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Introduction

A first course in complex analysis considers domains in the plane C, and studies
their holomorphic and meromorphic functions. But already the introduction of the
point at infinity shows the necessity for a wider scope and calls for the introduction
of the complex projective space P!.

The projective space is compact. Hence it does not embedd as a domain into C.
Instead, the projective space is a first non-trivial example of a compact complex
manifold.

These lecture notes deal with Riemann surfaces, i.e. complex manifolds of com-
plex dimension 1. A manifold is a topological space which is covered by open sub-
sets homeomorphic to an open subset of the plane or of a higher-dimensional affine
space. To obtain respectively a smooth or a complex structure on the manifold it
is required that the local homeomorphisms transform respectively in a smooth or
holomorphic way.

According to the definition topology covers the global structure of the manifold
which can be quite different from the plane. While analysis determines the type
of the manifold which is defined by the transformation type of the local home-
omorphisms. These transormations are defined on open subets of the plane, see
Figure 0.1.
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Fig. 0.1 Topological and analytical building blocks of a manifold X

Riemann surfaces split into two classes:

* Compact Riemann surfaces: The local representation by power series implies that
on a compact Riemann surface all holomorphic functions are constant. Therefore
the main emphasis lies on meromorphic functions and the location of their poles.
The main result states: The set of meromorphic functions with poles of bounded
order is a finite-dimensional vector space. The theorems of Riemann-Roch and
Serre’s duality theorem serve to compute its dimension.

e Non-compact alias open Riemann surfaces: This class comprises e.g., all do-
mains in the plane C. A deep result states that any open Riemann surface is a
Stein manifold. A Stein manifold has many holomorphic and meromorphic func-
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tions. The Mittag-Leffler theorem and the Weierstrass product theorem general-
ize to Stein manifolds. Both problems are solvable on an open Riemann surface.






Part I
General Theory






Chapter 1
Riemann surfaces and holomorphic maps

This chapter gives the basic definitions of a Riemann surface and of holomorphic
maps. The concept of a manifold allows to translate local properties from complex
analysis in the plane to Riemann surfaces. One of the most fundamental properties
is the local representation of a holomorphic function as a convergent power series.
The chapter closes with some examples of compact Riemann surfaces. They show
the importance of meromorphic maps on these manifolds.

1.1 The concept of the Riemann surface

Definition 1.1 (Topological manifold, chart, complex atlas and complex struc-
ture).

1. A topological manifold X of real dimension £ is a topological Hausdorff space X
such that each point x € X has an open neighbourhood U with a homeomorphism,
named a chart around x,

0:U =V

onto an open set V C R¥,

2. A complex atlas of a topological manifold X of real dimension 2, i.e. complex
dimension 1, is a family <7 of charts

o = (¢i: Ui = Vy)jer

with open subsets
Vic C~R?,
such that
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XZUU,'

iel
e and for all pairs i, j € I and
Uij :==U;NU;
the transition function of the two charts
Wij o= 90 (9;|Uij) " - 9;(Ui) — 9i(Uyj)
is holomorphic.

* Two complex atlases 7] and @ of X are biholomorphically compatible if

their union
1 Ut

is again a complex atlas. A maximal set of complex, biholomorphically com-
patible atlases of X is a complex structure X on X.

Definition 1.2 (Riemann surface, holomorphic map, meromorphic function).

1. A Riemann surface is a pair (X,X) with a 2-dimensional connected, topological
manifold X with second-countable topology, i.e. having a countable base of the
topology, and a complex structure X on X.

2. A continuous map
f: (XvZX) - (Y72Y)

between two Riemann surfaces is a holomorphic map if for each point x € X
exists a chart around x from an atlas of Xy

o:U—YV,
and a chart around f(x) from an atlas of Xy
v:S—T,
such that the composition
yofo(@Unf () eSS »C

is holomorphic. Note that the definition is independent from the choice of the
charts.

For an open set U C X: A map f on U is holomorphic iff the restriction of f to
each component of U is holomorphic.
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3. A holomorphic function on X is a holomorphic map
f: (X72X) — C.

The ring of all holomorphic functions on X with respect to addition and multipli-
cation is denoted €'(X).

4. A meromorphic function on X is given by an open set U C X with X \ U discrete
and closed and a holomorphic function

f:U—=C

such that for all xo € X \ U

Jim |£(x)| = <.

XFX0
The points of X \ U are named the poles and U is named the domain of the
meromorphic function. The order of a pole x € X \ U is determined by the Laurent
expansion of f with respect to a chart around x. The order is independent of the
choice of the chart.

Two meromorphic functions f and g on X can be added and multiplied at each
point which is neither a pole of f nor a pole of g. Extending the result to possibly
removable singularities defines a meromorphic function on X. The ring of all
meromorphic functions on X is denoted .# (X ). Because X is connected .# (X)
is even a field.

For an open set U C X: A function f on U is meromorphic iff the restriction of f
to each component of U is meromorphic.

5. Consider an open set Y C X and a meromorphic function on Y. One defines the
order of fatapointy €Y

k  fhasatyazeroof order k € N
ord(f; y):=< —k fhasatyapole of order k € N
oo f =01in aneighbourhood of y

The requirement of second-countability of X in Definition 1.2 is made in order
that X is paracompact. Paracompactness provides for each open covering a subordi-
nate partition of unity, see Proposition 4.19.

Remark 1.3 (Holomorphic versus smooth).
1. Sometimes one uses for a chart of a Riemann surfaxe (X, X) the suggestive nota-
tion
z:U—=V CC.
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Then the decomposition into real part and imaginary part
Z=x+i-y
and identifying C ~ R? defines a chart
(x,y):U =V CR?

of a smooth structure X,,,; on X: When considering a holomorphic transi-
tion function y as a function of two real variables then Y has partial derivatives
of arbitrary order. Hence the transition function is smooth, i.e. differentiable of
class C*, and the complex structure X induces a smooth structure Xg,,,,, on X
and

(X y Z:smoolh)

is a 2-dimensional paracompact smooth manifold. We will investigate a Riemann
surface (X, X) by considering also its underlying smooth structure X, -

. If (X,X) is a Riemann surface then a map

f:X—=C

is smooth, if f is smooth on (X, Xg00:4). The ring of all smooth functions on X
is denoted &' (X).

In the following we will denote a Riemann surface (X,X) simply by X if the

details of the complex structure X are not relevant.

Example 1.4 (Riemann surfaces).

1.

Connected open subsets of a Riemann surface: If X is a Riemann surface, then
also each open connected Y C X is a Riemann surface.

. Domains in C: Apparently the plane C is a Riemann surface. According to

Example 1) also each domain X C C is Riemann surface. Hence complex analy-
sis of one variable is a specific part of the theory of Riemann surfaces.

. Projective space P': Consider the quotient

P! = (C*\{0})/ ~
with the equivalence relation
2= (20,21) ~w=(wo,w1) 1 == L €C*: w=A-z€ C*\ {0},

and the canonical projection onto equivalence classes
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m:C\{0} = P!, 21— [2].
For z = (29,21) € C*\ {0} the expression
(z0:21) :=m(z) € P!
is named the homogeneous coordinate of 7(z).

We provide the set P! with the quotient topology with respect to 7, ie. a
subset U C P! is open iff the inverse image

' (U) cC?\ {0}

is open. Then the topological space P! is a connected Hausdorff space. The topol-
ogy is second countable, i.e. it has a countable base of open sets. It is also com-
pact because

P! = 7(s?)

with the compact 3-sphere
$*:={(20, 21) € C*: oo +]a1 [ =1}
On the topological space P! we introduce the following complex atlas

o = (¢; : Ui — C)izo,

Set
Ui={(z0:21) €P': z; #£0}
and define
(]),' : Ui —C
by
z1/20 i=0
0:i((z0:21)) :=
20/z1 i=1
We have
UyUU, =P!
and
U:=UynNU; ={(z0:21) € P': 20 #0and z; # 0}
with

9o(U) = ¢(U) =C".

The transition functions are holomorphic:

1 1
Yo1 := ¢OO(¢)1|U)_1 :C*—=C* z— 7 and yqg := ¢1O(¢0|U)_1 :C"=C" 2> Z
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Therefore the projective space P', provided with the complex structure induced
by the complex atlas 7, is a compact Riemann surface. The atlas </ is named
the standard atlas of P'.

The standard embedding of C into P! is the holomorphic map

JjiC=Pl oz (1:2).

Then
i(C)=Uy
and
P! = j(C)U{(0: 1)}
with

named the point infinity.

. Torus: Consider two complex constants @, @, € C which are linearly indepen-
dent over the field R and denote by

A =A(0,,)=Z-01+Z - CC

the lattice generated by (@, ®,). The lattice is a subgroup of the Abelian
group (C,+). Hence the quotient

T:=(C/A,+)
is an Abelian group too. We denote by
n:C=T

the canonical quotient map and provide T with the induced quotient topology.
Then 7 is an open map: For any open U C C the set

r'(z(U)=|J(r+U)CC
AeA

is open as the union of open sets. Hence m(U) C T is open by definition of the
quotient topology. As a topological space the torus T is Hausdorff, connected,
and second countable. If

F={M o+ - :necC: 0<1;<1, j=1,2}

then the closure F C C of the fundamental parallelogram F is compact. Hence
the torus
T =n(F)

is compact.
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To obtain a complex atlas <7 on the topological space T we choose for each
pointy € F an open neighbourhood V}, C C of y which does not contain two
different points y; # y, with

y1—y €A

Then for x := 7(y)
|V, : Vy = Uy i=n(Vy)

is bijective, continuous and open, hence a homeomorphism. Set
~1
O = (n|Vy)" U=V,

We define
A = ((Pﬂ'(y) : Uﬂ(y) - Vy)yeF

To compute the transition functions of two charts ¢, ¢
Vi2=10(|U)"", U= UiNUy,

consider y € ¢ (U) and define

x:=mn(y)eU.
Then
y = ¢2(x) and y12(y) = 91 (x)
Hence
vi2(y) -y €A,
The map
Y12 —id

is locally constant on ¢, (U) because A is a discrete topological space and 1, is
continuous. Hence y1; is holomorphic.

As a consequence: The torus T provided with the complex structure induced
by <7 is a compact Riemann surface.

Remark 1.5 (Generalizations).

1. The projective space P! is the most simple example of the complex projec-
tive spaces P, n > 1, which parametrize complex lines in C"*!. The pro-
jective spaces are generalized by the complex Grassmannians Gr(k,n), the set
of k-dimensional subspaces of an n-dimensional complex vector space.

2. For a torus T the map
TXT—T,(x,y)—x—y
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is continuous and even holomorphic in the sense of complex analysis of sev-
eral variables. Hence (7,+) is a topological group and even a compact Abelian
complex Lie group. The torus T generalizes to the complex Lie groups of higher-
dimensional tori

T":=C"/A, n>1.

1.2 Holomorphic maps

Small open subsets of a Riemann surface cannot be distinguished from open sets
in C. Therefore those results from complex analysis, which refer to local properties,
transfer at once to Riemann surfaces. Examples are given by Proposition 1.6 and
Corollary 1.7.

But Riemann surfaces can be compact, see Example 1.4. It is a remarkable fact,
which new properties this global property brings into play; properties which are not
shared by domains in C, see Proposition 1.8 and Theorem 1.9.

