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Problems 01

1. A topological space X is a Hausdorff space if any two distinct points x 6= y ∈ X
have disjoint neighbourhoods. Show:

i) For a topological space X the following two statements are equivalent:

• X is a Hausdorff space.

• The diagonal
∆ := {(x,x) ∈ X×X : x ∈ X}

is a closed subset of the Cartesian product X×X .

ii) A compact subset of a Hausdorff space is closed.

iii) A closed subset of a compact space is compact.

2. Consider a continuous and bijective map f : X → Y between two Hausdorff
spaces. Show:

i) If X is compact then f is a homeomorphism.

ii) One cannot omit the assumption of compactness in part i).

3. Consider a continuous surjective map p : X → Y between topological spaces.
Show the equivalence of the following two properties:

i) The space Y carries the quotient topology with respect to p.

ii) Any map g : Y → Z with a topological space Z is continuous if the
composition g◦ p is continuous.

4. Consider a group G and a topology T on G. Show the equivalence of the
following two statements:

1



1. (G,T ) is a topological group.

2. The map
G×G→ G,(x,y) 7→ x · y−1,

is continuous with respect to T .

————
Discussion: Tuesday, 2.5.2017, 12.15 p.m.
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5. Consider a topological group G and a subgroup H.

• Determine a topological space X - canonically attached to G and H - and a
group operation

φ : G×X → X

with isotropy group Gx = H at a distinguished point x ∈ X .

• Show: The operation φ is transitive and any two isotropy groups

Gx1 ,Gx2 ,x1,x2 ∈ X ,

are conjugate subgroups of G.

• Show: The G-space (G,X) is homogeneous.

6. i) Consider a topological group and a subgroup H ⊂ G. Show the equivalence of
the following two properties:

• The subgroup H ⊂ G is open.

• The quotient G/H is a discrete topological space.

ii) Find a topological group G, carrying a non-discrete topology, with an open
subgroup H ⊂ G of index [G : H] = 2.

7. i) Exotic subgroup: Consider the topological group G := R/Z. Find a subgroup

H :=< α >( G,

generated by a single element α , with closure

H = G.

ii) Exotic quotient group: Consider the indiscrete topology Tind on R. Determine
an isomorphism of topological groups
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f : R/Q '−→ (R,Tind).

Hint: Extend the element v0 = 1 ∈ R to a Hamel basis (vi)i∈N∪̇I of the Q-vector
space R. Set v−1 := 0 and consider the Q-linear map

f : R→ R,vi 7→

{
vi−1 i ∈ N
vi i ∈ I

8. Consider a topological group G and a subgroup H which is locally closed at the
neutral element e ∈ H, i.e. a neighbourhood V of e in G exists such that V ∩H is
closed in V .

Show: H ⊂ G is closed.

————
Discussion: Tuesday, 9.5.2017, 12.15 p.m.
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LMU MÜNCHEN
SUMMER TERM 2017 Joachim Wehler

Problems 03

9. Consider a connected topological group G and a normal subgroup H ⊂ G, which
considered as a subspace carries the discrete topology.
Show: H is contained in the center of G

Z(G) := {g ∈ G : g · x ·g−1 = x f or all x ∈ G}.

10. For the base field K= R and K= C the n-dimensional projective spaces are
defined as

Pn(K) := (Kn+1 \{0})/∼

with respect to the equivalence relation

x∼ y := ∃λ ∈K∗ : λ · x = y.

Show: For any n≥ 2 exist embeddings

O(n−1,R) ↪→ SO(n,R) and U(n−1) ↪→ SU(n)

of closed subgroups which induce homeomorphisms

SO(n,R)/O(n−1,R)' Pn−1(R) and SU(n)/U(n−1)' Pn−1(C).

11. Consider a locally connected space B, two covering projections

pi : Ei→ B, i = 1,2,

and a continous map f : E1→ E2 such that the following diagram commutes

E1 E2

B

f

p1 p2

Show:

i) If f is surjective then f is a covering projection.
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ii) If B is connected and locally path-connected, and E2 is connected, then f is
surjective.

12. i) Show: The fundamental group π1(G,e) of a path-connected topological
group G is Abelian.

ii) Find a connected topological space X with a non-Abelian fundamental
group π1(X ,∗).

Hint: ad i) Consider on π1(G,e) both the multiplication ∗ from the catenation of
homotopy classes and the multiplication · from the topological group G. Prove: On
the unit square a continous map Φ : I2→ I2 exists with

• Φ(−,0) is a parametrization of the diagonal and
• Φ(−,1) is a suitable parametrization of the path along the bottom edge of I2

followed by the path along the right edge of I2.

For two paths α1,α2 define α12(t1, t2) := α1(t1) ·α2(t2). Then α12 ◦Φ is a
homotopy from α1 ·α2 to α1 ∗α2. By using the other two edges of I2 show
analogously α1 ·α2 ' α2 ∗α1.

————
Discussion: Tuesday, 16.5.2017, 12.15 p.m.
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13. Consider the defining projection

p : S1→ P1(R).

i) Determine the fundamental group π1(P1(R),∗).

Hint: Consider the restriction of p to the closed upper hemicircle D1 ⊂ S1.

ii) How does the induced map

π1(p) : π1(S1,∗)→ π1(P1(R),∗)

relate to the exact homotopy sequence of the continuous fibre bundle p?

14. Consider the continuous left SO(3,R)-operation

φ : SO(3,R)×S2→ S2,(A,z) 7→ A · z,

and the orbit map of e1 ∈ S2, the first canonical basis vector of R3,

ψ := φe1 : SO(3,R)→ S2.

