 

implicitly determined by the context. 

A morphism between two Petri nets serves to compare both objects and to derive properties of one 

Petri net from corresponding properties of the other. These morphisms are already implicit in the 

paper of Genrich-Thiagarajan [GT1984], where they are quite often used as a guideline for the 

reasoning. For the present paper we have decided to isolate these morphisms and to state explicitly 

some of their properties in separate propositions which serve as a prerequisite for proving the 

theorems from Chap. 4 and 5. For the convenience of the reader and striving for being self-

contained we have therefore decided to reshape some proofs from [GT1984] into the new context 

of morphisms. 

The first application of the concept of a morphism in Lemma 3.1 is quite simple. 

3.1 Lemma (Deriving saveness) 

A BP-system is safe if its skeleton is safe. 

Proof. Because the morphism skelskel
BPSBPS  →  maps enabled occurrence sequences, it maps 

any reachable marking of BPS  to a reachable marking of skelBPS . If no reachable marking 

of skelBPS  marks a place with more than a single token, the same holds true for BPS , q. e. d. 

 

The lifting problem considers the converse situation: Under which assumptions does a Petri net 

morphism 21 PNPN
f

→  have the lifting property, i.e. given an enabled occurrence 

sequence 2σ  of 2PN , when does exist an enabled occurrence sequence 1σ  of 1PN  

with ( ) 21 σσ =f ? If 1σ  exists, it is named a lift of 2σ  against f . For the skeleton we will solve 

the lifting problem with Lemma 3.2, for the high-system with Corollary 3.4. 

3.2 Lemma (Lifting property of the skeleton) 

For a BP-system ( )µ,BPGBPS =  free of synchronization-deadlocks the skeleton 

morphism skelskel
BPSBPS  →  has the lifting property. In addition, the lift to high binding 

elements can be prescribed along an arbitrary path: Consider an enabled occurrence 

sequence skelσ  from skelBPS  containing a sequence 10 ... −⋅⋅ ntt  of transitions which extends to a 

path in BPS  

( )nn ptptp ,,...,,, 1100 −=γ  with places ip , ni ≤≤0 , 

and assume that the first place 0p  is high-marked at µ . Then skelσ  has a lift σ  to BPS  

containing a sequence ( ) ( )1100 ,..., −−⋅⋅ nn btbt  of high binding elements ( )ii bt , , ni <≤0 . 

Proof. We may assume that skelσ  is a single transition skelskel BPGt ∈  firing according 

to ( ) skel
skel

skel 1µµ σ
 → . All pre-places of the corresponding transition BPGt ∈  are marked. 

Because BPS  is free of synchronization-deadlocks, the marking µ  enables a firing 
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mode ( )tBb ∈  of BPS  with ( )btskelskel ,=σ . In case of an XOR-transition t  the firing mode 

can be chosen according to the demand of γ . Therefore the occurrence sequence ( )bt,:=σ  

of BPS  is a suitable lift of skelσ , q. e. d. 

 

For a bounded and strongly connected free-choice system non-deadness implies liveness. As a first 

consequence from the lifting property of the skeleton we derive a similar property also for 

BP-systems. 

3.3 Proposition (Liveness versus synchronization-deadlock) 

For a strongly connected BP-system BPS  with safe skeleton skelBPS  the following properties are 

equivalent: 

1. BPS  is high-live. 

2. No reachable marking of BPS  is dead. 

3. BPS  is free of synchronization-deadlocks and the skeleton is live. 

Proof. 21⇒  The proof is obvious, as liveness always implies non-deadness. 

32⇒  The assumption implies that at any reachable marking µ  of BPS  enables at least one 

binding element of BPG . Therefore BPS  has an occurrence sequence σ  of infinite length 

enabled at µ . It projects along skelskel
BPSBPS  →  to an occurrence sequence skelσ  with 

infinite length, which is enabled at skelµ . Because the skeleton skelBPS  is a strongly connected 

T -system, skelσ  fires each transition of skelBPS . Therefore skelµ  marks each circuit of the 

skeleton and skelBPS  is live. 

According to Lemma 3.1 BPS  is safe. Because also σ  fires each transition of BPS , no transition 

can be in a synchronization-deadlock at µ . 

13⇒  Consider a reachable marking µ  of BPS  and a given transition t  of the underlying net. 

Because the initial marking of BPS  contains at least one high-token, the same holds true for µ . 

Therefore a transition 1t  exists with a pre-place high-marked at µ . According to Lemma 1.13 a 

minimal occurrence sequence ( ) skel
skel

skel 1
1 µµ σ
 →  of skelBPS  exists with 

skel
1µ  a blocking-

marking associated to the cluster of ( )1tskel . By Lemma 3.2 the occurrence sequence 
skel

1σ  lifts 

to 1
1 µµ σ

→ , so that also 1µ  enables a high-mode of 1t . Because 
skel

1µ  is a blocking marking, 

the live T -system ( )skelskelBPG 1, µ  contains an unmarked path skelβ  from ( )1tskel  to ( )tskel . A 

minimal occurrence sequence 

skelskel
skel

21
2 µµ

σ
 →  

exists with 
skel

2µ  enabling ( )tskel  and with the transitions from skelβ  as a subsequence of 
skel

2σ . 

By Lemma 3.2 the occurrence sequence 
skel

2σ  has a lift 21
2 µµ σ

→ , so that 2µ  enables a high-

mode of t , q. e. d. 
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The essential step „ 13⇒ “ in the proof of Proposition 3.3 as well as Corollary 3.4 have already 

been demonstrated by Genrich and Thiagarajan, ([GT1984], Theor. 2.12, Lemma 3.10). 

3.4 Corollary (Lifting property of the high-system) 

If a BP-System BPS  is free of synchronization-deadlocks and has a safe and live skeleton, then 

the morphism 
highhighflat

BPSBPS  →  has the lifting property. 

Proof. Set ( )µ,BPGBPS = . In ( )highhighhigh BPGBPS µ,=  we consider an occurrence 

sequence highσ  firing according to highhigh
high

1µµ σ
 → . Without loss of generality highσ  is a 

single transition, i.e. ( )h
high high σσ =  with ( ) flat

h BPGbt ∈= ,:σ  with a transition BPGt ∈  

and a high-mode ( )tBb ∈ . For the proof we shall concatenate hσ  with a second occurrence 

sequence lσ  of flatBPS , so that hl σσσ ⋅=:  is enabled in flatBPS  and still 

satisfies ( )σσ highhigh = . Therefore we have to find lσ  as a suitable occurrence sequence of the 

low-system flatlow BPSBPS ⊂ . In case hσ  is enabled at flatµ  we can choose lσ  as the empty 

sequence. 

Otherwise ( )hhigh σ  is enabled at highµ , but hσ  lacks enabledness at flatµ . 

Then ( )btXORh ,=σ  with a closing XOR-transition BPGtXOR ∈  and a high-mode ( )XORtBb ∈ . 

