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1. Consider the canonical map
n:CI\{0} =P, (z0,21) — (20 :21)-
i) Show that 7 is open.

ii) Conclude that the topological space P! is second countable.

2. Without using the corresponding result from the lecture show by explicit

calculation
oPHY=C

i.e. all holomorphic functions on P! are constant.

Hint. For a holomorphic function f € &(P') consider the Taylor expansions
of fo¢ j’l , j =0,1, with respect to the standard atlas of P.

3. Use the result &'(X) = C for a compact Riemann surface X to conclude
Liouville’s theorem: Every bounded entire function is constant.

4. Assume n > 1 and consider a polynomial
f@)="+a-7" " +..+ani z+a, €C[g.
i) Represent f as a non-constant holomorphic map
P! - P

ii) Use a result from the lecture to show that f has a zero.

Discussion: Problem session on Monday, 21.10.2019, no submission
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5. 1) Show: Any fractional linear transformation

B az+b
cz+d

f2):

with a matrix

A= <ch Z) € GL(2,C)

is a meromorphic function on C and extends uniquely to a holomorphic map
f:P' =P
ii) Determine the value f(co) of the holomorphic map from part i).

iii) For which matrices A € GL(2,C) holds f = idp1?

6. Show: The group Aut(C) of holomorphic automorphisms of the complex plane
is the group of all affine-linear maps

C—C,z—~az+b,acC", beC.
Hint: You may show first that any holomorphic automorphism f satisfies

lim | ()| = e

7—ro0

Then conclude that f is a polynomial.

7. Consider an arbitrary Riemann surface X. For each open set U C X set
PBU) :={f :U — C| f holomorphic and bounded}.
For the presheaf % defined as

AB(U), U C X open,
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with the canonical restrictions show:

The presheaf A satisfies the first sheaf axiom, but not the second.

8. Let X be topological space and .% a presheaf of Abelian groups on X. Prove the
equivalence of the following two conditions:

i) The presheaf .% is a sheaf.

ii) For each open U C X and for each open covering (U;);c; of U the following
sequence of Abelian groups is exact:

0 Z) ST[ZW) 5 [ 2winu),

iel i,jel
i.e. a is injective and im o = ker 3. Here
a(f) == (fi)i with f; := f|U;

and

B((fi)i) :== (fij)ij with fi; := (f; — fi)|lUiNU;.

Discussion: Monday, 28.10.2019
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5 .1) A fractional linear map

a-z+b ab
fz) = card’ (C d) € GL(2,C),

is a meromorphic function on C. Accordingly it extends to a holomorphic map

f:C—P.
We have
) _a+(b/z) Jajc c#0
}g{lof(z) e+ (dfz) {oo c=0

Hence the function further extends to a holomorphic map
f:P' P!

ii) According to part i)

iii) Claim:
. a( «
f=idp <= A= (00),516((2 .
az+0
Apparently, —— =z. Assume forallz € C
0+a

B az+b_
n cZ—!—d_Z

(@)

Then
e f(0)=b/d=0 = b=0

o flo) = = c=0

e f(1)=1 = a=danda#0.
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6 . i) We claim: Any biholomorphic map
f:C=C

satisfies

lim | ()| = e

Z—roo
We give two different proofs.

e Open neighbourhoods of oo are the complements of compact subsets. Assume
an open neighbourhood of the form

V := C\ Dg(0).
For any R > 0 the inverse image
f~1(Dr(0))cC
is compact because the inverse map f~! is continuous. Hence
/™" (Dr(0)) C Dg, (0)
for suitable R; > 0. Hence
f(C\Dg,(0)) C C\Dg(0), ie. f(U)CV,

with -
U :=C\ Dg, (0)

an open neighbourhood of e, which proves the claim.

o (Idea: J. Kruse) We first exclude that the isolated singularity o is an essential
singularity of f: Otherwise the Casorati-Weierstrass theorem implies for a
neighbourhood of oo

V:=C\K
with compact
KcCC,K#0,
that
fv)ycc

is dense. After choosing an open neighbourhood U C C of 0 with
unv=~0

openess of f implies:
0£fU)cCC

is open. Hence

FU)Nfv)#0



which contradicts f being bijective. Secondly, Liouville’s therorem implies that
the function f is not bounded, because f is not constant. As a consequence, the

isolated singularity is a pole, which proves the claim.

il) f is a linear polynomial: The substitution w := 1/z implies
8:C" = C, gw):=f(1/w) = f(2),

satisfies

lim g(w) = oo.
w—0

Hence w = 0 is a pole of g, hence for suitable k € N

=

s =Y a2

n=—k

As a consequence

o

f(Z) = Z Cn-Z "

n=—,

Holomorphy of f implies ¢, =0 for alln > 1:

k
f(Z) = Z Cn ,Z"l
n=0

is a polynomial of degree at most = k. Biholomorphy of f implies degree = 1.