Proposition 1.6 (Local representation of a holomorphic map). Consider a non-
constant holomorphic map
f:X—=>Y

between two Riemann surfaces. For any x € X exist

* a uniquely determined k € N*, the branching order of f at x,
e a complex chart of X around x

o:U—YV
* and a complex chart of Y around f(x)

yv:S—T,

such that
fo)cs

and
g:=wofop ': VT

has the form
gz) =7 z€eV.

Proof. 1) Choosing charts: We choose charts
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of X around x and
of Y around f(x) with

and

f(U]) CS.

Then
g1:= WOfO(Pl_l V=T

is a non-constant holomorphic function with
81 (0) =0.

If
k:=ord(g1; 0)>1

then
g1(lw)= wk-hl(w)

with & holomorphic, having no zeros in a neighbourhood D, (0).

i) Existence of a k-th root: The function A has a k-th root
h:=+/h : D,(0) — C*.
Because /(0) # 0 the function
D, (0) - C, w—w-h(w),

is locally biholomorphic in a neighbourhood of zero by the inverse mapping theo-
rem. Hence for suitable neighbourhoods of 0

V.V, CVp

its restriction
oa:Vo =V, w—w-h(w),

is biholomorphic.

iii) The definite chart: Elements z € V satisfy
z=a(w)=w-h(w)ora l(z)=w
For U := ¢; ! (V2) the map

¢:=ao(¢|U):U—V
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is a complex chart of X around x.

S
U U S
\%’ o
(0 V) — W L4
/ K
8
V o—mmmmm e e > T
Define
g;:gloofl :y/ofo(p*l.
For
z=a(w)=w-h(w) €V
then

g(2)=gi(a ' (2)) = g1(w) = (w-h(w))* =2, g.ed.

Corollary 1.7 (Open mapping theorem). Each non-constant holomorphic map
f:X—=Y
between two Riemann surfaces is an open map.

Proof. Proposition 1.6 implies that f maps neighbourhoods of a point x € X to
neighbourhoods of f(x) inY, g.e.d.

As a consequence of Corollary 1.7 any injective holomorphic map between Rie-
mann surfaces
[ X—=Y

is biholomorphic onto its image, i.e. the open set
Z=fX)CY
is a Riemann surface and the restriction
f:X—=>Z
is bijective with holomorphic inverse

flz-X.
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Proposition 1.8 (Maximum principle). Consider a non-constant holomorphic
function

f:X—>C

on a Riemann surface X. If f attains the maximum of its value at a point xy €
X then f is constant. In particular: Any non-constant holomorphic function on a
compact Riemann surface is constant.

Proof. Assume that f is not constant. Then Corollary 1.7 implies that f is open.
Hence any neighbourhood U of xq contains a point x € U with

If )] >[f(xo)l,

a contradiction, q.e.d.

A corollary of Proposition 1.8 is Theorem 1.9.

Theorem 1.9 (Compact Riemann surfaces have no non-trivial holomorphic
functions). Each holomorphic function on a compact Riemann surface X is con-

stant, i.e.
O(X) =C.

Proof. For an indirect proof assume that f is not constant. Then Proposition 1.8
implies f(X) = C and f(X) compact, a contradiction, g.e.d.

Theorem 1.10 (Meromorphic functions and holomorphic maps). Meromorphic
functions on a Riemann surface X are holomorphic maps

X — Pl
Conversely, any non-constant holomorphic map
f:X —P!
is a meromorphic function f € .# (X) with domain X \ (o).

Proof. 1) Consider a meromorphic function f € .#(X). For each pole xy € X
extend f by defining
f(xo) ‘= c Pl

Referring to the standard atlas of P! from Example 1.4, 3
(¢ : Ui = C)izo.1,
for a suitable neighbourhood U C X of x¢ the map

d1o(flU):U—C
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is continuous and holomorphic on U \ {x¢ }. By Riemann’s theorem about removable
singularities the map

¢10(fIU)
is holomorphic. Hence the extension

f:X—>P!
is a holomorphic map.
ii) Let

f:X—P!

be a non-constant holomorphic map. Then
Fieo) X
is discrete and closed with
fIX' X' = C, X =X\ f (),
holomorphic and for any xo € f~!(c)

lim f(x) =00, g.e.d.

X=X

Proposition 1.11 (Meromorphic functions on P!). The meromorphic functions
on P! are the rational functions, i.e.

as equality of fields.

Proof. 1) The rational function
fz)=a+z€C(2), acC,

is meromorphic on P!. Hence any rational function is meromorphic on P! because .7 (P')
is a field. As a consequence

C(z) C .#(P).

ii) Consider a meromorphic function f € .# (P'). Compactness of P! implies
that f has a most finitely many poles

P:={ay,...,an}.

W.lo.g. e ¢ P, otherwise replace f by 1/f. As a consequence, w.l.0.g. we may
assume that f is meromorphic on C. Let the rational functions
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be the principal parts of f at the poles a, € P, v =1,...,n,. Then
f=Y Hy
v=l1

is holomorphic on P!, hence constant due to Theorem 1.9. As a consequence f is

rational. We proved
A (PY) € C(z), g.ed.

Remark 1.12 (Meromorphic functions on the torus).

1. Consider a lattice A C C. A meromorphic function f on C is doubly periodic
or elliptic with respect to A if for each point z € C from the domain of f: For
allA € A

fz+A) = f(2).

Apparently the field of meromorphic functions on the torus C/A is isomorphic
to the field of elliptic functions with respect to A.

2. A complex torus T = C/A has the field of meromorphic functions
M (T) =C(p,p")-

Here g denotes the Weierstrass g-function of the torus, which is transcendent
over the field C. Its derivative @' satisfies the differential equation

Pr=40 g p-g
with distinguished constants
82 =60-Gp4and g3 =140-Gp ¢

derived from the lattice A. In particular £ is algebraic over the field C(g). For

details cf. [40, Theor. 1.18].
Proposition 1.13 (Identity theorem). Consider two holomorphic maps

fi:X—=Y, j=12,
between two Riemann surfaces. If for a set A C X with accumulation point a € A
filA= f2|A

then f1 = f>.
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The proof of Proposition 1.13 reduces to the identity theorem of complex anal-
ysis in the plane by using charts around the accumulation point a € A and its
image f(a) €Y.



Chapter 2
The language of sheaves

A sheaf is when you do vertically algebra and horizontally
topology.

2.1 Presheaf and sheaf

We define presheaves (deutsch: Pragarbe) and sheaves (deutsch: Garbe) of Abelian
groups first. But the definition and results transfer to other objects of Abelian cate-
gories, i.e. to commutative rings R or R-modules and also to the category of sets.

Definition 2.1 (Presheaf of Abelian groups).
1. A presheaf 7 of Abelian groups on a topological space X is a family

F(U), U C X open subset ,

of Abelian groups, and for each pair V C U of open subsets of X a homomor-
phism of Abelian groups

ol F(U)— F(V)

satisfying:
Py =idz )

and
pyopl =py forWcCVcuU.

The maps p‘(/ are often named restrictions and denoted
SV =py(f)

for fe . Z(U), V CU open.

The elements of the Abelian groups

F(U), U C X open,

21
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are named the sections of % on U.

2. A morphism
[ F -9

between two presheaves of Abelian groups with restrictions respectively p and ¢
is a family of group homomorphisms

fu: FWU)—9U), U C X open subset ,

such that for any pair V C U of open subsets of X the following diagram com-
mutes

7). 9w
oY l oy
70)— g

Remark 2.2 (Presheaf as a functor). Consider a fixed topological space X. Denote
by X the category of open subsets of X:

* Objects of X are the open sets of U C X
 and for V C U the only morphism from Mor(V,U) is the injection V < U, i.e.

{Vv—=U} VCU
0 otherwise;

Mor(V,U) := {

Then the presheaves .% of Abelian groups on X are exactly the contravariant func-
tors
F . X—Ab

to the category Ab of Abelian groups. A morphism
F =Y

between two presheaves is a functor morphism (natural transformation) from .% to ¢.

In general the concept of a presheaf is too weak to support any strong result on a
Riemann surface. The stronger concept is a sheaf. It satisfies two additional sheaf-
conditions. According to these conditions local sections which coincide on their
common domain of definition glue to a unique global section.
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Definition 2.3 (Sheaf). Consider a topological space X. A sheaf % of Abelian
groups on X is a presheaf of Abelian groups on X, which satisfies the following two
sheaf axioms:

For each open U C X and for each open covering % = (U;);c; of U:

1. If two elements f, g € .% (U) satisfy for all i € I
fUi = g|U;

then
=
i.e. local equality implies global equality.
2. If a family
fie #U),iel,

satisfies for all i, j € [
filuiny; = filuiny;

then an element f € .% (U) exists satisfying for all i € [
f|Ul = fi7

i.e. local sections which agree on the intersections glue to a global element.

A morphism of sheaves is a morphism of the underlying presheaves.

If one paraphrases a presheaf as a family of local objects, then a sheaf is a fam-
ily of local objects which fit together to make a unique global object. If it is not
possible to make the parts fit, then cohomology theory is a means to measure the
obstructions, see Chapter 6.

Definition 2.4 (Subsheaf of Abelian groups). Consider a presheaf .% of Abelian
groups on a topological space X.

1. A presheaf of Abelian groups ¢ on X is a subpresheaf of %
e if for all open sets U C X

is a subgroup, and

* if the restriction maps of ¢ are induced by the restriction maps of .%.

2. If .% is a sheaf, then a sheaf ¢ is a subsheaf of .7 if ¢ is a subpresheaf of .7.
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Similar to presheaves and sheaves of Abelian groups one defines presheaves and

sheaves with other algebraic structures like rings or modules.

Example 2.5 (Sheaves).

1. Let X be a topological space.

e Sheaf € of continuous functions: For any open set U C X define
€U):={f:U— C| f continuous}
as the complex vector space of continuous maps on U. The presheaf
€ (U), U C X open,
with the restriction of functions
pl :6WU) =€ V), f—flV,VCU,
is a sheaf. It is named the sheaf € of continuous functions on X.

o Sheaf 7 of locally constant functions: Consider a topological space X. For
each open set U C X define

FU):={f:U—=7Z]| f constant}
with the canonical restriction morphisms. The family
F =% (U), U C X open,
is a presheaf.
In general, the presheaf . is not a sheaf: Assume
X =X UX,
with two connected components. Then the family (fi, f2) with
fi(Xy) :={1} and f»(Xp) := {2}

does not arise as
fi=flXi and fo = f|Xa

with a constant section f € .% (X).
A slight change in the definition of .% provides a sheaf on X: A function on an

open set U C X is locally constant if each point x € U has a neighbourhood V,
such that the restriction f|V is constant. One defines
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Z(U):={f:U — Z| f locally constant}.

Then
Z(U), U C X open,

with the canonical restrictions is a sheaf. The sheaf is often denoted Z like
the ring of integers. The context has to clarify whether the symbol denotes the
ring of integers or the sheaf of locally constant integer-valued functions.

Similarly one defines the sheaf C of locally constant complex-valued func-
tions. Note that both sheaves Z and C are named constant sheaves - not locally
constant sheaves.