At µ  one pre-place ( )XORtprep ∈  is high-marked. Lemma 3.1 implies that BPS  is safe, 

therefore no pre-place of XORt  is marked with more than one token. No pre-place of XORt  

different from p  is high-marked, because BPS  is free of synchronization-deadlocks. Eventually, 

due to the lacking enabling of ( )btXOR ,  the transition XORt  has at least one unmarked pre-place. 

In order to enable ( )btXOR ,  at a reachable marking, it is necessary to create low-tokens at any of 

the unmarked pre-places of XORt . The skeleton ( )skelskelskel BPGBPS µ,=  is live. Therefore a 

minimal occurrence sequence 
skelskel

skel

0µµ σ
 →  of skelBPS  exists with 

skel
0µ  enabling the 

transition ( ) skel
XOR

skel BPGtskelt ∈=: . Due to Lemma 3.2 the occurrence sequence skelσ  lifts to 

an occurrence sequence 0µµ σ
→ l  of BPS  with 0µ  enabling a binding 

element ( ) ( )XORXOR tBbbt ∈',', . Because the minimal occurrence sequence skelσ  does not 

contain skelt , the binding element ( )btXOR ,  does not belong to lσ . Therefore its pre-place p  

remains high-marked at 0µ . Because BPS  is free of synchronization-deadlocks, all other pre-

places of XORt  must be low-marked. We obtain ( ) ( )btbt XORXOR ,', = . 

Claim: Every firing mode of lσ  is a low-mode, i.e. lσ  belongs to the low-system lowBPS . For 

the proof note that skelσ  fires exactly those transitions with an elementary path to skelt  which is 

token-free at skelµ , and each of these transitions fires only once. Therefore lσ  contains only firing 

modes of transitions with a path to XORt  which is token-free at µ . Moreover, all binding elements 



22 

of lσ  belong to pairwise different transitions. Under the assumption that lσ  contains the 

high-mode of a transition, we select an elementary path ( )lsupp σγ ⊆  from a high-marked pre-

place of that transition to XORt . According to Lemma 3.2 we can choose the lift lσ , so that its 

firing creates a high-token on a pre-place of XORt  different from p . Therefore XORt  is in a 

synchronization-deadlock at 0µ . This contradiction proves that every binding element of lσ  is a 

low-mode. The concatenation hl σσσ ⋅=:  is an enabled occurrence sequence of flatBPS  and 

lifts highσ , because 

( ) ( ) ( ) ( ) high
hhl highhighhighhigh σσσσσ ==⋅= , q. e. d. 

 

The BP-system from Fig. 5 is safe and high-live. Its high-system in Fig. 1 as well as its skeleton 

are safe and live, too. This correlation is a general truth according to the following theorem, which 

has been essentially demonstrated by Genrich and Thiagarajan ([GT1984], Theor. 3.13) and 

constitutes one of their main results. 

3.5 Theorem (Safe and live BP-system) 

For a safe and high-live BP-system the skeleton is safe and live and the high-system is safe and 

live without frozen tokens. 

Proof. i) Denote by ( )µ,BPGBPS =  the given BP-system. Safeness of skelBPS  follows from 

Lemma 3.2, and liveness of skelBPS  follows from Proposition 3.3. Safeness of highBPS  follows 

from Corollary 3.4. Because the high-system is a safe, strongly connected free-choice system, its 

deadlock-freeness is equivalent to liveness ([DE1995], Theor. 4.31). For an indirect proof of the 

deadlock-freeness we assume that ( )highhighhigh BPGBPS µ,=  has a reachable dead 

marking high
1µ . It is generated by an occurrence sequence highhigh

high

1µµ σ
 →  which lifts 

to 1µµ σ
→  by Corollary 3.4. Because BPS  is high-live by assumption, the marking 1µ  enables 

a high binding element ( )bt,  of at least one transition BPGt ∈ . Its image ( ) highBPGbthigh ∈,  

is a transition of the high-system enabled at 
high

1µ , a contradiction. 

ii) Exclusion of frozen tokens: For an indirect proof we assume the existence of a reachable 

marking 
high

1µ  and a place ( ) highBPGphigh ∈  marked at 
high

1µ with a frozen token. Denote 

by highσ  an enabled infinite occurrence sequence of ( )highhigh ,BPG 1µ  which does not move the 

frozen token. By Corollary 3.4 it lifts to an enabled infinite occurrence sequence σ  of the 

BP-system ( )1, µBPG  which does not move the token at the place BPGp ∈ . Now ( )σskel  is an 

infinite enabled occurrence sequence of the skeleton scelBPS  with a frozen token at the 

place ( ) skelBPGpskel ∈ . But the skeleton is a safe and live T -system as already proved in part i). 

Therefore it has no frozen tokens, cf. Lemma 1.6. This contradiction shows that also the 

high-system has no frozen tokens, q. e. d. 
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3.6 Corollary (Liveness with respect to all high bindings) 

A safe and high-live BP-system is live with respect to all its high bindings. 

Proof. Denote by BPS  the given BP-system. Its high-system and skeleton are safe and live by 

Theorem 3.5. By Proposition 3.3 the high-liveness of BPS  implies that BPS  is free of 

synchronization-deadlocks. By Corollary 3.4 every enabled occurrence sequence of highBPS  lifts 

to an enabled occurrence sequence of BPS , q. e. d. 

 

The definition of home states translates literally from ordinary Petri nets to BP-systems. Here the 

existence of home states derives from the existence of blocking markings of the high-system. 

Corollary 3.7 proves a conjecture of Genrich and Thiagarajan ([GT1984], First conjecture in 

Chap. 4). 

3.7 Corollary (Existence of home states) 

Any safe and live BP-system has a home state. 

Proof. Let BPS  be the given BP-system. According to Theorem 3.5 the high-system is safe and 

live and has no frozen tokens. Due to Lemma 1.13 any cluster c  of the high-system has a unique 

blocking marking block
highµ  attached to it. It lifts to a reachable marking of BPS  according to 

Corollary 3.4. After the subsequent firing of a finite enabled occurrence sequence in the low-

system we obtain a reachable marking µ  of BPS  with ( ) block
high

high µµ =  and ( )µskel  the 

blocking marking associated to the cluster ( )cskel  in the skeleton. Evidently µ  is uniquely 

determined in BPS by these two properties. The marking µ  is a home state of BPS , because the 

blocking marking block
highµ  is a home state of the high-system and enabled occurrence sequences 

of the high-system lift to BPS , q. e. d. 

4 Deriving liveness of BP-systems 
In the present chapter we prove Theorem 4.6 as the main result of the paper. It entails the converse 

of Theorem 3.5. Because liveness of a BP-system follows from its deadlock-freeness, it suffices 

for the proof of Theorem 4.6 to focus on deadlock-freeness. Our proof will be indirect. Therefore 

we first study dead BP-systems. 