Problems 03 7

DEPARTMENT OF MATHEMATICS RIEMANN SURFACES

LMU MUNCHEN

WINTER TERM 2019/20 Joachim Wehler
Problems 03

9. Consider two tripel (z1,22,z3) and (w1, wz,w3), each with pairwise distinct
points from P!, Then exists a unique fractional linear transformation f satisfying
for j=1,2,3

fzj) =wj.

Hint: First show that one may restrict to (w1, wa,w3) = (0, 1,00).

10. The group Aut(PP!) of holomorphic automorphisms of P! or Mobius
transformations is isomorphic to the group

SL(2,C)/{xid}
under the isomorphism
SL(2,C)/{%id} = Aut(P")
induced from

Z4b
SL(2,C) — Aut(P1), (j Z) o %.

11. Let X be a topological space.

i) Consider a sheaf .% of Abelian groups on X, an open set U C X and a
section f € .% (U). Show the equivalence:

f=0cZU) < !/ (f)=0¢c .F, forallxcU.
ii) For two sheaf morphisms
F L Fad 75 7,
show: If for an open set U C X and for all x € U the morphisms of stalks satisfy
0=[grofc: Fix— Foxl

then the morphisms on the level of sections satisfy



0=gvofv:F%#(U)— F#(U).

12. 1) For a topological space (X,.7) and a family Z of open subsets of X prove
the equivalence of the following two properties:

e The family 4 is a basis for .7, i.e. each open set U C X is the union of

elements from 4.

e For each open set U C X and each point x € U exists an element B from % with

xeBCU.

ii) Let X be a set and # a family of subsets of X with the following property:

e For each pair B, B, € % and for each x € B| N B; exists an element B from %
with
x€BC B NB;.

Show: The family
BU{0tU{X}

is a basis for a topology on X.

Discussion: Monday, 4.11.2019
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9 .1) W.lo.g. we assume
(WI;W27W3) = (07 1’00)

Depending on the choice of (z1,22,z3) we consider the following fractional linear
transformation

® 71,722,273 # o
Z—21 22—133

f@):=
2—23 2—1
[ ] Z]:oo
20 —23
7) =
1@)= 2=
[ ] Zz:OO
7—7
f(z):=
72—z
[ ] Z3_f>o
7—7]
f(z):= .
-1

In each case
(f(zl)’f(z2)7f(z3)) = (Ov 1’°°)'

ii) To prove the uniqueness of f it suffices to show: The only fractional
transformation f with three pairwise distinct fixed points is the identity. If for z # oo

a-z+b

)= cztd ©

then
c-Z2+(d—a)-z—b=0.

The quadratic equation has

e two solutions iff ¢ # 0

e exactly one solution iff c = 0 and a # d
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o infinitely many solutions iff c =0 anda=d and b =0

e no solution iff c =0 and a =d and b # 0. Then f = idp:.

If for z = o0

then

which implies ¢ = 0 and

a b
flz)= E-Z—i-a, d #0.

Hence in any case, f has only one further fixed point besides c. As a consequence,
any fractional linear transformation f # id has at most two fixed points, q.e.d.
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13. On the Riemann surface P! let ¢ be the sheaf of holomorphic functions which
vanish at z =0 € P!, i.e. for each open set U C P!

_J{feo): f(0)=0} 0eU
ﬁO(U)'{ ow) 0¢U

Analogously let & be the sheaf of holomorphic functions on P! which vanish
atz=oo € P!, Set

F =090
and consider the sheaf morphism

ad: F — 0O
which is defined by the addition of functions
ady : F(U) = O(U), (fi.f2) — fi+ fo, U CP' open,

Show: For each x € P! the induced morphism of stalks

ady : F — Oy
is surjective, but for some U C X the morphism of groups of sections

ady : F(U)— 0(U)

is not surjective.