Prove:

i) A continuous section against ψ , i.e a continuous map

σ : S2→ SO(3,R)

with ψ ◦σ = idS2 , induces a homeomorphism

SO(3,R)' S2×SO(2,R).

ii) The existence of a section σ in part i) induces an isomorphism of groups

π1(SO(3,R),∗)' π1(SO(2,R),∗).
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15. It is impossible to “comb a hedgehog” (German: Satz vom Igel). More
precisely: Consider a continuous map

f : S2→ R3

such that the scalar product in R3 satisfies

< x, f (x)>= 0

for all x ∈ S2. Then at least one point x0 ∈ S2 exists with

f (x0) = 0.

For an indirect proof of the claim assume f (x) 6= 0 for all x ∈ S2 and show:

i) The orbit map ψ of the point e1 ∈ S2 belonging to the canonical
left SO(3,R)-operation on S2 has a section.

ii) The result of part i) implies a contradiction.

16. Show:

i) Any continous map f : S2→ S2 has a point x0 ∈ S2 with

• f (x0) = x0 (fixed point)
• or f (x0) =−x0 (antipodal point)

Hint: Define a continous map S2→ R3 with the properties from Problem 15.

ii) On the topological space S2 no topological group structure exists.

Hint: For an indirect proof consider a sequence (xn)n∈N with xn 6= e and
limn→∞ xn = e. Consider the maps

hn : S2→ S2,y 7→ xn · y.

————
Discussion: Tuesday, 23.5.2017, 12.15 p.m.
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17. Consider a surjective morphism

f : G→ H

of topological groups. Assume G is σ -compact and H is locally compact.

Show: f is an open map.

Hint: Consider a suitable group operation.

18. Consider an analytic K-manifold. For any open subset U ⊂ X denote by O(U)
the ring of K-analytic functions defined on U .

For U ⊂ X open a derivation on U is a K-linear map

D : O(U)→ O(U)

satisfying the product rule

D( f ·g) = D( f ) ·g+ f ·D(g)

for all f ,g ∈ O(U). An analytic vector field on X is a family

D = (DU )U⊂X open

of derivations
DU : O(U)→ O(U),U ⊂ X open,

such that for any pair of open sets V ⊂U ⊂ X the following diagram commutes

O(U) O(U)

O(V ) O(V )

DU

DV

ρU
V ρU

V
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Here
ρ

U
V : O(U)→ O(V )

denotes the restriction of analytic functions.

Show: An analytic vector field D on X defines for each point x ∈ X a tangent vector

D(x) ∈ TxX

according to the diagram

O(U) O(U)

OX ,x OX ,x

OX ,x/mx

DU

Dx

εx
D(x)

valid for any open neighbourhood U of x. Here

O(U)→ OX ,x, f 7→ [ f ],

denotes the canonical map to the local ring. And

εx : OX ,x→ OX ,x/mx 'K, [ f ] 7→ f (x),

denotes the evaluation at the point x ∈ X .

Hint. Verify the following steps: i) The map Dx does not depend on the choice of
the neighbourhood U . ii) The map Dx satisfies the product rule. iii) The map D(x)
satisfies the product rule.

Note. The following problems 19 and 20 illustrate the broad scope of the concept
of local rings. The problems do not relate to Lie group theory.

19. Spectrum: Consider the set

P := {p : p⊂ Z prime ideal}

of all prime ideals of the ring Z and the subsets

V (n) := {p ∈ P : (n)⊂ p},n ∈ Z.
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i) Show: The elements V (n),n ∈ Z, are the closed sets of a topology T on P
(Zariski topology).

The topological space
Spec Z := (P,T )

is named the spectrum of the ring Z.

ii) Which points p ∈ Spec Z determine a closed singleton {p} ⊂ Spec Z?

iii) Determine the closure {η} ⊂ Spec Z of the singleton determined by the
generic point η := (0) ∈ Spec Z.

20. Local ring: Set
X := Spec(Z).

i) For each p ∈ X define

OX ,p := Zp := {q ∈Q : q =
n
m

with n,m ∈ Z,m /∈ p}.

Determine the unique maximal ideal mp ⊂ Zp and the residue field

k(p) := Zp/mp

of the local ring OX ,p.

ii) Set
K :=

⋃̇
p∈Spec(Z)

k(p).

Show: Each integer n ∈ Z defines a function, equally named,

n : X → K,p 7→ n(p) := [n] ∈ k(p).

iii) Show: For each p ∈ X holds

OX ,p = {q ∈Q : q =
n
m

with m(p) 6= 0}

and
mp = {q ∈ OZ,p : q =

n
m

with n(p) = 0}

the set of non-units of OX ,p.

————
Discussion: Tuesday, 30.5.2017, 12.15 p.m.
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21. Show: Any Lie group is a Hausdorff space.

22. Show: For an analytic map
f : X → Y

between two analytic manifolds the graph

Γ ( f ) := {(x, f (x)) ∈ X×Y : x ∈ X} ⊂ X×Y

is a submanifold of the product.

23. (Partial holomorphy and Cauchy integral) Consider a continuous function

f : D→ C

on an open set D⊂Kn, which is holomorphic in each variable separately, i.e. for
any index j = 1, ..,n and for any arbitrary but fixed point a = (a1, ...,an) ∈ D the
restriction

f |D j(a) : D j(a)→ C

is holomorphic on the 1-dimensional open slice

D j(a) := {z ∈ C : (a1, ...,a j−1,z,a j+1, ...,an) ∈ D}.