Without loss of generality we concentrate on BP-systems with binary transitions. One can replace 

an arbitrary BP-system by a BP-system with only binary transitions without changing safeness and 

liveness. This substitution can be formalized by Petri net morphisms: One uses transition 

refinements which replace a given transition with an arbitrary number of pre- or post-places by a 

T -subnet with binary transitions. Because the fibers of the morphism are no longer discrete, one 

now has to consider the general definition of Petri net morphisms (cf. [Weh2006]). If not stated 

otherwise we assume that the BP-systems of the present chapter are binary. 
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The following Lemma 4.1 derives some simple properties of a dead marking of a BP-system. Note 

that the assumptions concerning the basic components in part ii) and iii) are satisfied if the high-

system is safe. 

4.1 Lemma (Dead BP-system) 

Consider a dead BP-system BPS . 

i) The pre-place of an opening transition is unmarked. In the high-system no closing transition is 

enabled. 

ii) If the high-system is live and each of its marked places is contained in a basic component, 

then BPS  contains at least one closing XOR-transition with one high-marked and one unmarked 

pre-place (cf. Fig. 16 on the left) and BPS  contains no closing XOR-transition with two marked 

pre-places. 

iii) If the skeleton is safe and live and the high-system is live and each of its marked places is 

contained in a basic component, then the only transitions enabled in the skeleton have the 

form ( )ANDtskel  with a closing AND-transition ANDt  in a synchronization-deadlock (cf. Fig. 16 

on the right). Therefore BPS  contains at least one closing AND-transition in a synchronization-

deadlock. 

ANDXOR

1 high

BOOLE

1 token1 token

BOOLE

1 low

BOOLE

BOOLE

BOOLE

1 high

BOOLE

 

Fig. 16. Closing transitions from a dead BP-system and corresponding high-system 

 

Proof of Lemma 4.1. Set ( )µ,BPGBPS = . 

ad i) Any opening transition with a marked pre-place would be enabled, contradicting the deadness 

of BPS . Closing transitions of highBPG  correspond to closing AND-transitions of BPG . If the 

high-mode of the former were enabled, the latter would be enabled, too. 

ad ii) If highBPS  is live, then at least one transition ( ) BPGtBPSthigh high ∈∈ , , is enabled. 

According to part i) the transition t  is neither an opening transition nor a closing AND-transition. 

Therefore t  is a closing XOR-transition with at least one high-marked pre-place. The other pre-

place is unmarked: A high-token would contradict the assumption about the basic component. As 

Fig. 6 shows, in the high-system the resulting two tokens could not be separated by any 

P -component. A low-token would enable t , contradicting the deadness of BPS . 

ad iii) If skelBPS  is safe and live, then at least one transition ( ) skelBPStskel ∈  must be enabled. 

Due to part i) the corresponding transition BPGt ∈  must be a closing transition with both pre-

places marked and according to part ii) it cannot be an XOR-Transition. Therefore t  is an 

AND-transition which is not enabled, but is in a synchronization-deadlock. Note that BPS  is safe 

according to Lemma 3.1, q. e. d. 
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Our investigation of a dead BP-system is based on the two concepts of an XOR/AND-chain and of 

a deadlocking circle from Definition 4.2. 

4.2 Definition (Deadlocking circle) 

Consider a safe BP-system ( )µ,BPGBPS = . 

i) An XOR/AND-chain of BPS  leading from a closing XOR-transition XORt  to a closing 

AND-transition ANDt  is a tuple 

( )BANDXORANDXOR NttCh ,,,/ α=  

with a path α  in BPG  from XORt  to ANDt  and a basic component BN  of the high-

system highBPS , so that: 

• One pre-place ( )XORtprep ∈  is high-marked at µ  and the other pre-place from ( )XORtpre  

is unmarked. 

• The transition ANDt  is in a synchronization-deadlock at µ , i.e. one pre-place ( )ANDtpreq ∈  

is high-marked and the other pre-place from ( )ANDtpre  is low-marked. 

• The basic component BN  contains the marked place ( )high
AND

high tpreq ∈ . 

• The induced path ( )αhigh  of the high-net, which starts at the enabled high-mode 
high

XORt  

of XORt , satisfies 

( ) { }high
ANDB thighN =∩ α . 

ii) If BPS  is dead, then a deadlocking circle of size 1≥m  of BPS  is a family 

( )
1,...,0/, ,

−= miiANDXORiCh β  

of XOR/AND-chains ANDXORiCh /,  leading from XORit ,  to ANDit , , together with elementary 

token-free paths iβ  in BPG , 1...,,0 −= mi , from ANDit ,  to XORit ,1+ . A deadlocking circle is 

minimal if BPS  has no deadlocking circle of smaller size. 

 

One should note that any computation with indices from the index set { }1...,,0 −m  has to be 

understood mmodulo . 

 

q_2q_1

t_XOR

t_AND

XOR

XORAND

AND

low

BOOLE

1 high

BOOLE
BOOLE

1 high

BOOLE
BOOLE

1 token 1 token

q_1_high

t_AND_high

t_1 t_1_high

q_2_high

BOOLE
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Fig. 17. Deadlocking circle (left) and high-system (right) 

 

Fig. 17, on the left, shows a dead BP-system with a deadlocking circle of size 1=m  which is 

formed by a single XOR/AND-chain 

( )BANDXORANDXOR NttCh ,,,/ α=  

together with a token-free path β . The transition ANDt  is in a synchronization-deadlock. The 

path α  is elementary. It starts at XORt  and ends at ANDt . The elementary token-free path β  starts 

at ANDt , and ends at XORt . Fig. 17 , on the right, shows the corresponding high-system with the 

subnet generated by the nodes { }highhigh
AND

highhigh
ttqq 121 ,,,  as the basic component BN  

from ANDXORCh / . 

 

4.3 Lemma (XOR/AND-chains and T -components) 

Consider an XOR/AND-chain ( )BANDXORANDXOR NttCh ,,,/ α=  of a safe BP-system and assume 

that the high-net is well-formed and structurally free of blocking. Then each T -component of the 

high net passing through the enabled high-mode 
high

XORt  contains also the high-mode 
high

ANDt . 

Proof. We will give an indirect proof and assume the existence of a T -component TN  of the 

high-net which contains 
high

XORt  but not 
high

ANDt . The basic component BN  contains the pre-

place ( )high
and

high tpreq ∈ . Therefore it cannot contain 
high

XORt  and its marked pre-

place T
high Np ∈ . We have 

BT
high

XOR NNt −∈ , TB
high

AND NNt −∈  and ( ) { }high
ANDB thighN =∩ α , 

so that Proposition 1.10 excludes the high-net being well-formed and structurally free of blocking. 

This contradiction proves the lemma, q. e. d. 