14. Let X be a topological space. For a morphism
[ ¥ -9
between two sheaves of Abelian groups on X show:

F(U) f—U>€4(U) bijective for all open U C X <= %, EiN %, bijective for all x € X.
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15. Show: For each pair (ki,k,) € Z? the twisted sheaves on P!
O(k1)®¢ O(ky) and O(k; +kz)
are isomorphic, i.e. there exists a sheaf morphism
f:0k)®eOka) = O(k1 +k2)

such that the induced morphisms f; on the stalks are isomorphisms for all x € P!.

16. Let X be a Riemann surface and . an invertible sheaf on X.

i) Show: The dual sheaf
LY = Homg(L,0)

is invertible.

Hint. You may prove first somg(0,0) ~ 0.

ii) For X = P! and k € Z construct a canonical sheaf morphism
O(—k) = Homg(O(k),0).

Show:
Homg(O(k),0) ~ O(—k).

Discussion: Monday, 11.11.2019
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13 . For x € P! the induced morphism on stalks is

ad, : F — R
with
R~ C{z}
and
m®R x=0
F~{R®R xecC*
RZm x=o
with

m={feR: f(0) =0}

Apparently the addition ad, is surjective.

One has
F(P') = 0° (P o 0= (P') = {0} & {0} = {0},

but
OP"Y =C.

Hence adp: is not surjective.

16 .

o Commutative algebra: Consider a commutative ring R with 1. Then the
canonical multiplication map

Ur : R — Homg(R,R), a ug(a) :=|[R—R, b a-b]

is an isomorphism of R-modules: Elements ¢ € Homg(R,R) are determined by
their value ¢(1).

e (U-module sheaves: Let X be a Riemann surface and .%, ¢ two ¢-module
sheaves on X. The &-module structure defines by multiplication a sheaf
morphism
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W:0 — Homg(F,9).
For each x € X we consider its induced morphism of stalks
We: Oy — (Home(9,9))x

It is induced by the following commutative diagrams, which exist for open
neighbourhoods U C X of x,

o) s Homeyy (71U.910)
yind 2
T
ﬁx ,,,,,,,, > (%Omﬁ (g7 g))x

e J%om and stalks: On the level of stalks we define for each x € X a morphism
o: (Homg(F,9))y = Homp (Fr, %)

such that the following diagram commutes:

Homgyy (F|U.4|U)

To define o represent a given element
O € (Homg(F,9))x
in an open neighbourhood U of x by a sheaf morphism
ou: FU = Y|U.
The latter induces a morphism of stalks
B(¢u) :== (v),: Fx = Y.

Define
a(g:) == B(gv).

One checks that the definition does not depend on the choice of the
representative.
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e Hom and direct limit commute for the structure sheaf: We specialize the result
of the previous part to the structure sheaf

F=9.=0

and show that
o:(Homg(O,0))x — Homg (O, OY)

is an isomorphism of stalks.
We claim: Any &'|U-linear sheaf morphism
y: O|\U — O|U, U C X open neighbourhood of x,
is the multiplication by the holomorphic function
f=ywy()e o).

For the proof note that for any connected open V C U the following diagram
commutes:

Ifge O(V) and
h:=yv(g)eo(V)

then
hy = Wx(gx) = Wx(gx : lx) =8x- V’x(lx) =gx fx € Ox

The equality implies
h=fIV-g

due to the identity theorem and proves the claim.
The identification of each &|U-linear morphism
v:OlU— OlU
with the multiplication by
f=w(1)edU)
shows that the &,-linear map

o: (Homg(O,0))c — Homg (O, 0)
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is an isomorphism.
Isomorphism of the multiplication morphism: With R := 0, the composition
M = [R5 (A omp(0.0)); % Homp(R.R)]
is an isomorphism due to part 1) and part 3). As a consequence also
O (Hom(0,0)),
is an isomorphism. Exercise 14 implies that the multiplication morphism
w:0 — Homg(0,0)
is an isomorphism.
Dual of twisted sheaves: The multiplication morphism
w:0(=k)— Homg(O(k),0)

is defined on the level of sections: For open U C P! each
element s € &(—k)(U) defines by multiplication a morphism

ok)\U — o|U

Because the transformation g, lk of the local functions of sections in &'(—k) and
the transformation g](‘)l1 of the local functions of sections in ¢(k) multiply to

-k _k
8o1 “8o1 = 1.