Prove:

i) The function f satisfies the Cauchy integral formula, i.e. for
any w = (w1, ...,wn) ∈ D a polydisc around w

∆(w;r) := {(ζ1, ...,ζn) ∈ Cn : |ζ j−w j|< r j f or j = 1, ...,n}

with a suitable polyradius

r = (r1, ...,rn),r j > 0 f or j = 1, ...,n,

exists, such that for all z ∈ ∆(w;r)
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f (z) =

(
1

2πi

)n

·
∫

∂∆(w;r)

f (ζ ) dζ1 · ... ·dζn

(ζ1− z1) · ... · (ζn− zn)

ii) f is holomorphic.

24. (Maximum principle) i) Consider a holomorphic function

f : G→ C

defined on a domain G⊂Kn. Assume that | f | attends a local maximum, i.e. a
point z0 ∈ G and a neighbourhood U ⊂ G of z0 exist such that

| f (z)| ≤ | f (z0)|

for all z ∈U .

Show: The function f is constant, i.e. f (z) = f (z0) for all z ∈ G.

Hint: First use the Cauchy formula from Problem 23 to generalize the mean value
formula in the case of one variable

| f (z0)|=
1

2π
·
∫ 2π

0
| f (z0 + r · e2πiφ )|dφ .

Secondly, prove that f is constant in a neighbourhoof of z0. Eventually apply -
without proof - the identity theorem for holomorphic functions: Two holomorphic
functions, defined on a common domain, are equal if they coincide on an
non-empty open subset.

ii) Show: Any holomorphic function defined on a connected compact complex
manifold is constant.

————
Discussion: Tuesday, 13.6.2017, 12.15 p.m.
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25. Consider a Lie group H and an analytic H-principal bundle p : X → Y. For two
bundle charts of p

φi : p−1(Ui)→Ui×H and φ j : p−1(U j)→U j×H

assume the existence of a map

h ji : Ui∩U j→ H

satisfying

φ j ◦ (φi|(Ui∩U j)×H)−1 : (Ui∩U j)×H→ (Ui∩U j)×H,(y,h) 7→ (y,h ji(y) ·h).

Show: The map h ji is analytic.

26. Consider a finite-dimensional associative K-algebra A with product

m : A×A→ A,(x,y) 7→ x · y.

Show: The automorphism group of A

Aut(A) := {φ : A→ A|φ a K− linear automorphism with φ(x · y) = φ(x) ·φ(y)}

with respect to the multiplication

Aut(A)×Aut(A)→ Aut(A),(φ1,φ2) 7→ φ1 ◦φ2.

is a K-matrix group.

Hint: Consider the Lie group G := GL(n,K) of automorphism of the K-vector
space underlying A. On the K-vector space X := Bil(A×A,A) of K-bilinear maps
define a suitable G-left operation

φ : G×X → X

with Gm = Aut(A).
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27. Consider a Lie group G, a group H, and a surjective group homomorphism

π : G→ H.

Show:

i) The following two properties are equivalent.

• On H exists a Lie group structure such that π is a morphism of Lie groups.

• The subgroup ker π ⊂ G is a Lie subgroup.

Assume that the properties of part i) are satisfied. Show:

ii) The Lie group structure of H is uniquely determined.

iii) Any morphism f : G→ G′ of Lie groups with ker π ⊂ ker f induces a unique
morphism of Lie groups

f : H→ G′

such that the following diagram commutes

G G′

H

f

π f

28. Consider the analytic manifold X := M(2×2,C), the Lie
group H := GL(2,C), and the analytic G-right operation

φ : X×G→ X ,(A,B) 7→ B−1 ·A ·B.

Show: i) The equivalence relation R⊂ X×X induced by φ is not closed.

ii) No analytic structure exists on X/R such that the canonical
projection p : X → X/R is analytic.

iii) The analytic map

f : X → C2, A 7→ (trace A,det A),

factorizes via p, i.e. a unique map f : X/H→ C2 exists such that the following
diagram commutes

15



X C2

X/R

f

p f

Hint for part i) and ii): Consider matrices At :=
(

1 t
0 1

)
, t ∈ C.

————
Discussion: Tuesday, 20.6.2017, 12.15 p.m.
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29. Show for all n≥ 1:

i) The group SU(n) is simply connected.

ii) The group SL(n,C) is simply connected.

Hint: Use part i).

30. Show: πn(S1) = 0 for all n≥ 2.

Hint: Use the universal covering projection of S1.

31. Consider the continuous map

p : S3 = {(z0,z1) ∈ C2 : |z0|2 + |z1|2 = 1}→ P1(C), p(z0,z1) := (z0 : z1).

Here the notation

(z0 : z1) := [(z0,z1)] (Homogeneous coordinates)

denotes the equivalence class from P1(C) := (C2 \{0})/C∗.

Show: The map p is a continuous principal bundle S1 ↪−→ S3 p−→ P1(C) (Hopf
bundle).

32. Show:

i) π2(S2)' Z.

Hint: Use P1(C)' S2.

ii) The Hopf bundle is not a product bundle, in particular there is no continuous
section s : P1(C)→ S3 against p.

————
Discussion: Tuesday, 27.6.2017, 12.15 p.m.

17



DEPARTMENT OF MATHEMATICS LIE GROUPS
LMU MÜNCHEN
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33. i) Show: For n ∈ N∗ the element F := (F1, ...,Fn)
> ∈m< X ,Y >⊕n with

variables X = (X1, ...,Xn),Y = (Y1, ...,Yn), defined by

Fj(X ,Y ) := X j +Yj, j = 1, ...,n,

is a formal group structure on m< X >⊕n.

ii) Show: The element

F(X ,Y ) := X +Y +XY ∈m< X ,Y >

is a formal group structure on m< X >.

iii) Compute the inverse of the element

X ∈m< X >⊕n

in case i), and the inverse of
X ∈m< X >

in case ii).

iv) Compute
[−,−]F : Kn×Kn→Kn

in case i), and
[−,−]F : K×K→K

in case ii).