 

The high-system from Fig. 17 (right) shows: It is necessary for the statement of Lemma 4.3 to 

assume, that the high-net is structurally free of blocking. 

The following Lemma 4.4 states a sufficient condition that a dead BP-system has a deadlocking 

circle. The existence of deadlocking circles will be the starting point in the proof of Theorem 4.6, 

where we assume that the high-system is even safe. But Lemma 4.4 will be also applied in 

Chapter 5 under the weaker assumption about the basic components. 

4.4 Lemma (Existence of deadlocking circles) 

Consider a dead BP-system ( )µ,BPGBPS =  with a safe and live skeleton and a well-formed 

high-net. Assume that the high-system is live and that each of its marked places is contained in a 

basic component. Then 

i) BPS  contains a closing AND-transition ANDt  in a synchronization-deadlock. 
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ii) Any closing AND-transition ANDt  of BPS  in a synchronization-deadlock extends to an 

XOR/AND-chain. 

iii) Some XOR/AND-chain of BPS  extends to a deadlocking circle. 

Proof. i) According to Lemma 4.1, iii) BPS  has a closing AND-transition ANDt  in a 

synchronization-deadlock. 

ii) Consider a closing AND-transition ANDt  of BPS  in a synchronization-deadlock. In the high-

system we denote by ( )high
AND

high
tpreq ∈1  the marked pre-place and by ( )high

AND
high

tpreq ∈2  

the unmarked pre-place. The place  
high

q1  is contained in a basic component BN . Because the 

high-system is live, it has a minimal firing sequence highσ , the firing of which activates 
high

ANDt  

by creating a token at 
high

q2 . Tracing the token flow due to the firing of highσ  back from 
high

q2  

eventually identifies a path BPG⊂α  with the following properties: 

• α  starts at a transition BPGt ∈  with a high-mode hight  enabled at highµ  and ends at ANDt  

• The firing of highσ  moves a token in the high-system along ( )αhigh  from a marked pre-

place ( )highhigh tprep ∈  to 
high

q2 . 

In the dead BP-system BPS  the transition BPGt ∈  must be a closing XOR-transition ttXOR =: , 

not enabled at µ . The place ( )XORtprep ∈  is high-marked. Because the marked place highp  is 

contained in a basic component, the other pre-place of XORt  is unmarked at µ . The token 

at 
high

q1  is on hold during the firing of the minimal firing sequence highσ . Because BN  is a 

basic component, we conclude ( ) { }high
ANDB thighN =∩ α . Therefore 

( )BANDXORANDXOR NttCh ,,,:/ α=  

is an XOR/AND-chain. 

iii) Due to part i) and ii) at least one XOR/AND-chain exists. We enumerate all XOR/AND-chains 

of BPS  as ANDXORiCh /, , 1...,,0 −= ri . Because the skeleton is live, each initial transition of an 

XOR/AND-chain can be reached from the final transition of the same or another XOR/AND-chain 

by an unmarked path. After possibly renumbering a subset of XOR/AND-chains we obtain a 

deadlocking circle, q. e. d. 

 

The following Lemma 4.5 states the core of the proof for Theorem 4.6. 

4.5 Lemma (Exclusion of deadlocking circles) 

Consider a BP-system BPS  with a safe and live skeleton. If BPS  has a deadlocking circle, then 

the high-net cannot be well-formed and structurally free of blocking at the same time. 

 

Before entering into the proof we will consider a particular case which serves to isolate the 

principal ideas. We assume that a deadlocking circle of size 1=m  exists, i.e. an XOR/AND-chain 
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( )BANDXORANDXOR NttCh ,,,/ α=  

with a path α  from a closing XOR-transition XORt  to a closing AND-transition ANDt  and a token-

free path β  from ANDt  to XORt . Here ANDt  is in a synchronization-deadlock and XORt  has exactly 

one high-marked pre-place ( )XORtprep ∈ , cf. Fig. 18. 

alphaalpha

pp

t_AND
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beta

beta

gamma_B

...

B

B

beta

...

gamma_B

t_AND

AND

AND

XOR

AND

AND

XOR

BOOLE

BOOLE

1 high

BOOLE

1 low

BOOLE

BOOLE

BOOLE

1 high

BOOLEBOOLE

BOOLE

1 high

BOOLE

1 low

BOOLE

BOOLE

BOOLE

1 high

BOOLEBOOLE

t_ini

t_XOR t_XOR

t_ini

 

Fig. 18: Two BP-systems with a deadlocking circle of size m=1 

 

Because the skeleton is safe and live, a basic circuit Bγ  of ( )µ,BPGBPS =  exists passing 

through p  but not through ANDt , because all pre-places of ANDt  are marked. The basic circuit 

determines in the high-system an elementary circuit 
high

Bγ . It is contained in a T -component TN , 

because the high-net is well-formed, cf. [TV1984], Chap. 5. The T -component TN  passes 

through ( )ANDthigh  by Lemma 4.3. Therefore a bridge high
B  exists within TN  from 

high
Bγ  

to ( )ANDthigh . Places in TN  do not branch. Therefore the bridge starts with an opening transition, 

which is the high-mode of an opening AND-transition init . Moreover { }iniB tB =∩γ  for the 

corresponding path B  in BPG . There are two possibilities for the token-free path β : 

• Either β  and Bγ  have no nodes in common other than XORt , cf. the left part of Fig. 18. 

Concatenating the paths B , β  and the segment of Bγ  from XORt  to init  induces in the high-

net a TP -handle on the elementary circuit 
high

Bγ , which contradicts the high-net being well-

formed. 

• Or β  and Bγ  intersect in a second node x  different from XORt , cf. the right part of Fig. 18. 

Then we obtain a token-free circuit of BPS  by concatenating the segment of Bγ  from XORt  

to x  with the segment of β  from x  to XORt , which contradicts the skeleton being live. 

Both possibilities are excluded which completes the proof for this special case. 

 

In order to prove Lemma 4.5 in the general case, we have to consider deadlocking circles of 

arbitrary size which requires some additional index notation. 
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Proof of Lemma 4.5. Because ( )µ,BPGBPS =  has a deadlocking circle, it also has a minimal 

deadlocking circle ( )
1,...,0/, ,

−= miiANDXORiCh β  of size 1≥m  with 

XOR/AND-chains ( )BiiANDiXORiANDXORi NttCh ,,,/, ,,, α= , cf. Fig. 19. 

p_0
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t_1_ANDt_0_XOR
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...
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Fig. 19. Deadlocking circle of size 2=m  

 

We argue by means of an indirect proof and assume that the high-net highBPGN =:  is well-formed 

and structurally free of blocking. 

i) Distinguishing a basic circuit: Because the skeleton skelBPS  is live and safe, a basic circuit Bγ  

of BPS  passing through the high-marked pre-place ( )XORtprep ,00 ∈  exists. It does not pass 

through any of the transitions in a synchronization-deadlock ANDit , , 1...,,0 −= mi , because both 

of their pre-places are marked. 