The morphism above induces an isomorphism on the level of stalks, because in
a neighbourhood where the invertible sheaves restrict to the structure sheaf

0 = Homy(0,0)

Hence the morphism g is an isomorphism of invertible sheaves on P!.
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17. Consider a map p : X — Y between topological spaces. Show the equivalence:

p local homeomorphism <= p unbranched covering projection.

18. i) Show: The exponential map
exp:C—C*
is an unbounded, unbranched covering projection.
ii) Conclude: Each holomorphic function
f:G—C*

with a simply-connected domain G C C has a holomorphic logarithm, i.e. a
holomorphic function
F:G—=C

with
exp(F) = f.

19. Consider a presheaf .% on a locally-connected Hausdorff space X which
satisfies the identity theorem. Show: The étale space |-#| is a Hausdorff space.

Hint: For two germs f; # g, you may consider separately the cases x # y and x = y.

20. Let X C C be open and x € X a given point. The sheaf .% on
Y:=X\{x}
of locally constant integer-valued functions induces a presheaf .ZX on X with

FU) x¢U
0 xeU
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for connected open U C X, and restrictions derived from the restrictions of .%.
Show:

i) The presheaf .Z¥ is a sheaf on X.

ii) The stalks at x satisfy

(AHom(FX,FX)), # {0} and Hom(F¥, FX) = 0.

Discussion: Monday, 18.11.2019
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20 1) For connected open U C X and an open covering % = (U;);es of open sets,
each compatible family (f;);e; of sections f; € #X(U;), i € I, defines a locally
constant function f on U, hence a constant f € Z.

If x € U then x € U, for at least one i € I and we have f; = 0. Hence f = 0.

ii) On one hand, we have

FX =0and Hom(FX, . 7X) =0

X

because .7 X (U) = 0 for each connected neighborhood U C X of x.

On the other hand
(Hom(FX | FX)), #0

because for any open neighbourhood U C X of x the restriction
FX|U 0.
Hence the identity morphisms
id : FX|U — FX|U, U C X open neighbourhood of x,

define an element

0+#id € (Hom(F*,F%)), #0

Note: As a consequence, the canonical morphism
(AHom(FX,FX)), — Hom(FX, FX)

is not injective.
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21. Consider a compact Riemann surface X and finitely many points py,...,p, € X.
Set

X" :=X\{p1,-Pn}

and consider a non-constant holomorphic function
f:X' —C.
Show: The image of f comes arbitrary close to every ¢ € C, i.e.
f(x)=c.
22. Consider an unbranched covering projection
p:(Y,y) = (X,x0)
of topological Hausdorff spaces and a continous map
f1(Z,z20) = (X, x0)

with Z a connected topological space. Assume the existence of two continuous
maps
finJ=1,2,

which render commutative the following diagram

(Yvy())

Show: fi = f.

23. Consider a holomorphic map

fZTl—)TQ
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between two complex tori
Tj:=C/Aj, j=1,2, with canonical projections 7; : C — T;

and assume f(0) = 0.

i) Show: There exists a unique holomorphic map
F:C—C

with F(0) = 0 and such that the following diagram commutes

ii) Show: There exists a unique ¢ € C satisfying
a-A CAy

and forall ze€ C
Fiz)=a-z

24, Consider a Riemann surface X, a point x € X and a holomorphic germ f, € 0.
Show: Two maximal global analytic continuations of f,

(p.f.b) and (p', f,0")
are biholomorphically equivalent, i.e. there exists a biholomorphic map
F:(Y'b)— (Y,b)

such that the following diagram commutes

and f' = F*(f).
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Discussion: Monday, 25.11.2019
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25. Consider a holomorphic unbounded, unbranched covering projection
p:Y—=X

between two Riemann surfaces and a holomorphic function f € Oy (Y). For a given
point b €Y set
a:=p(b) € X and fu:= p«(fp) € Ox a-

For the tuple
(p.f.b)

show the equivalence:

e The tuple (p, f,b) is a maximal global analytic continuation of f, € Ox 4

e For any two distinct points by, by € Y,

P*(fbl) # p*(sz)-

26. Consider a Riemann surface X. Show: The definition of the exterior derivations
d,d,d" & — &, j=0,1,

does not depend on the choice of charts of X.