2. Let X be a Riemann surface.

e Sheaf O of holomorphic functions: Consider for each open U C X the ring
OU):={f:U — C| f holomorphic}
the ring of holomorphic functions on U. The presheaf
O(U), U C X open,

with the canonical restriction of functions is a sheaf of rings. It is named the
sheaf & of holomorphic functions on X or the holomorphic structure sheaf.

o Sheaf O* of holomorphic functions without zeros: Consider for each open U C X
the multiplicative Abelian group

O*(U):={feOU): f(x)#0forallxec U}.

The presheaf
0*(U), U C X open,

with the canonical restriction of functions is a sheaf. It is named the sheaf &*
of holomorphic functions without zeros on X. Apparently &* is the sheaf of
units of 0.

o Sheaf M of meromorphic functions: Consider for each open U C X the ring
A (U) := {f meromorphic in U}
the ring of meromorphic functions in U. The presheaf
A (U), U C X open,

with the canonical restriction of functions is a sheaf of rings. It is named the
sheaf .# of meromorphic functions on X.
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o Sheaf M * of meromorphic functions, non-vanishing on any component: Con-
sider for each open U C X the multiplicative Abelian group

M*(U):={fe#(U): fdoes not vanish identically on any component of U }

The presheaf
A*(U), U C X open,

with the canonical restriction of functions is a sheaf. It is named the sheaf .#Z*

of non-zero meromorphic functions on X.

o Sheaf & of smooth functions: Consider for each open U C X the ring
EU):={f:U—C| f smooth}

The presheaf
&(U), U C X open,

with the canonical restriction of functions is a sheaf. It is named the sheaf &
of smooth functions on X or the smooth structure sheaf.

The sheaves & and .# are sheaves of rings. The sheaves & and .#* are sheaves
of multiplicative groups. They are the sheaves of units of repectively & and .Z .

Sheaves of locally constant functions like Z,R,C are important for homology
and cohomology in the context of algebraic topology. While sheaves of holomorphic
and meromorphic functions are the basic objects on Riemann surfaces. A deep result
on compact Riemann surfaces shows the relation between the cohomology of the
sheaves from the topological context and those from the holomorphic context, see
Theorem 12.41.

2.2 The stalk of a presheaf

Definition 2.6 (Stalk of a presheaf). Consider a presheaf .% of Abelian groups
on a topological space X, and a point x € X. The stalk %, of % at x is the set of
equivalence classes with respect to the following equivalence relation on the union
of all .# (U), U open neighbourhood of x:

fi€ 9(U1) ~ fre y(Uz)
if for a suitable open neighbourhood V of x with V. C U; NU,

AV = AV
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Apparently, the stalk .%, is an Abelian group in a canonical way, and each canonical
map
v Z(U) = F

is a group homomorphism. The elements from .%, are named the germs of .% at x.

Remark 2.7 (Stalks).

1. The stalk of a presheaf .# at a point x € X is the inductive limit of the sections
from .% (U) for all neighbourhoods U of x.

2. Let X be a Riemann surface. For a point x € X consider the stalks
R:=0,and K := .#,.
Using a chart around x shows
R = C{z}, the ring of convergent power series with center =0,

and
K = Q(R) = C(z), the quotient field of R,

a statement about germs. The quotient field Q(R) is the field of convergent Lau-
rent series with center = 0, having only finitely many terms with negative expo-
nents.

In general, this local statement does not necessarily generalize to a global state-
ment: On one hand, for X = C one has

due to Weierstrass product theorem, a statement about global sections. The same
statement holds even for any domain X C C. On the other hand, on a compact
Riemann surface X one has

oX)=C

but
M(X)#C, eg. M (P')=C(z).

For more advanced results see [30, Kapitel 4* §1.5 Satz, §2.4].
3. Any morphism of presheaves on X
f:F =Y
induces for any x € X a morphism

fo:i F— Y,
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of the corresponding stalks such that the following diagram diagram commutes

70)—" . gw)
n:fl 7V
T, Sy @,

Here the vertical maps are the canonical group homomorphisms from Definition 2.6.
In general, these maps are not surjective. But each germ f, € .%, has an open
neighbourhood U C X and a representative f € % (U). The neighbourhood U
may depend on f.

4. On a Riemann surface X sections of a sheaf like & can be considered at least
from the following different topological viewpoints:

* Atapointx € X one considers the value f(x) € C of a function f holomorphic
in an open neighbourhood of x.

* Atapoint x € X one considers the germ f, € C(z) of a function f holomorphic
in an open neighbourhood of x.

* In a given open neighbourhood U C X of a point x € X one considers a holo-
morphic function f € O(U).

* One considers a globally defined holomorphic function f € &'(X).

Definition 2.8 (Exact sheaf sequence). Consider a topological space X.
1. A sequence of sheaves on X is a family
(fi: Fi— Fin1)iez

of morphisms of sheaves. The family is a complex if for all x € X on the level of
stalks the induced family of morphisms of Abelian groups

(ﬁ,x : %,x — gziJr],x)iEZ

satisfies for all i € Z

fi,x Ofi*l,x =0.
The family is exact if for all x € X on the level of stalks the induced family of
morphisms of Abelian groups

(ﬁ,x : %,x — <g\llr],x)iEZ
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is exact, i.e.if foralli € Z
ker[fi,x : '%,x — %+1,x] = im[fi—l,x : fg.i—l,x — %,x]-

2. A short exact sequence of sheaves is an exact sheaf sequence of the form

O—>,§4‘i>%5>t%ﬂa0.

3. A morphism of sheaves
[ F -9

is respectively, injective or surjective or bijective if the corresponding property
holds on the level of stalks
foi F—= Y,

forall x € X.

Note: An exact sequence of sheaves has to satisfy in particular for all i € Z
fir1ofi=0.
Remark 2.9 (Exactness of a sheaf sequence).

1. Exactness of a sheaf sequence is a statement about the induced morphisms of
the stalks. It is not required that the corresponding sequence of morphisms of the
groups of sections

fiv 1 Zi(U) = Fip1(U), U open neighbourhood of x € X, i € Z,
is exact.

One has to distinguish between a statement on the level of germs and a local
statement on the level of neighbourhoods. It is exactly the task of cohomology
theory, see Chapter 6, to measure the difference between exactness on the level of
germs and exactness on the level of sections, in particular on the level of global
sections.

2. A sequence of Abelian groups

0-FLF5%R 0

is exact iff
f injective, g surjective, and im f = ker g.
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Proposition 2.10 (Exponential sequence). The exponential sequence on a Rie-
mann surface X is the following exact sequence of sheaves of Abelian groups

0525 0% 0" 0
Here the morphism j is the canonical inclusion. And the exponential
0= 0
is defined for open sets U C X as
exy: OU)— 0*(U), fr exp(2mi- f).

Proof. To prove that the sheaf sequence is exact we consider for arbitrary but
fixed x € X the sequence of stalks

O%Zx:Zj.X}ﬁx&)ﬁ;HO
Exactness at 0y: Each holomorphic function f defined on a domain and satisfying
AT — |
is an integer constant and vice versa.

Exactness at 0;: The surjectivity of the morphism ex, follows from the fact, that
any holomorphic function without zeros defined in a disk has a holomorphic
logarithm, q.e.d.

Note that the exponential sequence from Proposition 2.10 is not exact on the level
of global sections: For X = C* the morphism

0(X) 25 0%(X), f s exp(2mi- f)
is not surjective, because the holomorphic function
Z|X € 0*(X)

has no holomorphic logarithm. The counter example will be continued in Chapter 6.

Example 2.11 (The twisted sheaves € (k) on P'). We consider the Riemann surface P!
with its standard atlas .« from Example 1.4. Set

Uy :=UyNU,;

and

21
go1 : Uot = C*, go1(z0:21) := P
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1. Twisted sheaf: For arbitray but fixed k € Z the presheaf
O(k)(U), U C P! open,
with
O(k)(U) = {(s0,51) € O(UNUp) x G(UNUY)| 5o =gk -s1 onUNUp; }

and the canonical restrictions is a sheaf &'(k). It is named a twist of the structure
sheaf, because for k =0
00)=0.

2. Local representation of global sections: The holomorphic functions
50, 51 and go;

are defined on open sets of the Riemann surface P!. Using the standard coordi-
nates we derive holomorphic functions on open subsets of the plane: Set

21 20
u:=—=¢o(z0:z1)and v:i=—=9¢;(z0:21)
20 21
and define the holomorphic functions
fj:(C—HC, ]':0,17

with
Jo(u) :==so(1:u)and f1(v) :=s1(v:1).

These holomorphic functions have the Taylor expansions
So(u) = Z con-u" and fi(v) = Z Clp V"
n=0 n=0

The transformation

folw)=so(1:u) =gk (1:u)-sy(1:u) =ub-s;(1:u) =uF-s1(1/u:1) =ik f1(1/u)

implies for all u € C*

Z Con- " =uk- Z Crp- ()",
n=0 n=0

Comparing coefficients implies for the global sections of the twisted sheaves &' (k):

e Ifk>0then

k
O (k)(P") ~ {ch-u": cn€eC,n =0,...,k} ~ Ck!
n=0



32 2 The language of sheaves

e Ifk < O0then
O(k)(P) = 0.

3. Global sections and homogeneous polynomials: An appropriate representation of
the complex vector spaces
O(k), k>0,

are the vector spaces of homogeneous polynomials: For £ > 0 denote by

HPol(k) C Clzo,z1]

the k + 1-dimensional vector space of complex homogeneous polynomials of de-
gree k in two variables. The vector space HPol(k) is generated by the monomials

g2 with a+ B =k.
The C-linear map
g HPol(k) — O(k)(P"), P(z0,21) ~ (s0,51),

with
s0(zo :z1) :== P(1,21/z0) and s1(z0 : 21) := P(z0/21,1)
is well-defined: Homogeneity implies for any A € C*
P(A-z20,4-21) = AF - P(z0,21).

Therefore
so(z0:21) = P(1,21/20) = (1/20)* - P(z0,21)

and
s1(z0:21) = P(z0/z1,1) = (I/Zl)k-P(Zo,Zl)

which implies
s0(z0:21) = (z1/20)% -s1(20 : 21) = go1(z0 : 21) - 51 (20 : 21)

The map g is injective, and therefore also surjective because domain and range
have the same dimension k + 1. As a consequence for k > 0

O(k)(P") ~ HPol(k) C Clzg,z1].
The global sections of the first twists are
O(0)(P') ~ spanc < 1 >

O(1)(P") ~ spanc < z9, z1 >

0(2)(P') ~ spanc < 75, 20+ 21, 21 > -



2.3 General sheaf constructions 33

2.3 General sheaf constructions

The section investigates some methods to build new sheaves.

Definition 2.12 (Image sheaf). Consider a continuous map
f:X—=Y
between topological spaces. For any sheaf .% on X the family
foF (V) :=.Z(f'V), V.CY open,

with the induced restriction maps is a sheaf on Y, namd the image sheaf or direct
image f,.F of F.

Remark 2.13 (Image sheaf).