First claim: For every index 1...,,0 −= mi  holds 

{ }



−=

−≠∅
=∩

1

1

,0 mit

mi

XOR
iB βγ  

For the proof assume on the contrary the existence of a node iBx βγ ∩∈ , XORtx ,0≠ . 

In case 1−= mi  we obtain an unmarked circuit by concatenating the segment of Bγ  from XORt ,0  

to x  with the segment of 1−mβ  from x  to XORt ,0 . This contradicts the liveness of the skeleton. In 

case 1−≠ mi  we obtain an unmarked path from ANDmt ,1−  to XORit ,1+  by concatenating three 

single paths: Firstly 1−mβ , secondly the segment of Bγ  from XORt ,0  to x  and as third the segment 

of iβ  from x  to XORit ,1+ . Connecting ANDXORmCh /,1−  and ANDXORiCh /,1+  by the resulting path 

and skipping all XOR/AND-chains ANDXORkCh /,  with ik ≤≤0  produces a deadlocking circle of 

smaller size than the original minimal one. This contradiction proves the first claim. 

The basic circuit Bγ determines in the high-system an elementary circuit highhigh
B BPG⊆γ . 

Because N  is well-formed, there is a T -component TN  of N  with T
high

B N⊆γ  by [TV1984], 

Chap. 5. Let { }1,...,0 −∈ mi  be the maximal index with ( ) TANDi Nthigh ∈, . Such an index 



30 

exists: Because the high-net is structurally free of blocking, at least for the index 0=i  

holds ( ) TAND Nthigh ∈,0  according to Lemma 4.3. Let T
high NB ⊆  be a bridge from 

high
Bγ  

to ( ) high
BTANDi Nthigh γ−∈, . As a path within the T -component high

B  starts with a transition. 

It is the high-mode of an AND-transition init . We have { }iniB tB =∩γ  with BPGB ⊂  the 

corresponding path satisfying ( ) highBBhigh = . 

Second claim: For every index 1...,,1 −+= mij  holds ∅=∩ jB αγ . We argue by means of an 

indirect proof and assume the existence of an index { }1...,,1 −+∈ mij  and a node jBx αγ ∩∈ . 

From 

T
high

B N⊆γ , ( ) TANDj Nthigh ∉,  and ( ) ( ){ }ANDjjBj thighhighN ,, =∩ α  

we conclude that 

( ) BjTT NNxhighx ,: −∈= , ( ) TBjANDjB NNthighx −∈= ,,:  

and that the segment of ( )jhigh α  from Tx  to Bx  is disjoint to TBj NN ∩, . According to 

Proposition 1.10 the high-net cannot be well-formed and structurally free of blocking. This 

contradiction proves the second claim. 

ii) Derivation of a TP -handle on the basic circuit: With the help of the distinguished maximal 

index { }1,...,0 −∈ mi  from part i) with ( ) TANDi Nthigh ∈,  we define the concatenated path 

( ) ( ) BPGBH mmiii ⊂∗∗∗∗∗∗= −−++ 1111 ...: βαβαβ  

from init  to XORt ,0 . Due to part i) of the proof we have { }XORiniB ttH ,0,=∩γ . After possibly 

shortening H  to an elementary path, keeping fixed its start and end, we obtain in the high-net 

a TP -handle high
H  on the elementary circuit 

high
Bγ . By Theorem 1.7 this fact contradicts the 

well-formedness of the high-net and finishes the proof of the lemma, q. e. d. 

 

Note. The underlying net of the BP-systems in the statement of Theorem 4.6 and Corollary 4.7 is 

not necessarily supposed as binary. 

4.6 Theorem (Safeness and liveness of BP-systems) 

A BP-system is safe and live with respect to all its high bindings if and only if its skeleton is safe 

and live and its high-system is safe and live without frozen tokens. 

Proof. i) The statement, which assumes a safe and live BP-system, is Theorem 3.5. 

ii) To prove the reverse direction: The safeness of the skeleton implies the safeness of the 

BP-system according to Lemma 3.1. To prove its liveness with respect to all high bindings it 

suffices according to Corollary 3.6 to prove its high-liveness. For this purpose it suffices according 

to Proposition 3.3 to exclude that a reachable marking is dead. Assume on the contrary that the 

BP-system has a reachable dead marking. Then Lemma 4.4 combined with Lemma 4.5 provides a 

contradiction which proves the theorem, q. e. d. 
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The following Corollary 4.7 is due to Genrich and Thiagarajan ([GT1984], Theor. 4.10). 

4.7 Corollary (Full reachability class) 

A BP-system ( )0, µBPG  is safe and live with respect to all its high bindings iff ( )µ,BPG  is safe 

and live with respect to all its high bindings for every marking [ ]0µµ ∈  from the full reacha-

bility class of 0µ . 

Proof. Set ( )µ,: BPGBPS = . Only one direction needs an explicit proof: We assume that 0µ  is 

reachable in BPS  and that ( )0, µBPG  is safe and live with respect to all high bindings. We have 

to prove that also BPS  is safe and live with respect to all high bindings: The morphisms 

skelskel
BPSBPS  →  and highhighflat BPSBPS  →  

imply that 
skel

0µ  is reachable in skelBPS  and 
high

0µ  is reachable in highBPS . The P -coverability 

theorem for a well-formed free-choice net ([DE1995], Theor. 5.6) implies that every marking from 

the full reachability class of a safe and live marking is safe and live itself. Therefore skelBPS  as 

well as highBPS  are safe and live. By Theorem 3.5 and Lemma 1.6 the high-net highBPG  is 

structurally free of blocking. Now Theorem 4.6 implies that BPS  is safe and live with respect to 

all its high bindings, q. e. d. 

5 Live BP-systems with prescribed high-
system or prescribed skeleton 

In the present chapter we derive some implications of the main Theorem 4.6. In particular, we 

answer a question of Desel (Theorem 5.3) and prove a second conjecture of Genrich and 

Thiagarajan (Theorem 5.5). 

The following two Lemmata 5.1 and 5.2 prepare the proof of Theorem 5.3. A safe and live 

BP-system has no reachable marking with high-tokens on each of the two post-places of a binary 

opening XOR-transition. Such a marking would contradict the safeness and liveness of the high-

system, because the two induced tokens are not separable by a basic component. If one post-place 

of the opening XOR-transition is marked with a high-token, then the other post-place is either 

unmarked or marked with a low-token. Lemma 5.1 generalizes this statement. 

5.1 Lemma (Firing an opening XOR-transition) 

Consider a safe and high-live BP-system ( )µ,BPGBPS =  with a binary BP-graph BPG . Assume 

an opening XOR-transition XORt  with one of its post-places high-marked at µ  and the other 

unmarked. Then no elementary path from the unmarked post-place exists, which is marked at µ  

with a high-token and contains no other token. 