27. For a complex torus 7' show: Each holomorphic map
f:P' T

is constant.

28. Let

R:={f:U — C| U C C open neighbourhood of 0, f smooth}
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be the ring of smooth functions in a neighbourhood of zero,
mCR

its maximal ideal, and
T'R:=m/m?

the cotangent space of R. A derivation of R is a C-linear map
D:R—C

which satisfies the product rule

D(fi-f2) =Dfi- f(0)+ f1(0)-Df, fi,f» €R.

Denote the complex vector space of derivations of R by
Der(R,C)

Show:

i) Each derivation D € Der(R,C) restricts to the zero map

D|IC=0
on the subspace C C R of constant functions.

ii) Each derivation
D € Der(R,C)

induces a C-linear map
¢p:T'R—C

such that the following diagram commutes

=

Here d denotes the differential, defined as
df :=f—f(0) modm?.
iii) The map
¢ : Der(R,C) — Homc(T'R, C), D+ ¢p,

is an isomorphism of complex vector spaces.
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Note. The vector space Der(R,C) is named the tangent space of R.

Hint ad iii): You may first prove that the differential d satisfies the product rule.

Discussion: Monday, 2.12.2019

25
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25 . i) The maximal global analytic continuation f, € O , is uniquely determined.
It has been constructed by using Z C |£|. The points of Z correspond bijectively to
those germs of Oy , which originate from f, € Ox , by analytic continuation along
a path in X.

By definition of the holomorphic function f on Z for b; € Z, the germ
of fy, € 07, maps via p, to the germ from the stalk Oy , which equals by € Z
(tautological definition). Hence

by #b, = P*(fbl) #p*(be)

ii) Assume

by # by = p«(fp,) # P«([fv,)-
Consider the maximal analytic continuation (g, g,¢) of f, € Ox 4 with
q:(Z,c) = (X,a).

We define
F:Z—Y

as follows: A point § € Z is a germ f, € Ox , which originates from f, by analytic
continuation along a path o in X from a to x := g(&). Because

p:Y—=X

is an unbounded, unbranched covering projection and / is connected and simply
connected, the path ¢ lifts to a unique path & in Y such that the following diagram
commutes:

(Y,b)
a.- P
(1,0) —%— (X,a)

Here b €Y is the unique point from the fibre ¥, with
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P*(fb) :fa € ﬁx,a-

Set
F(§):=a(l)ey.

Then (p, f,b) induces the maximal global analytic continuation via F, and hence
any global continuation of f,.

28 . i) The product rule
D(1)=D(1-1)=D1-1+1-D1 =2-D(1)
implies D(1) = 0 and by C-linearity D|C = 0.

ii) The product rule implies
D|m* = 0.

Therefore D induces a unique C-linear map ¢p which renders commutative the
given diagram.

iii) One checks that the map
¢ : Der(R,C) — Homc(T'R,C)
is C-linear. We define
v : Homc(T'R,C) — Der(R,C), x +— D:=yod
Note that d : R — T satisfies the product rule, because
d(fi-f2)=fi-fo—fi(0)- £(0) modm?® =
= fi- 2= £1(0) £2(0) = (fi = f1(0))(f2 — f2(0)) mod m* =
= f10)f2+ £2(0)f1 =2 f1(0) - 2(0) mod m* =
= £1(0)(f2— f2(0)) modm?+ £>(0)(f1 — f1(0)) mod m* =
= f1(0)-df2+ f2(0)-df1.
As a consequence, also the composition

D:=yxod:R—C

is a derivation. One checks that ¢ and y are inverse maps, qg.e.d.
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29. Consider the holomorphic differential form

d
o="cal(C.
Z

i) Show: The form w extends uniquely to a meromorphic differential form
@ < .4 (Ph).
Determine the residues of @ at its singularities.

ii) Show: There exists a unique k € Z such that @ defines a global meromorphic
section of the twisted sheaf &'(k). Define a sheaf isomorphism

Q' = o(k).
Note. A global meromorphic section of &(k) is a pair of meromorphic functions
(s0,51) € A (Uo) x " (Uy)
satisfying so = g’51 -81.

iii) Does there exist a non-zero holomorphic differential form on P'?