34. For an n-dimensional K-Lie group G denote by F ∈K< X ,Y >⊕n its formal
group law with respect to a chart around e ∈ G, and by [−,−]F the corresponding
Lie bracket.

i) Find a Lie group G with the formal group structure F from Exercise 33, part i).

ii) Find a connected Lie group G1 with the formal group structure F from
Exercise 33, part ii).

18



iii) Find a connected Lie group G2, which is not homeormorphic to the Lie
group G1 from part ii), but has the same Lie bracket [−,−]F . How are G1 and G2
related?

35. Consider a formal group structure F on m< X >⊕n and denote by

[−,−]F : Kn×Kn→Kn

the derived K-bilinear map.

i) Show: The Hall identity implies

0 = [X , [Y,Z]F ]F +[Y, [Z,X ]F ]F +[Z, [X ,Y ]F ]F +O(4).

ii) Prove the Jacobi identity: 0 = [X , [Y,Z]F ]F +[Y, [Z,X ]F ]F +[Z, [X ,Y ]F ]F .

36. Show:

i) For any cyclic group H := Z/nZ, n ∈ N∗, exists a Lie group G
with π1(G,e) = H.

Hint: Consider a suitable quotient by the group of n-th roots of unity.

ii) For any finitely-generated Abelian group H exists a Lie group G
with π1(G,e) = H.

————
Discussion: Tuesday, 4.7.2017, 12.15 p.m.
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37. Vector fields on open subsets of Kn: Consider an open subset X ⊂Kn. Show:

i) For any vector field A = (AU )U⊂X open on X the derivation AX has the form

AX =
n

∑
j=1

AX (z j) ·
∂

∂ z j

Here AX (z j) denotes the result of applying the derivation AX to the analytic
function z j ∈ OX (X).

Hint: Use the fact that an analytic vector field A is determined by all its tangent
vectors A(x) ∈ TxX ,x ∈ X .

ii) The map
Θ(X)→ OX (X)⊕n,A 7→ (AX (z1), ...,AX (zn))

is an isomorphism of K-vector spaces. In particular, the analytic vector fields on X
correspond bijectively to the derivations

n

∑
j=1

a j ·
∂

∂ z j
, a j ∈ OX (X), j = 1, ...,n.

38. Vector fields on manifolds: Consider the complex projective space P1. Show:

i) P1 is a compact analytic manifold.

ii) The complex vector space of analytic vector fields Θ(P1) is isomorphic to the
vector space Pol2 ⊂ C[Z0,Z1] of homogenous polynomials of degree 2 in two
variables:

Pol2 'Θ(P1).

Hint: Consider the covering U = {U0,U1} of P1 by the two open sets

Ui := {(z0 : z1) ∈ P1 : zi 6= 0}, i = 0,1.

20



For i = 0,1 choose two charts φi : Ui→C with φ1 = 1/φ0 on U0∩U1. According to
Exercise 37 an analytic vector field θ = (θU )U⊂P1 open ∈Θ(P1) is determined by a
pair (θ0,θ1) with two derivations

θi = θUi = fi ·
d

dφi
, i = 0,1.

How do the analytic functions f0 and f1 relate to each other on U0∩U1?
Conversely, for a homogeneous polonomial P(Z0,Z1) ∈ Pol2 set

f0(z0 : z1) := P(1,z1/z0) and f1(z0 : z1) :=−P(z0/z1,1).

iii) Determine the dimension of the vector space Θ(P1).

39. The Lemma on Low order approximation from the lecture states:

A formal group structure
F ∈m< X ,Y >⊕n

satisfies the following approximations:

1. If U,V,U ′,V ′ ∈m< X >⊕n and U ′ =U +O(2),V ′ =V +O(2) then

B(U ′,V ′)−B(V ′,U ′) = B(U,V )−B(V,U)+O(3)

2. If U,V ∈m< X >⊕n then

F(U,V )−F(V,U) = B(U,V )−B(V,U)+O(3)

3. If U,U ′ ∈m< X >⊕n and U ′ =U +O(2) then

U ′(F(X ,Y ))−U ′(F(Y,X)) =U(F(X ,Y ))−U(F(Y,X))+O(3).

Prove part 1) and part 2).

40. The Lemma on the Independence of the Lie algebra structure from the lecture
states:

Consider two Lie groups G and G′, a morphism f : G→ G′ of Lie groups, and two
charts φ : U →Kn and φ ′ : U ′→Kn′ around the neutral elements
with f−1(U ′)⊂U . Denote by

F ∈m< X ,Y >⊕n,F ′ ∈m< X ′,Y ′ >⊕n′

the induced formal group structures and by
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[−,−](F) and [−,−](F ′)

the induced Lie brackets on the tangent spaces respectively TeG and Te′G′. Then

Te f : (TeG, [−,−](F))→ (Te′G
′, [−,−](F ′))

is a morphism of Lie algebras.