Proof. We denote by ( )XORtprep ∈  the pre-place of XORt , by ( )XORtpostq ∈  the post-place, 

which is high-marked at µ , and by ( )XORtpostr ∈  the other post-place, cf. Fig. 20. For an indirect 
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proof of the lemma we assume an elementary path µα  from r  to a place µu  and assume 

that µα is marked at µ  with a high-token on µu  and contains no other token. 

i) We claim that no transition from ( ) ( )rpostqpost ∪  is a closing AND-transition: Otherwise a 

closing AND-transition ( ) BPGsposttAND ⊂∈  exists with a place { }rqs ,∈ , cf. Fig. 20. 

rq

p

XOR

BOOLE

1 high

BOOLE

BOOLE

AND

BOOLE t_AND

t_XOR

 

Fig. 20. Closing AND-transition ( )sposttAND ∈  in case qs =  

 

In the high-net highBPG  we select a P -component PN  passing through 
high

ANDt  but 

omitting highs  and highp , and we select a T -component TN  passing through highp  but 

omitting highs  and 
high

ANDt . We apply Proposition 1.10 with 

PT
high

T NNpx −∈=: , TP
high

ANDP NNtx −∈=:  

and α  the elementary path from Tx  to Px . Because α  is disjoint to PT NN ∩  the high-net 

cannot be well-formed and structurally free of blocking. This fact contradicts Theorem 3.5. and 

proves the claim. 

ii) We consider the blocking marking 
high
qµ  associated to the cluster ( )highqcl  in the high-system. 

According to Lemma 1.13 there exists a minimal occurrence sequence 
high
qσ  which fires 

according to 

high
q

high
high
q µµ

σ
 → . 

According to Corollary 3.4 it lifts to BPS . By possibly firing the low-system the lift can be 

extended to an occurrence sequence qσ  of BPS  firing according to 

q
q µµ

σ
→ , 

so that ( ) high
qqhigh µµ =  and ( )qskel µ  is the blocking marking of ( )( )qskelcl  in the skeleton. Due 

to the safeness of the high-system no high-mode of XORt  belongs to 
high
qσ . And due to the 

safeness of the skeleton, ( )XORtskel  does not belong to ( )qskel σ . Because the skeleton skelBPG  is 

a T -net, the token content of the path µα  can increase only by firing XORt  and decrease only by 

firing a transition from ( )µupost . No firing mode of XORt  belongs to qσ , therefore the token 

content of µα  cannot increase during firing qσ . The flow of the high-token of µα  due to the 
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firing of qσ  extends µα  to a path qα  from r  to a place qu , so that qα  is marked at qµ  with a 

high-token at qu  and contains no other token. 

iii) Secondly, we consider the blocking marking 
high
pµ  associated to the cluster ( )highpcl  in the 

high-system. We select a minimal occurrence sequence 
high
pσ  of the high-system firing according 

to 

high
p

high
q

high
p µµ

σ
 → . 

Analogously to part ii) it lifts to an occurrence sequence pσ  of BPS  firing according to 

pq
p µµ

σ
→  with ( ) high

pphigh µµ = . 

At pµ  we fire that high-mode of XORt  which creates a marking 1µ  of BPS  that high-marks q  

and low-marks r . At 1µ  the path qα  contains a low-token at r . Because ( )qpost  does not 

contain a closing AND-transition according to part i), the marking ( )1µhigh  of the high-system 

is the blocking marking 
high
qµ  of ( )highqcl . After possibly firing the low-system at 1µ  we obtain a 

reachable marking 2µ  of BPS  with ( ) high
qhigh µµ =2  and ( )2µskel  the blocking marking 

of ( )( )qskelcl  in the skeleton. Because the skeleton skelBPG  is a T -net, we conclude that at 2µ  

the path qα  is either token-free or contains at least one low-token. 

iv) We apply Lemma 1.13: The uniqueness of blocking markings of the high-system and of the 

skeleton implies 
highhigh

q 2´µµ =  and ( ) ( )2µµ skelskel q = . Therefore 2µµ =q . On the other hand, 

the token content of qα  at qµ  is different from its token content at 2µ . This contradiction 

completes the proof of the lemma, q e. d. 

 

5.2 Lemma (Retrograde lifting) 

Consider a BP-system ( )µ,BPG  which is safe and live with respect to all its high bindings. 

Assume that BPG  is binary. If a marking 
high

0µ  of the high-net enables an occurrence sequence 

( )µµ σ
high

high
high  →0 , 

then a marking 0µ  of BPG  and an occurrence sequence 

µµ σ
→0  exist with ( ) high

high 00 µµ =  and ( ) highhigh σσ = . 

Proof. We denote by highBPGN =:  the high-net. Without loss of generality we may assume 

that highσ  is a single transition highhigh t=σ . There exists a well-determined binding 

element ( ) BPGbt ∈,  with ( ) hightbthigh =, . For the token changes ( )highσµ∆  due to the firing 

of highσ  and ( )σµ∆  due to the firing of ( )bt,:=σ  in BPG  holds 
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( )( ) ( )highhigh σµσµ ∆=∆ . 

i) If t  is an opening AND-transition or an arbitrary closing transition, all its post-places 

from ( )tpost  are high-marked at µ  and we have ( ) 0>∆− σµµ . Therefore 

( )σµµµ ∆−=:0  

is a marking of BPG  and provides a lift with the necessary properties. 

ii) If t  is an opening XOR-transition XORtt = , we denote by p  the pre-place of XORt  and by q  

the post-place of XORt  that is high-marked at µ . The other post-place r  of XORt  possibly lacks a 

low-token. Therefore not necessarily ( ) 0>∆− σµµ , this expression may fail to define a marking 

of BPG . If r  lacks a low-token at µ , we have to fire the low-system in reverse direction until 

reaching a low-token at r . This can be achieved by firing the skeleton in reverse direction from 

the marking ( )µskel  and then making sure that it lifts to the reverse of the low-system lowBPS . 

The skeleton skelBPS  is a safe and live T -system. By reversing the orientation of its arcs - but 

keeping transitions, places and markings - we obtain the reverse skeleton which is a safe and live 

T -system, too. In the reverse skeleton we select a minimal occurrence sequence enabled at µ , the 

firing of which enables the transition ( )XORtskel . By Lemma 5.1 no elementary path exists 

in BPS  which starts at r  and contains at µ  exactly one high-token and no other token. Therefore 

the occurrence sequence lifts to the reverse of BPS , q. e. d. 

 

The next Theorem 5.3 answers in the positive a question of Desel
2
. 

5.3 Theorem (Live BP-system with prescribed high-system) 

Any restricted free-choice system which is safe and live without frozen tokens is the high-system 

of a BP-system which is safe and live with respect to all its high bindings. 