30. Consider a torus T = C/A with a complex atlas
A = (zi : Ui = Vi)ier
such that for all 7, j € I the difference
zi—z;:UiNU; = C
is locally constant with values in A.

i) Show: The family (dz;);c; with dz; € Q' (U;) is a global holomorphic form on 7,
named
dz € QN(T).
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ii) Show: There exists an isomorphism of sheaves on T

Q' = 0, (f dzi)icr — (fi)ier

iii) Show
Qir)~C
and conclude: For any meromorphic function f € . (T) holds
0= Z res(f;p).
peT

31. Consider a holomorphic map
p:X—=Y
between Riemann surfaces. By means of the sheaf morphism
p* 6y = pbx, [P fi=fop,
define for a chart z: U — V of Y the pullbacks - using the same notations -
P& U) = (pE)U), frdz+g-dz— p*f-d(p'z) +p'g-d(p'7)

and
p & U) = (pE3)(U), f-dzAdzrs p*f-d(p*z) Ad(p*Z)

Show:

These local pullbacks glue to global pullbacks independent from the choice of
charts, i.e. to sheaf morphisms

P& = pu&and pt i EF — p &R
They respect holomorphy, i. e.

p*(Oy) C p.Ox and p*(24) C p.Q2y.

32. Consider
d
¢:=exp:C—C*andn := & € Qb.(CY).
z

Determine the pullback
9'n € ¢(C).

Discussion: Monday, 9.12.2019
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31.E.g., consider
P& WU) = (pby ") (U) = &0 (pH(U))

and two charts
Z, W U,'j —C

with w = y/(z) holomorphic. We have

w=y(z) = dw=v'dz

hence
dw =y’ dz
If
fdz=n=gdw
then

fdz=g-y' dzor f=g -y
As a consequence, there are equivalences

p*n well defined <= p*fd(p*z) = p*gd(p*w) <= (fop)d(zop)=(gop)d(wop) <=

(fop)d(zop)=(gop)- (¥ op)-d(zop) <= fop=(gop)- (¥ op)

which is satisfied.
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33. Show: On a Riemann surface X the sequence of sheaf morphisms with j the
canonical injection

O—>Ci>ﬁi>ﬂl—>0

is exact.

34. Consider a non-constant holomorphic map
f:X—=Y
between two Riemann surfaces. For two points b € Y and a € X, denote by
k:=v(f; a) e N*
the multiplicity of f at a. For a holomorphic differential form
€ Q)Y \b)

show: The pullback
fro € Qy(X\Xp)

satisfies
res(f*; a) =k-res(w; b).

35. Let X be a Riemann surface. A differential form @ € & (X) with
do =0

has a primitive F € &x(X) if
dF = .

Show: For any differential form @ € & (X) with d® = 0 exists a Riemann
surface ¥ and a holomorphic unbounded, unbranched covering projection

p:Y—=X
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such that the pullback p*® € &} (Y) has a primitive.

Hint: Consider the sheaf .% on X of local primitives of @ defined as
FWU):={feé&U): df = o}

and its étale space p : |.%| — X. The exact de Rahm sequence implies that p is an
unbounded, unbranched covering projection. The definition of F : Y — C is
tautological.

36. Show: On a topological space X the covariant functor “global sections”
I'(X,-):Sheaf , — Ab, I'(X,7) := F(X),
is left-exact, i.e. for any short exact sequence of sheaves of Abelian groups on X

07 %9 % w0

the sequence of Abelian groups

01 x,.7) 2 rx,9) B2 srx)

is exact.

Here Sheaf ¥ denotes the category of sheaves of Abelian groups on X and Ab
denotes the category of Abelian groups.

Discussion: Monday, 16.12.2019
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33 . The question is local. Hence we may assume X = C and x=0€ C.

e Exactness at C: Injection

C— 0O,
e Exactness at O,: Apparently
doj=0.
Conversely: If
df=0

then the holomorphic germ f € O is locally constant because

df =df =0.
e Exactness at Q: Consider
o=g-dzc Q.
If f € O, then
df:d’f:(;—];dzzgdz = i—i:f/:g.