Justify each of the following eight steps from the first part of the proof of the
Lemma: If g1 denotes the linear part of the analytic map

g := φ
′ ◦ f ◦φ

−1 ∈m< X >⊕n′

induced by the commutative diagram

U U ′

φ(U) φ ′(U ′)

f

φ ' φ ′ '
g

then

[g1(X),g1(Y )]F ′ := Step 1
B′(g1(X),g1(Y ))−B′(g1(Y ),g1(X)) = Step 2

B′(g(X),g(Y ))−B′(g(Y ),g(X))+O(3) = Step 3
F ′(g(X),g(Y ))−F ′(g(Y ),g(X))+O(3) = Step 4

g(F(X ,Y )−g(F(Y,X))+O(3) = Step 5
g1(F(X ,Y ))−g1(F(Y,X))+O(3) = Step 6

g1(F(X ,Y )−F(Y,X))+O(3) = Step 7
g1(B(X ,Y )−B(Y,X))+O(3) =: Step 8

g1([X ,Y ]F)+O(3)

————
Discussion: Tuesday, 11.7.2017, 12.15 p.m.
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41. Consider a Lie group G with multiplication

m : G×G→ G,m(x,y) := x · y

and inverse
σ : G→ G,x 7→ σ(x) := x−1.

Show for the tangent maps:

i)
T(e,e)m : Lie G×Lie G→ Lie G,(A,B) 7→ A+B

ii)
Teσ : Lie G→ Lie G,A 7→ −A.

Hint: Consider a formal group law of G.

42. Prove: The functor Lie is faithful on the subcategory of connected Lie groups,
i.e. for any two morphisms

f1, f2 : G→ H

of connected Lie groups the equation

Lie f1 = Lie f2

implies f1 = f2.

43. Exponential of matrices. Consider the Lie group

G := GL(n,K)

and the Lie algebra
gl(n,K) := (M(n×n,K), [−,−]).

Show:

23



i) gl(n,K) = Lie GL(n,K).

Hint: Consider a suitable formal group law.

ii) The exponential map

exp : gl(n,K)→ GL(n,K)

equals the e-function

e : gl(n,K)→ GL(n,K),A 7→ eA.

44. Show: A Lie group G has no small subgroups.

Hint: Choose neighbourhoods V of 0 ∈ Lie G and U of e ∈ G such
that exp|V : V →U is an analytic isomorphism. Consider a subgroup H
with H ⊂ exp(V/2). An arbitrary but fixed h ∈ H has the form h = exp v1,
and h2 = exp(v2). How do v1 and v2 relate? Iterate the argument.

————
Discussion: Tuesday, 18.7.2017, 12.15 p.m.
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45. Consider a morphism
f : G→ H

of Lie groups and a Lie-subgroup H ′ ⊂ H.

Show: The pre-image
G′ := f−1(H ′)

is a Lie subgroup of G with Lie algebra

Lie G′ = (Lie f )−1(Lie H ′).

Hint: You may consider a suitable group operation G× (H/H ′)→ (H/H ′) with
isotropy group GeH ′ = G′.

46. Consider a Lie group G. Show:

i) The following diagram commutes

G GL(Lie G)

Lie G gl(Lie G)

Ad

exp

ad

e

,

i.e. for all x ∈ Lie G
Ad(exp x) = ead x ∈ GL(Lie G).

ii) For all x,y ∈ Lie G:

exp x · exp y · (exp x)−1 = exp(ead x(y)) ∈ G.

Hint: Consider the commutative diagram which defines Ad g, g ∈ G, as the tangent
map of φg. Apply part i).
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47. For fixed α ∈ R consider the 1-parameter group

j : R→ T 2, t 7→ [(t,α · t)],

of the real torus
T 2 := R2/Z2.

The image H := j(R) is a line in T 2 with slope α . Show for irrational α ∈ R\Q:

i) The map j is an injective immersion.

ii) The subgroup H ⊂ T 2 is not a Lie subgroup.

Hint: For an indirect proof you may represent H as a homogeneous space with
respect to the group operation

φ : R×H→ H, (t,h) 7→ j(t)+h.

48. The center of a Lie group G is defined as

Z(G) := {g ∈ G : g ·h = h ·g f or all h ∈ G}.

The center of a Lie algebra L is defined as

Z(L) := {x ∈ L : [x,y] = 0 f or all y ∈ L}.

Assume G connected and show:

i) The center of G is the kernel of the adjoint representation:

Z(G) = ker [Ad : G→ GL(Lie G)].

In particular Z(G)⊂ G is a Lie subgroup.

ii) The Lie algebra of the center of G is the center of the Lie algebra of G, i.e.

Lie (Z(G)) = Z(Lie G).

iii) The Lie group G is Abelian if and only if its Lie algebra Lie G is Abelian.

————
Discussion: Tuesday, 25.7.2017, 12.15 p.m.
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Selected Solutions

1 i) Assume X to be Hausdorff. The diagonal ∆ ⊂ X×X is closed if its
complement is open. A point

(x,y) ∈ (X×X)\∆

satisfies x 6= y. According to the Hausdorff property of X disjoint neighbourhoods
U of x and V of y exist. In particular

U×V

is a neighbourhood of (x,y) in X×X with

U×V ⊂ (X×X)\∆ .

Thus the complement of ∆ is open and ∆ is closed.

Concerning the opposite direction: Assume ∆ to be closed. Then its complement is
open: Any point

(x,y) ∈ (X×X)\∆ ,

i.e. satisfying x 6= y, has a neighbourhood, without restriction a product
neighbourhood U×V , disjoint from ∆ . Then U is a neighbourhood of x, V is a
neighbourhood of y and

U ∩V = /0.

Therefore X is a Hausdorff space.

ii) Consider a Hausdorff space X and a compact subset K ⊂ X . We claim: The
complement X \K is open.