Proof. We denote by ( )high
NFCS 0, µ=  the given free-choice system. For the proof we may 

assume that all transitions of N  are binary - also similar for places of N . 

i) Catching all high-tokens within a T -component: We choose a T -component TN  of N . 

According to Proposition 1.11 a reachable marking 
high

1µ  of FCS  exists which activates TN . 

The component TN  contains all tokens of 
high

1µ , because FCS  has no frozen tokens. 

ii) Adding low-tokens: The restricted free-choice net N  extends to a unique binary 

BP-graph BPG  with high-net NBPGhigh = : The BP-graph BPG  has a closing (opening) 

XOR-transition for the two pre-transitions (post-transitions) of a branched place of N  and 

an AND-transition for every branched transition of N . We parametrize by 

{ }T
high NandcircuitelementaryBPG ⊆⊆=Γ γγγ ::  

                                                           

2
 Personal communication 15.9.2006. 
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the set of all elementary circuits in TN . Each of these circuits highγ  is marked at 
high

1µ  and a 

subset of basic circuits covers TN . We now follow the iterative procedure in the proof of Genrichs 

Theorem ([DE1995], Theor. 3.20). Using the Petri net morphisms from Chapter 3 on the level of 

the underlying nets 

highhighflat BPGBPG  → , skelskel
BPGBPG  →  

we shall now produce a certain safe and live marking skelµ  of the skeleton skelBPG  without 

changing the marking of any elementary circuit ( ) Γ∈= γγγ ,: skelskel . These circuits cover 

( )( )T
skel

T NhighskelN 1: −= , 

the subnet of skelBPG  corresponding to high
T BPGN ⊆ . To start the iteration we lift the 

marking 
high

1µ  from highBPG  to the well-defined marking h,1µ  of high-tokens on BPG  

with ( ) high
hhigh 1,1 µµ = . We extend ( )hskel ,1µ  to a live marking 

skel
1µ  of skelBPG  by adding a 

token to each place from 
skel

T
skel NBPG − . The marking does not change the marking of any 

elementary circuit Γ∈γγ ,skel . If the marking 
skel

1µ  is not safe already, a reachable marking 

of ( )skelskelBPG 1, µ  exists which marks a certain place of skelBPG  with two or more tokens. This 

place must belong to 
skel

T
skel NBPG − , because 

skel
TN  is covered by basic circuits. After 

removing all but one token from the place in question the resulting marking is still live, but the 

token content has decreased for at least one circuit not contained in 
skel

TN . We iterate this step 

until the resulting live marking skelµ  of skelBPG  is also safe. 

iii) Extending a certain reachable marking of FCS  to BPG : We lift the restriction 
skel

T
skel N|µ  

to the well-defined marking hµ  of high-tokens on BPG  with ( ) skel
T

skel
h Nskel |µµ = . There 

exists a well-defined marking highµ  on TN  with ( ) high
hhigh µµ = . The two markings T

high
N|1µ  

and highµ  agree on all P -flows of TN , because they have the same token content on all 

elementary circuits Γ∈γ . Therefore the marking highµ  is a reachable marking 

of ( )T
high

T NN |, 1µ  according to the Reachability Theorem for live T -systems ([DE1995], 

Theor. 3.21). Because TN  is a T -component of N , the marking highµ  is reachable in ( )high
N 1, µ  

as well as in the original system FSC . Likewise we lift the restriction 
skel

T
skelskel NBPG −|µ  to 

the well-defined marking lµ  of low-tokens on BPG  with ( ) skel
T

skelskel
l NBPGskel −= |µµ . The 

combined marking 

lh µµµ +=:  
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defines the BP-system ( )µ,BPG . Its high-system ( )highN µ,  is safe and live without frozen 

tokens, and its skeleton ( )skelskelBPG µ,  is safe and live. Therefore ( )µ,BPG  is safe and live with 

respect to all its high bindings according to Theorem 4.6. 

To complete the proof of the theorem we apply Lemma 5.2. It implies the existence of a 

marking 0µ  of BPG , so that FCS  is the high-system of the BP-system ( )0,: µBPGBPS =  which 

is safe and live with respect to all high bindings according to Corollary 4.7, q. e. d. 

 

The following Theorem 5.5 answers affirmatively a further conjecture of Genrich and Thiagarajan 

([GT1984], Second conjecture in Chap. 4). The theorem proves for a BP-graph with a high-net 

which is well-formed and structurally free of blocking: Any safe and live marking of the skeleton 

extends to a safe and high-live marking of the BP-graph. Theorem 5.5 is a companion to 

Theorem 5.3, where the marking of the high-net was prescribed and one had to add low-tokens. 

For proving Theorem 5.5 we will do the converse: We shall partition the tokens of the skeleton 

into high- and low-tokens, so that the high-tokens provide a safe and live marking of the high-net. 

First, we easily find a live marking of the high-net. Then, step by step, the simple Lemma 5.4 

converts certain high-tokens to low-tokens, so that the resulting marking of the high-net stays live 

but eventually becomes safe. This iteration is a refined version of the algorithm in the standard 

proof of Genrichs theorem (cf. [DE1995], Theor. 5.10). 

5.4 Lemma (Removing tokens from live free-choice systems) 

Consider a live marking µ  of a well-formed free-choice net N . For any place p  of N  which is 

marked at µ  holds the equivalence: 

• Removing a token from p  results in a marking which is live, too. 

• No basic component of ( )µ,N  passes through p . 

Proof. A marking of a well-formed free-choice net is live if and only if it marks every 

P -component. We denote by µ  the marking which results from µ  by removing a token at p . 

i) => ii) If µ  is live, then every P -component PN  containing p  is marked at µ . Therefore PN  

is marked at µ  with at least two tokens. 

ii) => i) Consider an arbitrary P -component PN . If PN  does not contain p , then µ  and µ  

mark PN  alike. In particular, PN  is marked at µ . If PN  contains p , then µ  marks PN  with at 

least two tokens, because p  is not contained in any basic component of µ . Therefore µ  

marks PN  with at least one token, q. e. d. 

 

Note. Consider a bounded and live free-choice system. Even if each marked place is contained in a 

basic component, the free-choice system is not necessarily safe. 
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5.5 Theorem (Live BP-system with prescribed skeleton) 

Consider a BP -graph BPG  and assume that its high-net is well-formed and structurally free of 

blocking. Then any safe and live marking skelµ  of the skeleton skelBPG  is the skeleton of a 

marking µ  of BPG  which is safe and live with respect to all its high bindings: 

( ) ( )skelskelskel BPGBPG µµ ,, = . 