1. Let
0:X—=Y

be a continuous map and . a sheaf on X. For each point x € X one has a canon-
ical morphism of stalks
(¢*y)¢(x) — Fx

induced from the canonical maps

V —
T (x) 207
0uFg(a) - = ——mmmm e > 7,

with V C Y open neighbourhood of ¢ (x).

2. A holomorphic map
0:X—Y

between two Riemann surfaces induces via pullback of holomorphic functions
from Y to X a sheaf morphism

‘§:ﬁY_>¢*ﬁX

defined as follows: For an opensetV C Y

Py : Oy (V) = (6.0x)(V) = Ox (97 (V)), f = fo¢.



34 2 The language of sheaves

In particular, one obtains for each y € Y and each

x€Xy =971y

a morphism of stalks
ﬁy,y — ((P*ﬁx)q)(x) — ﬁX,x'

Conversely, a continuous map
0: X =Y

between two Riemann surfaces is holomorphic if ¢ induces via pullback a sheaf
morphism
¢ : ﬁY — ¢* ﬁX .

According to the saying “A sheaf is when you do vertically algebra and horizon-
tally topology” one can translate the basic constructions from commutative algebra
to sheaves. We will distinguish a basic sheaf of rings % and introduce the concept
of a sheaf .% of Z-modules.

Definition 2.14 (0-module sheaf). Consider a Riemann surfaces X. Recall from
Example 2.5 the holomorphic structure sheaf &'

1. A sheaf .% of &-modules - for short an &-module sheaf or even an O-module F
- is a sheaf .% such that .% (U) is an &'(U)-module for each open U C X, and the
corresponding ring multiplication is compatible with restrictions, i.e. for each
open V C U the following diagram commutes

OU) x F(U) F(U)

| |

OV)x F(V) F(V)

Here the horizontal morphisms define the module structure on the sections, and
the vertical morphisms are the restrictions.

2. A morphism
[ -9

between two &-module sheaves is an &-module morphism if for all U C X
fo:F(U)—=4(U)

is a morphism of &'(U)-modules.
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Definition 2.15 (Algebraic constructions with sheaves).

1. Let X be a topological space and consider two sheaves .%, ¢ of Abelian groups
on X.

* Direct sum: The presheaf
FU)®¥Y(U), U C X open,
with the induced restriction maps is a sheaf on Y. It is named the direct sum
F DY
of Z and ¥.
* Restriction: For any open Y C X the presheaf
(ZY)(U):=F(U), U CY open,

with the induced restriction maps is a sheaf on Y. It is named the restriction F|Y
of ZtoY.

* Extension: Consider a closed set Y C X and a sheaf .# on X \ Y. The presheaf
FX(U), U C X open,

with

P {y(U) YNU=0
0 YNU#0

with the restrictions induced from .Z is a sheaf. It is named the extension FX

of # to X.
»  Sheaf of sheaf morphisms: The presheaf
Hom(Z,9)(U) := Hom(Z|U, 4|U), U C X open,
with induced restrictions is a sheaf on X. It is named
Hom(F,9)

the sheaf of sheaf morphisms from .# to ¢. Note the difference between the
two Abelian groups

Hom(Z|U, 4|U) and Hom(Z (U), 9(U)).

2. Let X be a Riemann surface and .%, 4 two ¢-module sheaves on X.

e The sheaf .% is
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— afree sheaf of rank = k if
F ~ 0%k

— alocally free sheaf of rank = k if any point x € X has an open neighbourhood U C X

such that the restriction
F|U

is a free sheaf on U of rank = k. A locally free sheaf of rank = 1 is named
an invertible sheaf.

Note. All stalks of a locally free sheaf .# of rank = k at X are isomorphic,
ie. forallx € X

Fe~ O,
e Sheaf of O-module morphisms: For open U C X denote by
Homoyy(Z|U,9|U)

the &'(U)-module of &'|U-module morphisms between % |U and 4|U. The
presheaf
Hom gy (Z|U,9|U), U C X open,

is an ¢-module sheaf, named
Homg(F,9).
* Dual sheaf: For an -module sheaf .7 the sheaf
FV = Homg(F,0)

is named the dual sheaf of .F.

The twisted sheaves ¢ (k) from Example 2.11 are invertible sheaves on P'. Chap-
ter 10 will introduce line bundles and investigate the relation between line bundles
and invertible sheaves.

Analogously one may consider the smooth structure (X, X,0,) and take the
sheaf & as its structure sheaf. One defines in an analogous way &-module sheaves.

Definition 2.16 carries over the definition of a sheaf from all open sets of a topo-
logical space to a base of the open sets. Proposition 2.17 allows to extend a sheaf
with respect to a base to the whole topological space. This results facilitates the
construction of sheaves because one has to define sections only on small open sets.
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Definition 2.16 (Sheaf with respect to a base). Let X be a topological space and
consider a base Z of the topology of X. A B-sheaf .# of Abelian groups is a family

F(U), U € A,
with restriction maps for basic open sets U, V
ol 1 F(U)— F(V)

satisfying
» for each basic open set U

Py = idzw)
* and for basicopensets W CV C U

Pw Py = Py

such that for each basic open set Y € Z and each covering % of Y by basic open
sets the following two axioms hold:

L. If two elements f,g € F#(Y) satisfy forall U € %
flu=glu
then
f=g

2. If a family
fUE‘gZ(U): U€%7

satisfies for each pair U;,U, € % and for each V € # withV C U NU,

Ju IV = fulV,
then an element f € . (Y) exists such that for all U € %
fIU = fu.

Proposition 2.17 (Constructing a sheaf bottom up from a %-sheaf). Let X be a
topological space and consider a base 2 of the topology of X. Then each B-sheaf F 4
induces a sheaf # on X by the following construction:

For any open U C X define

FWU):={(fr)y € [[ Z2V): fv|W = fiw for all basic sets W C V'}

vcu
Ve#

ForU,U € Z withU C U define the restriction
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ol F(0) = F(U)

by the following commutative diagram

) oY
Z(U) ZF(U)
H&g% FWV)_ . N Hgg% F(V)

with vertical injections and the map

[TZ7v)= ] Zv)

vcl vcu
Vg@ Ve

induced by the universal property of the product by the projections for W C U, W € ZB:

H F(V)— F (W)

vco

Ve
Proof. One has to verify that the restriction of a compatible family within the prod-
uct is again compatible, q.e.d.

The construction of .# (U) in Proposition 2.17 is the projective limit while the
stalk .%, in Definition 2.6 is the inductive limit or direct limit of certain families of
Abelian groups of sections.



Chapter 3
Covering projections

The chapter first recalls some fundamental results from covering theory. These re-
sults will then be applied in the context of Riemann surfaces. Classifying the con-
cepts and issues, which have been introduced, we distinguish the following steps of
increasing abstraction:

¢ Complex analysis in domains of C
e Riemann surfaces and holomorphic maps
* Sheaf theory on Riemann surfaces and topological spaces

« FEtale space of the structure sheaf as a holomorphic unbranched covering projec-
tion.

The basic object of investigation in this chapter is the étale space of a presheaf,
see Definition 3.9. We then give the following applications of this concept:

* Sheafification of a presheaf, Theorem 3.11.
¢ The tensor product sheaf of two &-module sheaves, Definition 3.17.
* The maximal global analytic continuation of a holomorphic germ, Theorem 3.31.

* The Riemann surface of an algebraic function over a compact Riemann surface,
for a scetch see Remark 3.33.

39
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3.1 Branched and unbranched covering projections

Definition 3.1 (Covering projection). Consider a map
p:X—=Y

between two topological spaces X and Y.

1. The map p is a local homeomorphism or an étale map if any x € X has an open
neighbourhood U C X such that p(U) C Y is open and the restriction

plU:U = p(U)
is a homeomorphism.

2. The map p is a covering projection, if p is continuous, open and discrete, i.e.
each fibre

X, =p'(y),yey,

is a discrete topological space when equipped with the subspace topology of X, C X.
The spaces X and Y are named respectively the tofal space and the base of the
covering projection.

3. If p is a covering projection then a point x € X is a branch point of p if for any
neighbourhood U of x the restriction

plU:U—=Y
is not injective. If A C X denotes the set of branch points of p, then
B:=p(A)CY

is the set of critical values of p. A covering projection without branch points is
named unbranched.

4. The map p is an unbounded, unbranched covering projection if each pointy € Y
has an open neighbourhood V such that

p (V)= Ui (disjoint union)
and for each i € I the restriction
p‘U[ U=V

is a homeomorphism.
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Apparently, a local homeomorphism is a continuous and open map. Each un-
branched and unbound covering projection in the sense of Definition 3.1, part 4 is a
covering projection in the sense of part 2. It is unbranched in the sense of part 3.

Lemma 3.2 (Local homeomorphism). A map
p:X—=Y

between topological spaces is an unbranched covering projection if and only if p is
a local homeomorphism.

Proof. 1) Assume that p is an unbranched covering projection. Any point x € X has
an open neighbourhood U with p|U injective. Because p is open, the set

V:i=pU)CY

is open. The map
plU:U—=V

is bijective, continuous and open, hence a homeomorphism.

ii) Assume that p is a local homeomorphism. Then any point x € X has an open
neighbourhood U such that

plU:U—=V
is a homeomorphism onto an open set
V:i=pU)CY.
In particular p|U is injective, which implies that p is unbranched and
{3} =Unp™ () = U X,

Hence each fibre
Xy, yey,

is discrete. Moreover p is open and continuous, g.e.d.

Unbounded, unbranched covering projections play an important role in the
category of topological spaces and homotopic maps:

* They facilitate the computation of the fundamental group of a topological space,
Definition 3.3.
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» They satisfy a lifting criterion depending on the fundamental group, Proposition 3.4:
Whether a map
f:X—B

into the base B of an unbounded, unbranched covering projection
p:E—B

lifts to a map into its total space E only depends on the induced maps of the
fundamental groups.

* They have the homotopy lifting property: Whether a map
f:X—=B
into the base of an unbounded, unbranched covering projection
p:E—B

lifts to a map into the total space E only depends on the homotopy class of f,
Proposition 3.5.

To recall these results from algebraic topology we recommend the textbooks
[20, Chap. 1.1, 1.3] and [36, Chap. 2, Sect. 2, 4]. Note that books from algebraic
topology name “‘covering projection” a map which is an unbounded, unbranched
covering projection in the sense of Definition 3.1. If one distinguishes in a
topological space X a point xo € X, then the pair (X,x¢) is named a pointed
topological space with base point x.

Let I = [0,1] C R denote the real unit interval.

Definition 3.3 (Fundamental group and simply connectedness). Consider a
path-connected topological space X.

1. After choosing an arbitrary but fixed distinguished point xg € X the fundamental
group m(X,xp) of X with respect to the basepoint xy is the set of homotopy
classes of closed paths, i.e. of continuous maps

o:1— X witho(0)=o(1) =xo
with the catenation

oy (2t) ifo<r<1/2

(o 00) (1) = {az(m_ 1) if1/2<r<1

as group multiplication.
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2. The topological space X is simply-connected if 71 (X, xp) = 0.

Apparently closed paths can also be considered continuous maps

st x
from the 1-sphere, i.e. from the unit circle. One checks that the catenation defines a
group structure on the set of homotopy classes. In addition, the fundamental group

- as an abstract group - does not depend on the choice of the basepoint. Therefore
one often writes writes 7; (X, *) or even 7y (X).