Consider an arbitrary but fixed point x ∈ X \K. For any point y ∈ K a pair of
disjoint neighbourhoods U(y) of y and V (y) of x exist. The family

U(y)y∈K

is an open covering of K. Compactness of K implies the existence of a finite
subcovering
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K ⊂
n⋃

ν=1

U(yν).

The finite intersection

V :=
n⋂

ν=1

V (yν)

is a neighbourhood of x with K∩V = /0. Therefore X \K is open and K is closed.

iii) Consider a compact Hausdorff space X and a closed subset A⊂ X . Consider an
open covering U of A. Define the open set U := X \A and consider the open
covering

U ∪{U}

of X . Compactness of X provides the existence of a finite subcovering. It contains a
finite subcovering U ′ ⊂U of A. Therefore A is compact.

8 . We choose a symmetric neighbourhood V =V−1 of e in G with V ∩H closed
in V . We consider an arbitrary but fixed point x ∈ H and claim x ∈ H:
Because xV ∩H 6= /0 a point

y ∈ xV ∩H

exists. Then
x ∈ yV−1 = yV.

By translation, H ⊂ G is locally closed at any point of H, in particular at the
point y ∈ H. In particular, yV is a neighbourhood of y with

y(V ∩H) = yV ∩H = yV ∩HyV

the closure taken with respect to yV .

We obtain
x ∈ yV ∩H ⊂ (yV ∩H)∩ yV = yV ∩HyV

= yV ∩H,

in particular x ∈ H.

11 . See the book “Edwin Spanier: Algebraic Topology”: Chap. 2, Section 5,
Lemma 1 and subsequent reference.

12 . i) (Due to Robert Bruner): Consider the unit square I× I

28



(0,1) (1,1)

(0,0) (0,1)

t

l

b

r∆

.

Choose a homotopy which deformes a parametrization of the diagonal ∆ to a
parametrization of a path consisting of the bottom edge b followed by the right
edge r, fixing the endpoints of ∆ :

Φ = (Φ1,Φ2) : I× I→ I× I,

i.e.
Φ(t,0) = ∆(t, t) := (t, t) ∈ I× I

Φ(t,1) =

{
(2t,0) if t ≤ 1/2
(1,2t−1) if t ≥ 1/2

Φ(0,τ) = (0,0),Φ(1,τ) = (1,1).

Define the continuous map

α12 : I× I→ G,(t1, t2) 7→ α1(t1) ·α2(t2).

Then the continuous map
α12 ◦Φ : I× I→ G

satisfies

•
(α12 ◦Φ)(t,0) = α12(t, t) = α1(t) ·α2(t) = (α1 ·α2)(t)

•

(α12 ◦Φ)(t,1) = α12(Φ1(t,1),Φ2(t,1)) = α1(Φ1(t,1)) ·α2(Φ2(t,1)) ={
α1(2t) ·α2(0) if t ≤ 1/2
α1(1) ·α2(2t−1) if t ≥ 1/2

}
= (α1 ∗α2)(t)

•
(α12 ◦Φ)(0,τ) = α12(Φ(0,τ)) = α12(0,0) = e

•
(α12 ◦Φ)(1,τ) = α12(Φ(1,τ)) = α12(1,1) = e

As a consequence
α1 ·α2 ' α1 ∗α2.
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Choosing in the above argument a homotopy Φ ′ which deformes a parametrization
of the diagonal ∆ to a parametrization of the left edge l followed by the top edge t,
fixing the endpoints of ∆ , proves

α1 ·α2 ' α2 ∗α1.

Because α1,α2 are arbitrary we obtain

α1 ·α2 ' α1 ∗α2 ' α2 ·α1

which proves that π1(G,e) is Abelian, q.e.d.

16 . i) Define the continuous map

h : S2→ S2,h(x) := x× f (x) (vector product).

According to Problem 15) a point x0 ∈ S2 exists with h(x0) = 0. As a consequence

x0‖ f (x0),

i.e. either f (x0) = x0 or f (x0) =−x0.

ii) Assume a topological group structure on S2 and denote by e ∈ S2 the neutral
element. Choose a sequence (xn)n∈N with xn ∈ S2,xn 6= e for all n ∈ N and

lim
n→∞

xn = e.

For each n ∈ N define the continous map

hn : S2→ S2,y 7→ xn · y.

If an index n ∈ N and a point yn exist with

hn(yn) = yn, i.e. xn · yn = yn

then xn = e, which has been excluded. Therefore part i) implies for each n ∈ N

yn · xn =−yn.

Compacteness of S2 allows to assume the existence of

y0 := lim
n→∞

yn.

Then on one hand
lim
n→∞

xn · yn = e · y0 = y0,

and on the other hand
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lim
n→∞

xn · yn =−yn =−y0,

a contradiction.

17 . Consider the group operation

φ : G×H→ H,(g,h) 7→ f (g) ·h.

The group operation is transitive with

ker f = Ge

the isotropy group of e ∈ H. The induced map

φe : G/ker f → H

is continuous, bijective and open due to the assumptions. Due to the assumption it
is a homeomorphism, in particular an open map. If

π : G→ G/ker f

denotes the canonical projection then

f = φe ◦π : G→ H

is the composition of open maps, therefore open itself.