Proof. We denote by highBPGN =:  the high-net of BPG . 

i) We consider the marking 0µ  of BPG  which marks each place of BPGp ∈  with a high-token if 

the corresponding place ( ) skelBPGpskel ∈  from the skeleton is marked at skelµ : 

( )






=
otherwisetokenno

atmarkedphigh
p

skelskel µ
µ :0  

By definition we have ( ) ( )skelskelskel
BPGBPG µµ ,, 0 = . The induced marking 

high
0µ  of the high-

net is live, because it marks each P -component PN  with at least one token: Due to being 

a P -component PN  contains at least one circuit. The induced circuit in the skeleton is marked, 

because skelµ  is live. 

ii) By induction we construct a finite sequence of markings ( )
nii ,...,0=µ  of BPG  with 

• 
skel

iµ  is a reachable marking of ( )skelskelBPG µ,  

• ( )high
iN µ,  is live and 

• For 1≥i  the token count from all P -components PN  of the high-net ( )∑
PN

P
high

i Nµ  is 

strictly decreasing with respect to i . 

For the induction step assume that iµ  has already been constructed. Because 
skel

iµ  is a reachable 

marking of ( )skelskelBPG µ, , the system ( )skel
i

skelBPG µ,  is safe, too, and Lemma 3.1 implies the 

safeness of ( )iBPG µ, . If the high-system ( )high
iN µ,  is not safe, then an enabled occurrence 

sequence highσ  of ( )high
iN µ,  exists, the firing of which creates a marking with at least two tokens 

at a certain place of N . Because ( )iBPG µ,  is safe, the occurrence sequence highσ  has no lift 

against ( ) ( )high
i

high
i NBPG µµ ,,  → . Therefore ( )iBPG µ,  has a reachable dead marking deadi,µ  

according to Corollary 3.4. Because 
high

deadi,µ  is a reachable marking of ( )high
iN µ,  the two 

markings 
high

deadi,µ  and 
high

iµ  induce the same token count on any P -component of N . We 

distinguish two cases. 

Case 1: A high-token at deadi,µ  marks a place BPGp ∈  with Nphigh ∈  not contained in any 

basic component of ( )high
iN µ, . We define 1+iµ  as the marking of BPG  which results 
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from deadi,µ  by converting the high-token at p  into a low-token. Then ( )high
iN 1, +µ  is live 

according to Lemma 5.4 and its token count from all P -components has decreased in comparison 

to ( )high
iN µ, . For the skeleton we have 

skel
deadi

skel
i ,1 µµ =+ . Therefore 

skel
i 1+µ  is a reachable 

marking of ( )skel
i

skelBPG µ,  and a posteriori of ( )skelskelBPG µ, , which finishes the induction step. 

Case 2: Each high-token of deadi,µ  marks a place BPGp ∈  with Nphigh ∈  contained in a basic 

component of ( )high
iN µ, . According to Lemma 4.4 a deadlocking circle of ( )high

iN µ,  exists, 

which contradicts Lemma 4.5 and excludes the second case. 

Evidently, the iteration stops and holds a marking nµ  of BPG  so that ( )high
nN µ,  is safe and live 

and 
skel

nµ  is a reachable marking of ( )skelskelBPG µ, . 

iii) Theorem 4.6 implies that ( )nBPG µ,  is safe and live with respect to all high bindings. Because 

the skeleton is cyclic an enabled occurrence sequence skelσ  of ( )skel
n

skelBPG µ,  exists, the firing 

of which creates the initial marking skelµ . Due to Lemma 3.2 the occurrence sequence skelσ  lifts 

against ( ) ( )skel
n

skelskel
n BPGBPG µµ ,,  →  to an enabled occurrence sequence of ( )nBPG µ, . Its 

firing creates a marking µ  of BPG  which is safe and live with respect to all high bindings 

of BPG  and satisfies ( ) ( )skelskelskel BPGBPG µµ ,, = , q. e. d. 

 

In general, the first step in the proof of Theorem 5.5 creates too many high-tokens and the second 

step converts the redundant ones into low-tokens. It suffices to start with a T -component TN  and 

to high-mark only those places from ( ) BPGNhigh T ⊆−1  which are marked in the skeleton. One 

obtains a live marking of TN , which is live also as a marking of the high-net due to Corollary 1.9. 

But some high-tokens of ( )TNhigh 1−  possibly have to be converted to low-tokens. This is 

exemplified in Fig. 21: The outer circuit, which generates in the high-system an 

enabled T -component, is marked with a low-token, too. 

XORXORXOR

XOR XORXOR

BOOLE
BOOLE

BOOLE

BOOLE

1 low

BOOLE

BOOLE

1 high

BOOLE

BOOLE

BOOLE

 

Fig. 21: High-live BP-system with enabled T -component and a low-token 

 

5.6 Corollary (Well-formedness of BP-graphs) 

A BP-graph is well-formed iff its high-net is well-formed and structurally free of blocking. 
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Proof. Denote by BPG  the given BP-graph. 

i) If BPG  is well-formed then a marking µ  exists, such that the BP-system ( )µ,BPGBPS =  is 

safe and high-live. Due to Theorem 3.5 the high-system highBPS  is save and live without frozen 

tokens. Hence highBPG  is well-formed and structurally free of blocking according to Lemma 1.6. 

ii) Assume highBPG  being well-formed and structurally free of blocking. We choose a safe and 

live marking of the skeleton. Due to Theorem 5.5 it extends to a safe and high-live marking 

of BPG , q. e. d. 

 

Note. In part ii) of the proof for Corollary 5.6 one could also apply first Genrichs Theorem for live 

and bounded free-choice systems and then use Theorem 5.3 instead of Theorem 5.5. 

6 Perspectives 
According to Theorem 4.6 BP-systems and restricted free-choice systems without frozen tokens 

are equivalent models for the control flow of well-behaved processes. One could therefore doubt if 

further studies of BP-systems are of any value. BP-systems are coloured Petri nets. Therefore they 

are more complex than free-choice systems. They introduce a second token colour to explicitly 

demonstrate the omission of actions. But as Theorem 4.6 shows, low-tokens are dispensable when 

well-behavedness occurs. 

Our argument in favour of BP-systems goes into the opposite direction: Due to the importance of 

BP-systems for the semantics and analysis of EPCs it is helpful to generalize their type of logical 

transitions and to take more general Boolean systems into consideration. A characterization of safe 

and high-live Boolean systems with AND, XOR and OR-connectors is desirable. Fig. 2 shows the 

ordinary net generated by the high-places and high-transitions of a closing OR-transition. Neither 

the net is free-choice nor it is capable of representing the Boolean logic of the closing OR-

connector of an EPC. 

The present paper exemplified how to study Petri nets using morphisms. The morphisms in the 

context of the ordinary Petri net flatBPS  from Chapter 3 have their analogue within the context of 

coloured Petri nets. The coloured Petri net BPS  is an extension 

10 PNBPSPN
highlow
 →→  

of a coloured Petri net 1PN  by another coloured Petri net 0PN . The Petri net 1PN  is isomorphic 

to a free-choice system, while 0PN  is isomorphic to a T -system. In [Weh2006] we have started 

the study of topological and algebraic aspects of morphisms between arbitrary coloured Petri nets. 
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