A morphism
[ (X,x0) = (¥, y0)
of path-connected pointed topological spaces, i.e. satisfying f(xo) = yo, induces a
group homorphism of the fundamental groups

m(f) : m(X,x0) = m(Y,y0),[a] = [foal].

In case of an unbounded, unbranched covering projection f the induced map 7; ( f)
is injective. The fundamental group is a covariant functor from the homotopy
category of path-connected pointed topological spaces, i.e. the category of path-
connected pointed topological spaces with morphism the homotopy classes of con-
tinuous maps respecting the base point, to the category of groups.

Proposition 3.4 (Lifting criterion). Consider an unbounded, unbranched covering
projection
p:(E,e0) = (B, bo)

of path-connected, pointed topological spaces and a continuous map
[+ (X,x0) = (B, bo)

with X path-connected and locally path-connected. Then the following properties
are equivalent:

1. The map f has a unique lift to (E,ep), i.e. a continuous map
[ (X,x0) = (E,e0)

exists such that the following diagram commutes

(E,ep)
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2. The induced map of the fundamental groups
T (f) : m (X,x0) = 71 (B, bo)
satisfies
7 (f) ™ (p)

[im cm (X, x0) — 7171(3,1?0)] C [im cm(E,e0) — (B,b())].

In particular, any continous map f : (X,x0) — (B,bg) from a simply-connected
topological space X lifts to a continous map f into the covering space (E,ep).
Choosing the simply-connected topological space

X=1

shows: Any path
fin B with f(0) = by

lifts to a unique path
fin B with £(0) = ¢

But note: If f is a closed path, the lift f is not necessarily closed.

Proposition 3.5 (Homotopy lifting property). Consider an unbounded, unbranched
covering projection
p:(E,e0) — (B,bo).

If a continous map with connected X

[ (X,x0) = (B, bo)
into the base lifts to a map

f:(X,x0) = (E,e0)

into the covering space then also any homotopy F of f, which fixes the base point,
lifts uniquely to a homotopy of f, i.e. expressing the homotopy lifting property in a
formal way: Assume the existence of

* a homotopy of f relative {xy}, i.e. a continuous map
F: (X,)Co) X1 — (B,b())

with
F(—,0) = f and F (xo,—) = by,

s and of a continuous map f : (X,x0) — (E,eq) with po f = f.

Then a unique homotopy of f relative {xq} exists
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F:(X,x0)xI— (E,ep)
with
F=poF,

i.e. such that the following diagram commutes:

(X.x0) {0} — ) (E.e0)

| A
p

(X,x0) x I F (B,bo)

Lemma 3.6 (Poincaré-Volterra). Consider a connected topological manifold X, a
second-countable topological space Y and a continuous map

p:X—=Y

with discrete fibres. Then also X is second-countable.

For the proof see [8, Lemma 23.2].

We now apply covering theory from algebraic topology to the theory of sheaves
and holomorphic maps between Riemann surfaces. This method has been prepared
by Proposition 1.6.

Proposition 3.7 (Holomorphic maps and covering projections). Each non-constant
holomorphic map
f:X—=Y

between two Riemann surfaces is a covering projection.
Proof. The map is continuous. It is also open according to Corollary 1.7. If f were
not discrete then for at least one y € f(X) the fibre X, C X were not discrete.

Then X has an accumulation point, which contradicts the identity theorem from
Proposition 1.13, g.e.d.

Proposition 3.8 (Pullback of the complex structure along unbranched covering
projections). Consider a Riemann surface Y, a connected Hausdorff space X and
an unbranched covering projection

p:X—=Y.

Then on X exists a unique structure of a Riemann surface such that p becomes a
holomorphic map.
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Proof. Because p is a local homeomorphism, also X is a topological manifold.
Lemma 3.6 implies second countability of X. We define a complex atlas 7 on X as
the family of the following charts: If

¢1 U =V
is a complex chart of the complex structure of Y such that an open set U C X exists

with
plU U = U,

a homeomorphism, then the homeomorphism
¢:=d10(p|lU):U—V

belongs to «7. To check that the charts of <7 are biholomorphic compatible we
assume two charts

0= d1o(plU): U~V and ¢’ = 9f o (p|U") : U' = V'
with U NU’ # 0. Then the transition function - we do not indicate all restrictions -
Yy =909~ =90 (plUNU o (plUNU) " o(91)™" =9fo(¢r)™"

is holomorphic because the charts of Y are biholomorphically compatible. After
providing the topological space X with the complex structure X induced by the
atlas o/ we obtain a Riemann surface (X, X), and the map

p:(X,2)—>Y

is holomorphic and even locally biholomorphic. If (X,X’) is a second complex
structure such that
p:(X,Z)—>Y

is holomorphic, then
idy : (X,XZ) = (X,X')

is locally biholomorphic, hence biholomorphic, q.e.d.
We recall: For a continous map p : X — Y between topological spaces a section
over an open set U C Y is a continuous map
s:U—=X
with pos =idy.

Definition 3.9 (Etale space of a presheaf). Consider a presheaf .% on a topological
space X. Define the disjoint union of all stalks
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|9| = Uxe)(yx
and the canonical projection
p|F| =X, e Fr—xeX.

For each open set U C X and f € .#(U) consider the set of corresponding germs
of f
U, fl:={fi: x€U}.

The set & of all sets [U, f] is the base of a topology on |.%|, and the topological
space |.7 | is named the érale space of the presheaf .%.

Proposition 3.10 (Etale space of a presheaf). Ler % be a presheaf on a topologi-
cal space X.

1. The étale space |.F| from Definition 3.9 is a topological space.

2. The canonical projection
pi|F| =X, fr=xfor fi € Fy,
is a local homeomorphism.

Proof. 1. We have to show that 4 is the base of a topology: Assume x € X, f; € F,
and

fee[U,fIN[V.gl.

Then x € UNYV and
feFU)andge 9 (V)

determine the same germ f, € .%,. Hence an open subset W C U NV exists such
that
W =glw.

As a consequence [W, f|W] € £ and
Lre W Wl C U, fInlV.gl.

As a consequence, the set 2 is the base of the topology .7 on |.%| with elements
the arbitrary unions of elements from Z. Here we follow the convention that the
union of an empty family is the empty set and the intersection of an empty family
is the whole set.

2. For each open set U C X the inverse image

p () :U{[V,f] :VCUopenand fe #(V)}
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is open. Apparently
p([U,f]) = U C X open.

Hence p is continuous and open. The restriction
pllU,f1: U, fl=U
is bijective, because for all y € U
(IO N 0) =15}

Hence p is a local homeomorphism, qg.e.d.

As a first application of the étale space construction we attach to each presheaf a
sheaf, named its sheafification.

Theorem 3.11 (Sheafification of a presheaf). Consider a presheaf % on a topo-
logical space X. If one defines for each open set U C X

FhU) = {s:U—|F|: s section of p},

then the family
FMU), U C X open,

with the canonical restriction of sections is a sheaf, the sheafification .Z*" of the
presheaf F.

Proof. Apparently the presheaf
Fh(U), U C X open,
with the canonical restriction of sections is a sheaf .Z*": In the present context both

sheaf axioms deal with continuous maps to |.%|, q.e.d.

If the presheaf .7 is already a sheaf, then .#*" ~ %, i.e. the sheafification of a
sheaf is the sheaf itself.

Definition 3.12 (Presheaf satisfying the identity theorem). Let X be a topological
space. A presheaf .# on X satisfies the identity theorem if for any connected open
subset Y C X holds: Two sections

[ 8€F(Y),
which define the same germ for at least one point y € Y, are equal, i.e.

fy:gy = f=g.
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Apparently the structure sheaf & of a Riemann surface satisfies the identity the-
orem.

Proposition 3.13 (Hausdorff property of the étale space). Let X be a locally-
connected Hausdoff space and .7 a presheaf on X which satisfies the identity theo-
rem from Definition 3.12. Then the étale space |-F | is a Hausdorff space.

Proof. We denote by
pi|F|l =X

the canonical projection. Consider two distinct elements fy, # f, € |Z]|.

i) If x; # x, then for j =1, 2 we may choose disjoint neighbourhoods U; C X
of x;. Apparently

p~'(Ur) and p~ ' (Us)

are disjoint neighbourhoods of respectively f,, and f,.

ii) If x; = xp =: x then for j = 1, 2 we represent each germ ij € Z, by a section
fi € #(Uj)

with open neighbourhoods U; C X of x;. We choose a connected neighbourhood U
of x with
UcUnNnU,

and obtain open neighbourhoods
U, filUu] |7

of fi, j=1,2.

Assume: Their intersection
U, AlUIN[U, £2|U]
is not empty. Then we obtain a point y € U with

fy :fl,y :fZ,y

Because .# satisfies the identity theorem we conclude
h ‘U = fZ‘Ua

which implies f,, = f,, a contradiction, q.e.d.
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Remark 3.14 (Complex structure on the étale space of the structure sheaf). Consider
a Riemann surface X. Then the étale space |0 | has a complex structure such each
connected component

Y C |ﬁ X|

becomes a Riemann surface and the restriction
plY:Y =X

is a locally biholomorphic map between Riemann surfaces.

Proof. The result follows from Proposition 3.8, Proposition 3.10 and Proposition 3.13,
g.e.d.

Proposition 3.15 (Sections of a sheafification). Let X be a topological space
and F a presheaf on X. Consider the étale space

p:|F| =X

and a section of p
s:U = |.Z|, U C X open.

Then: Each point x € U has an open neighbourhoodV C U and an element f € F (V)
satisfying for ally € V
s(y) = fy € F.

As a consequence, an element

feZMU), UcX open,
is a family of compatible sections of Z, i.e. a family f = (fi)ier
* with an open covering % = (U;)ic; of U depending on f
* and elements f; € F(U;), i €I, such that

f,‘|U,'ﬁUj ij|U,'ﬂUj, i,jel
In particular, for each x € X holds the isomorphy of stalks

E;h ~ .

Remark 3.16 (Sections of the sheaffification).

1. Proposition 3.15 characterizes sections of the sheafification .7 as compatible
families of sections of the presheaf .%. Sections in a sheaf are equivalent to com-
patible local sections due to the two sheaf axioms. Hence the sheafification of a
sheaf .% reproduces the sheaf, i.e. #% ~ .7.
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2. For a sheaf .% on X the étale space
p:|F| =X
allows to define sections of .% over arbitrary subsets A C X:
FA):={s:A—|F|: pos=ids}
In particular, for any point x € X one obtains the stalk at x as

F({x}) = Z»

An application of Theorem 3.11 is the definition of the tensor product sheaf.

Definition 3.17 (Tensor product). Let X be a Riemann surface. For two &-module
sheaves ., ¢ consider the presheaf

FU)®gw)¥9U), U C X open,

with restrictions induced from the restrictions of the two factors. Its sheafification is
defined as the tensor product
F Qg9

of Z and 9.

Remark 3.18 (Tensor product).

1. Stalk of a tensor product: For two &-module sheaves .% and ¢ on a Riemann
surface X for all x € X

(FR69Y)x~ FRp,%.

The proof relies on the fact that tensoring commutes with taking the inductive
limits, see [37].