18 . i) Independence of Dx results from the following commutative diagram:

O(U) O(U)

O(V ) O(V )

OX ,x OX ,x

DU

DV

Dx

ρU
V ρU

V

This diagram has to be applied with V ⊂ (U1∩U2) in the case of two
neighbourhoods U1 and U2 of the point x ∈ X .

ii) By definition Dx([ f ]) ∈ OX ,x := [D( f )]. The product rule

DU ( f ·g) = DU ( f ) ·g+ f ·DU (g) ∈ O(U)
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implies
Dx([ f ] · [g]) = Dx([ f ]) · [g]+ [ f ] ·Dx([g]) ∈ OX ,x

iii) The evaluation map

D(x)([ f ]) = ε(D(x)([ f ])) = D(x)([ f ]) ∈K

applied to the product rule from part ii) gives

D(x)([ f ] · [g]) = εx((Dx)([ f ] · [g])) = εx(Dx([ f ]) · [g]+ [ f ] ·Dx([g])) =

= εx(Dx([ f ])) · εx([g])+ εx([ f ]) · εx(Dx([g])) =

= D(x)([ f ]) ·g(x)+ f (x) ·D(x)([g]) ∈K.

22 . Consider the commutative diagram

Γ ( f )

X Y
f

γ prY

with the injective map
γ : X → Γ ( f ),x 7→ (x, f (x)).

Equip Γ ( f )⊂ X×Y with the subspace topology. Then γ is a homeomorphism with
inverse map

prX |Γ ( f ) : Γ ( f )→ X .

We transfer the analytic structure from X to Γ ( f ) via j and obtain an analytic
manifold Γ ( f ). It remains to show that the composition

j := [X
γ−→ Γ ( f ) ↪−→ X×Y ]

is an immersion. The tangent map

Tx j =
(
1

Tf

)
has rank Tx j = dimxX . Therefore the tangent map is injective.

24 . i) For a holomorphic function g of one variable the Cauchy formula in polar
coordinates reads

g(z) =
1

2πi
·
∫
|ζ−w|=r

g(ζ ) dζ

ζ − z
=

1
2π
·
∫ 2π

0
g(z+ r · e2πiφ )dφ
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One obtains

|g(z)| ≤
1

2π
·
∫ 2π

0
|g(z+ r · e2πiφ )|dφ .

If |g| attends a local maximum at z0 then for small r > 0

|g(z0)| ≤
1

2π
·
∫ 2π

0
|g(z0 + r · e2πiφ )|dφ ≤

1
2π
·
∫ 2π

0
|g(z0)|dφ = |g(z0)|

or

|g(z0)|=
1

2π
·
∫ 2π

0
|g(z0 + r · e2πiφ )|dφ

If for at least one ζ := z0 + r · e2πiφ holds

|g(ζ )|< |g(z0)|

then the same inequality also holds in a neighbourhood of ζ . As a consequence

|g(z0)|=
1

2π
·
∫ 2π

0
|g(z0 + r · e2πiφ )|dφ <

1
2π
·
∫ 2π

0
|g(z0)|dφ = |g(z0)|,

a contradiction. Therefore
|g(z)|= |g(z0)|

in a neighbourhood of z0.

The preceding argument from one variable extends to the Cauchy formula for
several variables. It shows: If | f | attends a local maximum at z0, then | f | is constant
in a neighbourhood of z0. In particular

| f |2 = f · f

is constant in a neighbourhood of z0. If f (z0) = 0 then by assumption also f (z) = 0
in a neighbourhood of z0.

Therefore we assume f (z0) 6= 0. Taking the partial derivatives for j = 1, ...,n shows

∂

∂ z j
( f · f ) =

∂ f
∂ z j
· f + f ·

∂ f
∂ z j

= 0

or
∂ f
∂ z j
· f = 0,

which implies
∂ f
∂ z j

= 0

in a neighbourhood of z0. As a consequence f is constant in a neighbourhood of z0.
The identity theorem implies that f is constant in G.
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ii) A holomorphic function f on a compact manifold assumes the maximum of its
value because | f | is a continuous function. The result now follows from part i).

28 . i) For any t 6= 0 the pair

rt :=
((

1 1
0 1

)
,

(
1 t
0 1

))
∈ R,

but

lim
t→0

rt =

((
1 1
0 1

)
,

(
1 0
0 1

))
/∈ R.

Therefore R⊂ X×X is not closed.

ii) Assume on the contrary that an analytic structure on X/R with the required
properties exists. Then any singleton in X/R would be closed. Therefore also

p−1
((

1 1
0 1

))
⊂ X

would be closed. But according to part i) the orbit of the matrix
(

1 1
0 1

)
) is not

closed, a contradiction.

iii) We have
f (A1) = f (A2) ⇐⇒ (A1,A2) ∈ R.

Therefore f is well-defined and uniquely determined.

29 . Similar to the proof of Corollary 2.33, part 1).

32 . i) The long exact homotopy sequence of the Hopf bundle contains the section

π2(S3)→ π2(S2)−→ π1(S1)→ π1(S3)

Because
π2(S3) = π1(S3) = 0 and π1(S1) = Z

we obtain π2(S2) = Z.

ii) Short proof (S. Hirscher): If the Hopf bundle were trivial it would induce a
homeomorphism S3 ' S2×S1. The latter induces an isomorphism

π1(S3,e)' π1(S2,e)×π1(S1,e),

a contradition because π1(S3,e) = {e} but π1(S1,e)' Z.
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Proof using a section: Assume that the Hopf bundle p has a section s : S2→ S3.
Consider the map

p◦ s = idS2 : S2→ S2.

On one hand, because π2 is a functor we have

π2(idS2) = idπ2(S2) : Z→ Z

using π2(S2) = Z from part i). On the other hand, because π2(S3) = 0 the map s is
homotopic to a constant map. Therefore also idπ2(S2) is homotopic to a constant
map, which implies π2(idS2) = 0, a contradiction.

36 . i) For n≥ 1 consider the group of n-th roots of unity.