One obtains a primitive of g by formal integration of the taylor series: If
g(z) = Z cn- 2"
n=0

then define
Cn

‘700 L ntl
f(z)'_n;)n—i—l &

34 . The claim is local with respect to b € Y and a € X,. We may assume Y C C a
disk with b =0, and X C C a disk with @ =0, and

f(z) =75 k#0.
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Consider a holomorphic form
o(w) = h(w) dw e Q1 (Y \ {b})

With
w=f(z) =2

by definition

(@) (&) = (f')(@) d(f'w) = (ho f)(2) - d() = h(z") k- dz.
The Laurent expansion

h(w) = i Cpw"

n=—oo

implies

and

Zk71 'l’l(Zk) _ Z cn .anJr(kfl).

n=—oo

From kn+ (k—1) = —1 follows
k(n+1)—1=—lorn=—1

Hence
res,,(h(w); 0) = c_ = res, (- h(Z"); 0)

and
k-res(®; b) = k-res,,(h(w); 0) = k-res, (X1 - h(z"); 0) =

= res,(h(Z) - k-2 0) = res(f*o; a).

36 . Cf. “Otto Forster: Lectures on Riemann Surfaces.” Lemma 15.8.
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37. 1) For a vector space V and a semi-norm
p: V- R+

show:
p(0)=0and p(v) >0forallveV.

ii) Consider a Fréchet space V with its topology defined by the sequence (p;,)nen
of semi-norms. Show:

V Hausdorff <= Foreachv eV, v#0, exists n € N with p,(v) #0.

38. Consider a disk
D=D,;(0)CC, 0<r<oo,

and the space L*(D) of square-integrable holomorphic functions on D. For the
monomials

0u(z) :=7", neN,

compute the Hermitian products

< On, P >, n,m e N.

39. For a simply connected Riemann surface X show

H'(X,C)=0.
40. For a simply connected Riemann surface X show

H'(X,Z) =0.

Hint: Use Exercise 39

Discussion: Monday, 13.1.2020
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41. Show:
H'(C*,Z)="7.

Hint: Apply Leray’s theorem to the covering % = (U;,U,) with

Uy :=C*\Ryand U, :=C"\R_

42. Find a Riemann surface X, an open covering % of X and a sheaf .% on X with

H' (% ,7)+H' (X, Z).

43. Denote by D C C the unit disk and by D* := D\ {0} the punched unit disk.

i) Show: The function
f:D"=C, f(z):=1/z,

does not belong to L2(D*, 0).
ii) Show: The restriction map
L*(D,0) — L*(D*,0)

is an isomorphism.

44. Consider a Riemann surface X.

i) For a pair of relatively compact open subsets
Vccuckx

show: There are only finitely many connected components of U which intersect
with V.

i) For two finite coverings of X
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V<<U

show: The restriction
zZ\(%,C) =z (¥,C)

has finite-dimensional image.

iii) For compact X give a direct proof: There exist

o a finite family of charts for X
(¢i :U; — Dy, D; C C dlSk)

iel

with
U = (Ui ) i€l

a covering of X,

e and an open covering ¥ = (V;);c; of X with
V<<U

and ¢;(V) C Cadisk forall i € I.

iv) Show: For compact X
dime H'(X,C) < oo.

Discussion: Monday, 20.1.2020
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44 . i) Connected components of X are open and pairwise disjoint. The compact
set V is covered by all connected components of U. Hence V is already covered by
finitely many connected components of U.

ii) For a finite covering % = (U;);.; of X there are only finitely many
pairs (i, j) € I?. For each pair (i, j) € I the intersection

ViﬂVj CCU,‘QU/

is contained in finitely many connected components of U; NU; due to part i). For

any cocycle
(fip); €21 (%, C)

the element f;; € C(U; NU;) is constant on each connected component of U;NU;.
Hence the restriction

ZY % ,C)—Z'(v,C)

has finite-dimensional image.

iii) If X is compact, then we choose a finite open covering % = (U;),; of X, such
that for each i € I the set U; is homeomorphic to a disk D; C C. Any
shrinking % CC % extends to a shrinking

V=Vi)ie <<%

such that for all i € I the set V; CC U; is homeomorphic to a disk which is relatively
compact in D;.

iv) Both coverings % and ¥ from part iii) are Leray coverings of X for the
sheaf C. Hence the identity

H'(X,C)=HY(%,C)— H'(¥,C)=H'(X,C)
factors over the restriction from part ii). As a consequence

dimc H'(X,C) < oo.
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45. Show: There is no meromorphic function on a torus with a single pole, and this
pole has order = 1.