Dennote by 7 the presheaf
H(U):=F(U)®gw)9(U), U CX open,

with restrictions induced from the restrictions of the factors. Proposition 3.15
implies: For x € X the germs, i.e. the elements of the stalk

(ng 0 f/g)x

are the equivalence classes of elements from
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H(U)=FU)®e1y9(U), U CX open neighbourhood of x.

With
limO(U) = 0,
xelU
we obtain
(F ® 69 = =1m(F (U) @ g9 (U)) =
xeU
= li_r>nﬁ(U)®ﬁth%(U) =7 ® 0,%:
xeU xeU

with the second last equality due to interchanging tensor product and direct limit.

. Tensor product of twisted sheaves: For two integers ki, ko € Z the tensor product
of the corresponding twisted sheaves on P! from Example 2.11 satisfies

O(k\) @0 O(ka) = O(ki + k).
Proof. 1) Sheaf morphism: We define a sheaf morphism
[:0k)®p Olky) = O(k1 +k2)

as follows: The domain is a sheafification. Proposition 3.15 implies: Each ele-
ment
s€(Ok1)®¢ O(k2))(U), U C X open,

is a family of compatible sections from
O(ki)(V)®@g(v) O(k2)(V), V C U suitable open sets depending on s.
The tensor product of two sections
51052 € O(k1)(V) @g(v) O(k2)(V)

defines a section in
O(ki+ko)(V)

by multiplying the representing holomorphic functions, because the product sat-
isfies the correct transformation law with g]8‘1+k2. The family of resulting sections

from
O(ki +ka) (V)

is compatible and defines the section
f(s) € ﬁ(k] —l—kz)(U).

ii) Alternative formulation of part i) by using the étale space: Consider the
presheaf
HU) = 0(ki)(U)@gw) Oka)(U), U C P! open,
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with the canonical restrictions induced from the factors. If
. 1
D) |77 — P

denotes the covering projection of its étale space then by definition of .72 for
each open U C P!

(O(ki) ®p O(ka))(U) := A" (U) = {s: U — | : s section of ply|}
Here we have due to part 1 for each x € U
s(x) =51(x) @s52(x) € O(k1)x R, O(k2)x
Analogously
O(ki+k)(U) ={0:U — |O(ki +k2)| : © section of p|s, 1iy)|}
Therefore
fu i1 (Ok1)®6 O(k2))(U) = O(ki +k2)(U),s =51 Q@852+ 0 =515

is well-defined.

iii) Isomorphism: Due to part 1 the morphism
f:0k)®g O(ky) = Ok +k2)
induces for each x € P! a morphism of stalks
fei(O(k) @0 O(k2))x = O(k1)x® 6,0 (ka)x = O(k1 + k2)x
Using a fixed complex chart around x we identify
O(k1)x~ O(ka)x >~ O(ki +kp)x >~ O

then
Oy ~ ﬁx®ﬁxﬁx £) O, S1 QS+ 8152,

is an isomorphism of stalks. Hence f is an isomorphism of sheaves.

3. Tensor product of presheaves: For the twisted sheaves ¢ (k) on P!

* On one hand, due to part 2 we have the isomorphy of sheaves
O'(ki) ®@¢ O(ky) ~ O'(ki + k2).
e On the other hand, tensoring global sections gives for k; =1, kp = —1

o(PHe o) 0(— 1)(P') = C*®c0=0 ( first taking sections, then tensoring)
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while
(0(1)®g O(—1))(P') = 0(P') = C (first tensoring then taking sections).
Therefore
0= O(1)(PY) @y, O(~1)(PY) € (0(1) 2 ,0(1))(P) = C.

As a consequence, tensoring does not commute with taking sections, and the
presheaf
o) (U) @g(w) 0(~1)(U), U C P' open,

is not a sheaf.

3.2 Proper holomorphic maps

The present section combines the result of the local representation of a holomorphic
map from Proposition 1.6 and the topological properties of proper maps to obtain
a global result about the fibres of holomorphic maps between compact Riemann
surfaces, see Theorem 3.22.

Definition 3.19 (Proper map). A continous map

f:X—=Y

between two locally compact Hausdorff spaces is proper if the inverse image of any
compact subset of Y is compact.

Remark 3.20 (Proper map).

1. Compact domain implies properness: For compact X any continuous map to a
locally compact Hausdorff space is proper.

2. Proper maps are closed: Each proper map
f:X—=Y
is closed, i.e. each closed set A C X has a closed image f(A) CY.

Proof. We recall that in a locally compact space a set is closed iff its intersection
with any compact set is compact.
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Now consider a closed set A C X. We have to show: For any compact K C Y the
set
fA)NKCY

is closed. We have the equality
FA)NK = fANfH(K)).

By assumption
K cx

is compact, hence also
AnfYK)CcX

is compact. As a consequence the image
fAnf(K))

is compact, g.e.d.

3. Neighbourhood of a fibre: Consider a proper map
f:X—=>Y

and a point y € Y. Then for any open neighbourhood U C X of the fibre X, exists
an open neighbourhoood V C Y of y with

' (v)cu.

Proof. The complement
X\UcxX

is closed. Part 2 implies that
A:=fX\U)CY
is closed. Because y ¢ A the complement
Vi=Y\ACY
is an open neighbourhood of y. It satisfies
W) =N ) =X\ A) =
=X\ (fX\U)) CX\(X\U)=U, g.ed.
4. Proper unbranched coverings are unbounded: A proper, unbranched covering

projection
p:X—=Y
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between locally compact Hausdorff spaces is an unbounded, unbranched cover-
ing projection with finite fibres. For connected Y the cardinality of the fibres

Xy,y€y,

does not dependony € Y.

Proof. Consider an arbitrary but fixed point y € f(X). Because f is proper and
discrete, the fibre X, y € Y, is discrete and compact, hence finite

Xy = {xl,...,xn}.

Because p is unbranched, for each j = 1,...,n the point x; € X, has an open
neighbourhood W; such that

pIWj : W = Vj = p' (W)
is a local homeomorphism onto an open set V; C Y. W.Lo.g. the sets
Wi, j=1,...,n,

are pairwise disjoint because X, is discrete. Part 3 implies the existence of an
open neighbourhood of y

n
veny
=1
with
p~'(v)ycJw;

—_

[

For j=1,...,n we set

Then

and for each j = 1,..,n the restriction
p|Uj : Uj —V

is a homeomorphisms. The map f is proper and open, in particular closed and
open. Hence

fXx)=vy

if Y is connected. The cardinality of the fibres X, depends continuously on y.
Hence for connected Y this number is independent from y € Y, q.e.d.

If a holomorphic map has finite fibres, Definition 3.21 gives the cardinality of the
fibres. The definition includes the fibres at critical values.
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Definition 3.21 (Cardinality of a finite fibre). Consider a holomorphic map
f:X—=Y

with finite fibres. For a point x € X one defines the multiplicity of f at x as

v(f; x) =k

with k£ € N the number from the local representation of f at x according to
Proposition 1.6. For each y € Y one defines the cardinality of the fibre

Xy = fﬁl )
as

card X, := Z v(f; x).

xeXy

Apparently, Definition 3.21 counts the cardinality according to multiplicity.

Theorem 3.22 (Value attainment of proper holomorphic maps). Consider a
non-constant proper holomorphic map

f: X—=Y

between two Riemann surfaces X and Y. Then f assumes every value y € Y with the
same multiplicity, i.e. all fibres
Xy, y€Y,

have the same cardinality, counted according to multiplicity.

Proof. Corollary 1.7 and Remark 3.20 imply that the holomorphic map f is open
and closed. Connectedness of Y implies f(X) =7, i.e. f is surjective.

1) Unbounded, unbranched covering projection outside the critical fibres:
According to Proposition 1.6 the function f has locally the form

fz) =7 k>1.

Hence its set A of branch points is discrete and closed, which implies that also the
set
B:=f(A)CY

of critical values is closed. Set
Y :=Y\Band X' :=X\ f!(B).

The restriction
f :zf\X/:X’—>Y/
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is an unbranched covering projection. Properness of f implies that also f” is proper.
Remark 3.20, part 4 implies that

f:x' =Y

is an unbounded unbranched covering projection with finite fibres. The set X’ is
connected. Hence also Y’ is connected and the cardinality of the fibres of f’ has a
constant value n € N*,

i) Cardinality of the fibres at critical values: Let yg € B be a critical value of f
with fibre

Xy = {x1,x ) kj=v(fixj) eN, j=1,..,rn

Proposition 1.6 implies: For each j = 1,..,r exist an open neighbourhood
UjcX
of x; and an open neigbhourhood
vicy
of yo such that for each point y € V;\ {yo} the set
7 y)nu;

has
kj=v(f.x))

distinct points. We may assume the open sets U; pairwise disjoint. Remark 3.20,
part 3 implies the existence of an open neighbourhood of yg

vc(V;
j=1
with
v cyus
j=1
Hence for each point y € V NY’ the fibre X, has

n=k+..+k,

points while

-
card Xy, = Z v(fixj) =ki+...+kr, ged.
j=1
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Corollary 3.23 (Surjectivity of holomorphic maps). Any non-constant holomor-
phic map f: X — Y between two Riemann surfaces with X compact is surjective.

Proof. The map f is proper, q.e.d.

Corollary 3.24 (Poles and zeros of a meromorphic function). A non-constant
meromorphic function on a compact Riemann surface X has the same number of
poles and zeros, counted according to multiplicity. In particular: A polynomial of
degree n € N*, when considered as a meromorphic function on P!, has exactly n
zeros, counted according multiplicity.

Proof. According to Theorem 1.10 a meromorphic function f on a Riemann surface X
can be considered a holomorphic map

f:X —P.

The map is proper because X is compact. Hence Theorem 3.22 proves the claim. A
polynomial of degree n € N* has a single pole. The pole is at co € P! and has the
order = n. Hence the polynomial has exactly n zeros, q.e.d.

3.3 Analytic continuation

Definition 3.25 (Analytic continuation of a germ along a path). Consider a Rie-
mann surface X, a path
v:I—=X

from a point a € X to a point b € X. A germ

e oy

originates from a germ f, € 0, by analytic continuation along 7y if the following
properties are satisfied:

* Foreacht € [ exists a germ
Fre) € Oy
such that
fr0) = fa and fy1) = f

» and for each ¢ € [ exists an open neighbourhood T C I of ¢, an open set U C X
with y(T') C U, and a holomorphic function f € &(U) such that forall t € T
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See Figure 3.1, upper part.

Fig. 3.1 Analytic continuation

Because / is compact, Definition 3.25 is equivalent to the following
“Kreiskettenverfahren”, see Figure 3.1, lower part: There exist

¢ a finite subdivision of /
0<ty<t <..<th1<t,=1

e afamily
U ={U,....,U,}

of domains in U; C X with

Y[tji-1,4]) CUj, j=1,..0m,

* and for each j = 1,...,n a holomorphic function f; € 0 (U;) with
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fa=701(f1) and f, = 7" (f2)

such that on the component of U; N U1 which contains the point y(z;)

fj:fi+1a J= 13"'7’171'

Note that Definition 3.25 defines the analytic continuation of germs as a relation
between germs, not between functions.