µn := {exp(
2πi
n
· k) ∈ C∗ : k = 0, ...,n−1}

and the short exact sequence of Lie group morphisms

{e}→ µn
j−→ SU(n)→ G := SU(n)/µn→{e}.

Here
j : µn −→ SU(n),eiφ 7→ eiφ ·1.

The corresponding long exact homotopy sequence contains the section

{e}= π1(SU(n),e)→ π1(G,e)→ π0(µn) = µn→ π0(SU(n),e) = {e}

and proves
π1(G,e)' µn ' Zn.

ii) Any finitely generated Abelian group is a finite product

H = ∏
i∈I

Hi

of cyclic groups Hi, i ∈ I. For each i ∈ I choose a Lie group Gi with fundamental
group π1(Gi,e) = Hi - according to part i) - or Gi = S1 if Hi = Z. Then

G := ∏
i∈I

Gi

is a Lie group with

π1(G,e) = π1(∏
i∈I

Gi,e) = ∏
i∈I

π1(Gi,e) = H.

37 . i) Consider a vector field A ∈Θ(X) and define the derivation
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BX :=
n

∑
j=1

AX (z j) ·
∂

∂ z j

and its restrictions
BU := BX |U,U ⊂ X open.

We claim A = B ∈Θ(X): It suffices to prove for all x ∈ X the equality of tangent
vectors

A(x) = B(x) ∈ TxX .

On one hand, the tangent vector A(x) has the form

A(x) =
n

∑
j=1

α j ·
∂

∂ z j

∣∣∣∣∣
z=x

with coefficients
α j = A(x)(z jx) ∈K;

here z jx ∈ OX ,x denotes the germ of the analytic function z j. On the other hand,

B(x) =
n

∑
j=1

(AX (z j))(x) ·
∂

∂ z j

∣∣∣∣∣
z=x

.

The equality
A(x)(z jx) = (AX (z j))(x) ∈K

results from the commutative diagram, which defines A(x) by choosing a
representative for the germ of an analytic function. The equality proves

A(x) = B(x).

As a consequence A = B.

ii) The map
Θ(X)→ OX (X)⊕n,A 7→ (AX (z1), ...,AX (zn))

is well-defined and K-linear.

The map is injective:
If A = (AU )U⊂X open and A(z j) = 0 for all j = 1, ...,n, then AX = 0 according to
part i). For all j = 1, ...,n: For any open subset U ⊂ X

AU (z j|U) = AX (z j)|U = 0.

Therefore A(x)(z j) = 0 for all x ∈ X . Using the power series expansion of a
germ f ∈ OX ,x around x ∈ X we obtain Ax = 0. Therefore A = 0.

The map is surjective: An arbitrary n-tuple (A1, ...,An) ∈ OX (X)⊕n has the
pre-image A := (AU )U⊂X open with
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AU :=
n

∑
j=1

(A j|U) ·
∂

∂ z j

48 . i) Claim ker Ad ⊂ Z(G): Consider g ∈ ker Ad. Then

Lie φg = Ad g = id.

The morphism of Lie groups φg is uniquely determined by its tangent map.
Therefore we have φg = idG, i.e. g ∈ Z(G).

Claim Z(G)⊂ ker Ad: If g ∈ Z(G) then φg = idG. As a consequence

Lie φg = Ad g = id,

i.e. g ∈ ker Ad.

ii) Claim Z(Lie G)⊂ Lie (Z(G): Consider X ∈ Z(Lie G), i.e. for all t ∈K

[ad tX : Lie G→ Lie G] = 0.

From Problem 46 results

Ad exp(tX) = exp(ad tX) = exp(0) = idG.

As a consequence g := exp(tX) satisfies

Teφg = id

or
φg = idG,

i.e. for all t ∈K
exp(tX) ∈ Z(G).

Due to the characterisation of Lie(Z(G)) we obtain

X ∈ Lie(Z(G)).

Claim Lie(Z(G))⊂ Z(Lie G): Consider X ∈ Lie(Z(G)). Then exp(tX) ∈ Z(G) for
all t ∈K, i.e. for all t ∈K,g ∈ G,

exp(tX) ·g · exp(tX)−1 = g.

In particular, for arbitrary Y ∈ Lie G we have according to Problem 46, part ii)

exp(tX) · exp(Y ) · exp(tX)−1 = exp(Y ) = exp(ead tX (Y )).

Because the exponential map is a local isomorphism we obtain for small t ∈K and
also Y ∈ Lie G sufficiently small:
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Y = ead tX (Y )

which implies (ad tX)(Y ) = 0 by comparing coefficients with respect to t.
Therefore

ad X = 0

i.e.
X ∈ Z(Lie G).

iii) Assume G Abelian. Then φg = id for all g ∈ G, hence Ad g = id for all g ∈ G.
Part i) implies Z(G) = G. And part ii) implies

Lie G = Lie Z(G) = ker ad,

i.e.
0 = ad : Lie G→ gl(Lie G).

i.e. Lie G Abelian.

For the opposite direction assume Lie G is Abelian. Then

0 = ad : Lie G→ gl(Lie G),

which implies
Ad g = id ∈ GL(Lie G)

for all g ∈ G according to the commutative diagram

G GL(Lie G)

Lie G gl(Lie G)

Ad

exp

ad

e

because the morphism of Lie groups Ad is uniquely determined by its tangent map

ad = Lie Ad.

The equation Ad g = idGL(Lie G) implies φg = idG because φg is uniquely
determined by its tangent map Ad g. As a consequence, each g ∈ G belongs
to Z(G), i.e. G is Abelian.
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