46. For a compact Riemann surface X show:

i) The injection Z — C induces an injection
H'(X,Z) — H'(X,C)
ii) The Z-module H'(X,Z) is a free Z-module of finite rank.

Hint. Similarly to Exercise 44 show first that H'(X,7Z) is a finitely
generated Z-module.

47. For a Riemann surface X show:

i) Any open covering % of X has a locally-finite, countable refinement
W =Wiez <%
and a subordinate integer-valued partition of unity, i.e. a family
(0i:X = Z)ez

with ¢;|X \V; =0 for all i € Z and

Z‘Pi:l

i€Z
ii) The divisor sheaf & on X satisfies

H'(X,2)=0.



40
48. Show for the divisor class group of the projective space

CI(PY)Y~7Z

Discussion: Monday, 27.1.2020
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46 . i) The injectivity follows from the proof of Exercise 40: If an integer valued
cocycle splits in H'(X,C) then it splits already in H' (X, Z).
ii) Similarly to exercise 44, part i) and ii) for two finite coverings
V<<U
of X the image of the restriction
VA NAEYA N

is a free Z-module of finite rank. Due to compactness of X we may assume the
existence of two finite coverings of X

V<<U

with simply connected covering sets. Hence both coverings are Leray coverings
with respect to the sheaf Z. As a consequence the identity

H'(X,Z2)=H"(%,2) — H'(V,Z) = H'(X,Z)
factorizes over the restriction
Nuw 1) = 72" (V,Z)
and the image of the restriction
HY(%.,7) — H (V.,7)

is finitely generated. Hence
H'(X,7)

is a finitely-generated Z-module. The inclusion
H'(X,Z) cH'(X,C)~C"

excludes any torsion elements of H'(X,Z). Therefore H'(X,7Z) is a free Z-module
of finite rank.
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49. Prove H' (P!, 0*) ~ 7.

Hint. You may use without proof H>($%,Z) ~ Z.

50. For a twisted sheaf &' (k), k € Z, on P! determine a divisor D € Div(P') with

Op ~ O(k) and determine deg D.

51. Consider a Riemann surface X.
i) Show: For any divisor D € Div(X) the &-module sheaf &), is invertible.
ii) For two divisors D1, D> € Div(X) show:
Op, ®¢ Op, ~ Op, 4D,
iii) For a divisor D € Div(X) conclude:

(ﬁp)v ~ ﬁ,D.

52. Consider a compact Riemann surface X.

1) Show
dim H'(X, Q") = g(X)

ii) Consider two non-zero forms 1y, M2 € HU(X,///1 ). Show:
divm —div ny € Div(X)
is a principal divisor.

iii) Show: Any divisor
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K :=divn € Div(X)

with a non-zero form € HO(X,.#") satisfies

deg K =2g(X)—2.

Discussion: Monday, 3.2.2019

43
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50 . If k > 0 we consider the divisor D = k- P with the point divisor P € Div(P!)
belonging to the point
p=0=(1:0)eP".

Choose the holomorphic section s € H%(X, €'(k)) which is defined with respect to
the standard covering by

s = (so,s1) with so = (z1/20)%, s1 = 1.

We define a sheaf morphism
ﬁD — ﬁ(k)

on a given open set U C P!
Op(U) = O(k)(U),f — f-s|U.

Because f has a pole at p of order at most k and s has a zero at p of order k, the
function (f - s|U) is holomorphic. On the intersetion Uy; we have

frso=f(g61-s1) =861 (f-51)

Hence the morphism is well-defined. The sheaf morphism is an isomorphism on
the stalks, hence an isomorphism of sheaves. We have deg D = k.

The case for k < 0 can be proved analogously, or considered a consequence of
Exercise 51.

51 . 1) For a given divisor D € Div(X) exist an open covering % = (U;);; and a
cochain (f;),.; € CO(% ,.#*) satistying for all i €

D|U; =di (f;
For each i € I the sheaf morphism
Op|lUi = O|D, g+ g- fi,

is well-defined and an isomorphism on stalks.
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ii) Multiplication defines a morphism of sheaves
ﬁDl Ko ﬁDz — ﬁD]-FDz) induced from fl ®f2 — fl 'f27

which is an isomorphism on stalks. Note that the left hand side p, ®¢ Op, is a
sheafification.

45