The concept of analytic continuation of a holomorphic germ along a path trans-
lates to lifting the path to the étale space of the structure sheaf.

Theorem 3.26 (Analytic continuation of holomorphic germs and the étale space
of the structure sheaf). Consider a Riemann surface X, two points a, b € X with
germs

fa € Oy and fy, € O,

and a path
v:I—=X

with
¥(0) =a and y(1) =b.

Then are equivalent:

e The germ f}, € Oy is the analytic continuation of f, along y

o The path v lifts to a path

y:1—|0)|
according to
(101, fa)
7. |p
(1,0) (X,a)
and the lifting ¥ satisfies
Y1) = fi

Proof. 1) Assume that f;, € 0, is the analytic continuation of f, € ), along y. The
family (fy(,))rer defines the map

yil— |ﬁ‘7 t’_>fy(t)

By definition of the topology of |&| the map 7 is continuous and the diagram from
Theorem 3.26 commutes.
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ii) Conversely, assume the existence of a lift ¥ according to the diagram. We define
a family of germs (fy(,))rer by

fri=7(t) € Oyp).

For given T € I choose an open neighbourhood [U, f] of #(7). By continuity exists
an open neighbourhood T of 7 in I such that

¥(T) C [U,f], ie.

Y(T) CU and fy) = ¥(t) = n/ (f) forall t € T.

By definition
Jo:=17(1)

is an analytic continuation of f, along 7, q.e.d.

Theorem 3.26 states concerning a germ f, € 0,: The analytic continuations of f,
along a path 7 equals the endpoint 7(1) of the lift ¥ of y. According to

Theorem 3.27 the analytic continuation along a path y depends only on the
homotopy class of 7.

Proposition 3.27 (Monodromy). Let X be a Riemann surface. Consider two paths
Y, N =X

with
a:=7%(0)=1(0) and b := (1) =n(1)

and a homotopy (Vs )ser relative {0, 1} from Y to y1. Moreover consider a germ f, € 0,
and assume that f, has an analytic continuation along every path Y, s € I. Then f,
extends along vy and along v, to the same germ f;, € Oy, see Figure 3.2.

¥o

Fig. 3.2 Monodromy
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Proof. Theorem 3.26 implies that each curve 7;, s € I, lifts to a curve
¥, s €1,
which starts at f, € |€|. One checks that the map
D:IxI—=X, (t,5)— F(t)

is continuous because p is a local homeomorphism, see [8, Theor. 4.10]. In par-
ticular, the endpoints of ¥;, s € I, depend continuously on s € I. They vary in the
fibre p~!(b), hence they are constant, i.e. each lift ¥, s € I, terminates at f}, € |0,
q.e.d.

Remark 3.28 (Pushdown of holomorphic germs along holomorphic, unbranched
covering projections). A holomorphic, unbranched covering projection

p:Y—=X

between two Riemann surfaces is locally biholomorphic. Hence for each x € X and
each y € Y, the composition with the canonical maps from Remark 2.13, 2

p = [0xx = (p:Oy), — Oy,
is an isomorphism of stalks. We denote by
Px . ﬁyﬁy — ﬁX,x

its inverse, the pushdown of germs.

We now investigate the analytic continuation of a holomorphic germ to a global
holomorphic function. In particular, we have to provide a domain of definition for
the analytic extension.

Definition 3.29 (Global analytic continuation of a germ). Consider a Riemann
surface X, a point a € X and a germ f, € 0.

1. A global analytic continuation of f, is a triple
(p,f,b)
with
¢ a holomorphic, unbranched covering of pointed Riemann surfaces.

p:(Y,b) = (X,a)
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* and a holomorphic function
f:Yy—==C_

such that the germ
I € Ovp

of fin b €Y satisfies
p*(fb) = fa with Px - ﬁY,b — ﬁX,a
the pushdown from Remark 3.28.

2. A global analytic continuation (p, f,b) of f, is maximal or universal iff each ana-
lytic contiuation of f, factorizes via (p, f,b), i.e. iff for any analytic continuation

. f.b)
of f, exists a holomorphic map
F:Y' =Y

such that the following diagram commutes

and the pullback of f satisfies

F*(f):=foF=f.

Lemma 3.30 proves for a global analytic continuation (Y, p,b) of f, € Ox ,: Any
path starting at b € Y induces an analytic continuation of f,, along the induced path
in X.

Lemma 3.30 (Global analytic continuation and analytic continuations along
paths). Let X be a Riemann surface and consider a global analytic continuation

(p,f,b)

of a germ f, € Ox 4. Then for any pointy € Y the germ at x := p(y)

Sfri= P*(fy) € ﬁX,x

originates from the germ
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fa € ﬁx,u
by analytic continuation along a suitable path in X from a to x.

Proof. Because the Riemann surface Y is connected and therefore also path-connected,
we may choose a path in Y from b to y

o:(1,0) = (Y,b).

The path « projects to the path po & in X from a to x according to the commutative
diagram

The locally biholomorphic map pushes down the holomorphic germs along « to
a compatible family of holomorphic germs along p o &, see Figure 3.3, q.e.d.

Fig. 3.3 Paths in the étale space and analytic continuation

Summing up the statements of Lemma 3.30 and Theorem 3.26: Consider a Rie-
mann surface X, a point a € X and a germ f, € Ox 4. Assume a global analytic
continuation (p, f,b) of f,.

e Each point y € Y defines a germ

p*(fy) S ﬁX,X? X = p(y)a



66 3 Covering projections

which originates from f, by analytic continuation along a path in X.

e IfY C |O%] is the component which contains f, and
p:Y—=X

the canonical unbranched covering, then the germs, which originate from f, by
analytic continuation along a path in X, correspond bijectively to the points of Y.

Theorem 3.31 shows: The maximal global analytic extensions of the germs of
holomorphic functions on a Riemann surface X are the restrictions of the étale space
of the structure sheaf &

p: 0| =X

to its connected components Y C |&|. Hence we now make the step from the level
of stalks to the level of global holomorphic functions which are implicitely defined
by the germs of the stalk.

Theorem 3.31 (Existence of the maximal global analytic continuation). Con-
sider a Riemann surface X and a point a € X. Then any germ f, € O, has a maximal
global analytic continuation.

Proof. We have to define a triple (p, f,b) with the properties from Definition 3.29.

i) Definition of p: We denote by Y C || the component which contains f, and
restrict the canonical projection

|0 — X

to obtain a holomorphic unbranched covering projection

p:Y =X
see Remark 3.14. We set
b:=f,€Y.
i) Definition of f: We define
f:Y—=C

in the following tautological way: By definition each pointy € Y is a
germ fp(y) eo p(y) We define

FO) = Fp (P(¥)
attaching to y € Y the value of the germ
To() € Opy)

at the point p(y) € X.
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To show that f is holomorphic we note that the component ¥ C |&| is open
because the topological space | €] is locally connected. A given point y € Y with

x:=p(y)€X
has an open neighbourhood V C Y such
U:=pV)CX

is open, the restriction
plv:V—-U

is biholomorphic, and the germ f, has a holomorphic representative

fu:U— C.
The composition
fIV = fuo(plV)
shows the holomorphy of f|V. As a consequence
(p.f.b)

is a global analytic extension of f, € 0.

iil) Maximality: Now consider a further global analytic continuation (g, g, ¢)
of f, € 0, with
q:(Z,c) = (X,a).

We have to construct a holomorphic function
F:(Z,c)— (Y,b)

such that the following diagram commutes:

We define
F:(Z,c)— (Y,b)

as follows: For a given point { € Z choose a path in Z from ¢ to §

67
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o:(1,0) = (Z,¢).
* Pushing down & via q: Lemma 3.30 implies for the path
y:i=gqgoa: (I,0)— (X,a):
The germ
Ja=0q+(gc) € Ox
extends along ¥ to the analytic germ

fri=q+(8¢) € Ox x, x:=q(0),

see Figure 3.5.

I3
% (% .,—/ =
M 3
¢ !
|
¥ = (33\) \1
//’
—Y—m > -
& \[/ —_ O\(-S\

Fig. 3.4 Definition of F

* Lifting yvia p: According to Theorem 3.26 the germs, which originate
fromf, € Ox , by analytic continuations along the path y in X, correspond
bijectively to the points of Y. Hence the germ

f x € % X x
determines a unique point y € Y with

pe(fy) = fr =q:(8¢) € Oxx

We define
F(§):=yeY.
One checks that F is holomorphic and satisfies

F'(f)=g, qed.
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[25, Chap. 3] presents some interesting examples of maximal global analytic
continuations.

Fig. 3.5 The “mysterious” spiral staircase: Maximal global analytic continuation of the logarithm
(due to Leonid 2)

Remark 3.32 (The “mysterious” spiral staircase). Figure 3.5 visualizes the expo-
nential map as the maximal global analytic continuation (p, f,b) of the germ of the
principal value Log of the logarithm at the point
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a=1eC".
The figure shows the total space Y of the unbranched covering projection
p:(Y,b) = (X,a) = (C*,a)

The projection maps in vertical direction onto (X, a).

i) Construction of (p, f,b): The Riemann surface Y is obtained by gluing the family
Yo, k€ Z,

of copies Y, ~ C* along the negative real axis R™: After passing R~ from the
second quadrant in Y; one enters the third quadrant in Y. After gluing ¥,
with Y1, the limit points when approaching the negative real axis from the
upper Y;. 1 are considered elements of the lower Y. Define

Y= UkeZYk

Then elements of Y are pairs
(y,k) e C* X Z.

Set
a:=1€C"and b:=(1,0) €Y.

The map p projects Y in vertical direction onto C* as
p:(Y,b) = (C*a), (v,k) —y.
On Y exists a global logarithm, the holomorphic function
log:Y — C, log(y,k) := Log(y) +k-2mi
with Log the principal value of the logarithm. The triple
(p,log,b)
is a global analytic continuation of the germ of Log ata = 1.

ii) The exponential map and global analytic continuation of Log: The Riemann
surface Y is simply connected because there is no central fibre ¥j. As a
consequence Y is homeomorphic - and a posteriori biholomorphic - to the total
space C of the universal covering of C*

exp:C— C*

A biholomorphic map
F:C>Y

making commutative the diagram
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can be obtained as follows: Let
D:={zeC:—in<Imz<in}
denote a fundamental domain of the exponential map and set
Dy :=D+k-2xi

Each restriction
exp|Dy : D — C*

is a bijective continuous map. The maps
Fk :Dk — Yk7 (Zuk) = (exp(z),k), ke Za

combine to a biholomorphic map

F:CzUkEszeY:UkGZYk

with
F(0)=(1,0) €Y

One computes for each k € Z
F*(f)|Dy : D — C,z+— log(exp(z),k) = Log(exp(z)) + k- 2mi = z,

hence
logoF =idc.

As a consequence the two global analytic continuations of the germ of Log
(p, f,b) and (exp,idc,0)

with
exp: (C,0) — (C*,1)

are isomorphic.
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iii) Maximality: If (g,g,c) with
q:(Z,c)— (X,a), ZC|Ox]|,
denotes the maximal global continuation of the germ
Ja =Logi
then the maximality induces a holomorphic map
F:C—Z

such that the following diagram commutes

and
F*(g):=goF =idc.

3 Covering projections

Hence F is injective. Because exp and ¢ are surjective unbranched covering
projections, the general theory of covering projections implies that also F is a
surjective covering projection. Hence the map F' is a holomorphic

homeomorphism, and therefore biholomorphic, g.e.d.

We conclude this section with an outlook. It shows how the étale space of the
structure sheaf can be used to consider a multiple-valued meromorphic function on
a compact Riemann surface X as a well-defined meromorphic function on a covering

of X.

Remark 3.33 (Algebraic extensions of the field of meromorphic functions). Consider

a compact Riemann surface X and the field

k:=.#(X)

of global meromorphic functions on X. Each finite field extension K /k of k has a

primitive element: There exist an element F* with

K =k(F).
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The field extension poses the following problem:

* How to realize F as a meromorphic funtion F € .#(Y) defined on a suitable
Riemann surface ¥ and

* how torelate Y to X?

i) The minimal polynomial: We consider the minimal polynomial P € k[T] of K /k,
an irreducible polynomial of degree

n:=[K:k].

Let
P(T)=T"+c1-T" ' +..+cy1-T+c, €KT]

For j = 1,...,n the coefficient (—1)/ - ¢ j € k is the j-th elementary symmetric poly-
nomial
Sj(Fh...,Fn) €k

in the n-roots of P.

ii) Construction within the étale space |Ox|: Denote by A € k[T the discriminant
of P. There exists a discrete set A C X such that each coefficient cj, j=1,...,n,is
holomorphic in a neighbourhood of all points of

X =X \A
and such that A has no zeros in X’. Set

Y':={gx €|Ox| :x € X and P(g,) = 0}

with the canonical projection
Yy =X

One defines the holomorphic function
Fi:Y =X, Fi(g):=g(x).
It satisfies P(F}) =0, i.e. forall y € Y’ and for all x := 7’(y) € X’
0=P(R)(y)=F )"+ -F)"" +. 41 (x)-Fi(y) +calx).

iii) Extending the unbranched covering to include branch points over X: One
checks, that 7’ is an unbounded, unbranched covering projection, which extends to
a proper, holomorphic, but possibly branched covering projection

n:Y—>X

of Riemann surfaces according to the following commutative diagram
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Y - Y

/

T T

I
I
:
X — X

The holomorphic function Fi on Y’ extends to a meromorphic function F on Y
annihilated by the pullback 7*(P) of the minimal polynomial, i.e. on ¥
(7*(P))(F) =0.

For the details of this construction as well as for an illustrative example see
[8, Theorem 8.9 and Example 8.10].



Chapter 4
Differential forms

Exterior derivation is the means to define derivatives on smooth manifolds. The
exterior derivation generalizes the partial derivations in affine space. In order that
the result on a manifold is independent from the used charts one has to define the
exterior derivation of a functions as a first order differential form. Analogously, the
exterior derivation of a first order differential form has to be defined as a second
order differential form.

The main result on exterior derivation on a Riemann surface, i.e. on a manifold
with an additional complex structure, is the exactness of the Dolbeault sequence and
the de Rham sequence, see Section 5.1 and 5.2 later on.

4.1 Cotangent space

This section starts with considering the smooth structure of a Riemann manifold.
First, we study some algebraic properties of the stalks of the sheaf & of smooth
functions. We recall that a local ring is a ring with exactly one maximal ideal.

Lemma 4.1 (Ring of germs of smooth functions). Denote by R the ring of smooth
functions defined in a neighbourhood of 0 € R?, i.e. R is the quotient of the set

{f:U —= C| U c R? open neighbourhood of 0, f smooth}

when identifying two functions with the same restriction to a common neighbour-
hood of zero. The ring R is isomorphic to the stalks & x of the structure sheaf &x
of the smooth - not the complex - structure of a Riemann surface X at an arbitrary
pointx € X.

1. The set

75
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m:={f €R:f(0)=0}

is the unique maximal ideal of R, hence R is a local ring.

2. The product satisfies

P N
mZ_{feR.f(O)—ax(O)—ay(O)—O}.

Proof. 1)If f € R but £(0) # 0 then the reciproque

hence f is a unit in R. Conversely: For every unit f the reciproque f~!' € R exists
which implies f(0) # 0.

Hence R\ m is the set of units of R. Any ideal a C R which contains an
element f € R\ m equals R. As a consequence m C R is a maximal ideal, and it
is the only maximal ideal.

2) If
hi=f-gem’ f gem,
then by the product rule

d d d
0= L10)-5(0) + £10)- S2(0) =0

h
and similarly for —(0). Conversely assume /# € m satisfying

dy

oh oh
5(0) = 7y(0) =0.

For (x,y) in a ball neighbourhood of 0 € R? we have

1 d 1 (dh dh
h(x,y) ::/0 Zh(tx,ty) dt:/o (ax(tx,ty)-x—i— ay(tx,ty)y> dt =

_ lghzzdt lghttdt— h h
_x'/o 5, 1y) +y'/0 a?(% y) di =x-hi(x,y) +y-ha(x,y)

with
hy, hy € m and thus h € m?

because by assumption
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1 oh oh

m(0.0)= [ 570.0)di = 5

and similarly
h2(0,0) =0, g.e.d.

A smooth 2-dimensional manifold is locally isomorphic to an open neighbourhood
of 0 € R?. Hence the result of Lemma 4.1 carries over to the stalks of the structure
sheaf & of the smooth structure underlying a Riemann surface.

Corollary 4.2 (The stalk of the structure sheaves & and ). Let X be a
Riemann surface and fix an arbitrary point p € X.

1. The stalk &, of the smooth structure sheaf & on X is a commutative ring with 1.
2. An element f € &), is a unit if and only if

f(p) #0.

The non-units of &, form the unique maximal ideal

mep= {fe Ep: f(p) =0}.
The ring &, is a local ring with residue field
k(p) :=ép/mg,p, =C

and the injection

k(p) — &,
embeds the germs of locally constant functions.

3. The subring
O, C &,

the stalk of the holomorphic structure sheaf on X, is a local ring with maximal
ideal

mg,={f€0,: f(p)=0}
and residue field
k(j(p) = ﬁp/m@p =C.

Note. In the holomorphic context the powers of the maximal ideal

mf; , k €N*,

are principal ideals. The ideal ms , is generated by the germ of the coordinate func-
tion z. The product m’fﬁ » is generated by the germ of power of z~.
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For a Riemann surface X we now use charts around a given point to carry over
the concept of the cotangent space from the affine spaces R> ~ C to the smooth
and to the complex structure of X. We start with the smooth cotangent space and
identify the holomorphic cotangent space as a subspace. If not stated otherwise we
will identify C and its open subsets with R? and its open subsets.

Definition 4.3 (Partial derivations and Wirtinger operators). Let X be a Rie-
mann surface. A chart of X
z=x+i-y:U—-VCC
defines for any function f € &(U) a smooth function
foz v

according to the commutative diagram

One defines the partial derivations

J . 3f'_ 3(foz*l)
—ax.é”(U)—m@(U), PR
d . 8f._ d(foz )

and the Wirtinger operators
0 1 Jd _ d - 0 1 Jd d

Note. The partial derivatives from Definition 4.3 depend on the choice of the
chart which is used for the definition.

Remark 4.4 (Wirtinger operators). Consider a Riemann surface X, a chart of X
72:U =V CR?

and a smooth function
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f:U—C.
i) The Wirtinger operators on the Riemann surface X relate to the Wirtinger opera-
tors on C: X '
d(foz™ - d(foz™
af = Mozand af = (fif)oz
9z 7

In both equations the Wirtinger operator on the left-hand side relates to the open
set U C X of the Riemann surface, while the Wirtinger operator on the right-hand
side relates to the open set V C C of the plane. As a consequence, the smooth
function f is holomorphic iff

af=0.

ii) With respect to complex conjugation the Wirtinger operators satisfy

af _9f I _df
2 2z ar

iii) We have

Jd 0 0 0 d 1
3Z+327 ox M9

d

dy
Definition 4.5 (Smooth cotangent space and differential). Consider a Riemann
surface X and fix a point p € X. Denote by

mgp C &p

the maximal ideal in the ring of germs of smooth functions in a neighbourhood of p.

1. The quotient
1._ 2
T, = mg;’p/mg’p

is in a canonical way a vector space over the residue field

C :k(p) = égp/m&m

named the smooth cotangent space of X at p € X. Its elements are called smooth
cotangent vectors of X at p.

2. The canonical map
dy: 6 —T), fredpf:=f—f(p) modm)
is named the differential. Because

f—f(p) em,

its residue class inmeg /m(zp » is well-defined.
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The smooth cotangential space Tp1 is an invariant of the stalk &), of the smooth
structure sheaf & of the Riemann surface X. Because all rings &),,p € X, are iso-
morphic to the same ring R, the cotangent space Tp1 is also denoted 7' R and equated
with the cotangent space of the ring R.

Proposition 4.6 (Basis of the smooth cotangent space). Consider a Riemann sur-
face X and a point p € X. If
z2:U—-VvVcCC

is chart around p with decomposition
z=x+i-y

then the two differentials
(dpx ’ dpy )

form a basis of the smooth cotangent space Tpl. The cotangent vector derived from
agerm f € &,
2
dpf=f—f(p) modm

has the basis representation

d d
dof = SH0) - dypit S0y

Proof. The claim is local. Hence we may assume U C C ~ R? a disk with center p = 0.

i) Generators: The idea of the proof is to represent a smooth function f € &(U) by
its Taylor expansion

d d
1653) = F0)+ 5H0) 3+ F0) -y 1)

with the rest term r € &(U) satisfying

ar ar

Lemma 4.1 implies r € m[z,. We obtain

f—f0)= %(0) X+ aaj;(O) -y modm)
Hence 5 5
dof = 5H0) i+ 50)-dyy

ii) Linear independence: If the cotangent vector satisfies
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c1-dpx+cy-dpy=0€m,/m}
then its representing function
fi=ci-x+cyem,

already belongs to mf,. Lemma 4.1 implies that the partial derivatives at p = 0 van-
ish, i.e.

_adf _df,
0= g(l’) =crand 0 = afy(p) =03, g.ed.

The smoooth cotangent space Tp1 is a 2-dimensional complex vector space:

* Itis a complex vector space because it is defined by using complex-valued func-
tions.

¢ Itis 2-dimensional because the differentials of the two real coordinate functions x
and y form a basis.

The cotangent space Tpl is attached to the point p € X. The index p must not suggest
that its elements are germs - they are not. We will see that the cotangent vectors
from Tp1 are the values at the point p of the germs of certain differential forms de-
fined in an open neighbourhood of p.

Proposition 4.7 (Splitting the smooth cotangent space). Let X be a Riemann sur-
face. Consider a point p € X. A chart around p

z:U—=V

splits the smooth cotangent space as the direct sum of two 1-dimensional complex
subspaces
1 _ 71,0 4 70,1
T,=T,"&T,

with

Tpl’0 =C-dyzand Tpo’1 =C-dyz.
The splitting is independent from the choice of the chart. As a consequence, the
differential d, splits as

af
d,: & =T, d(f):= 5 drt
and 5
[
dy: & =T d)(f) = 57 4%

satisfying
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dpf =d,f +d,f.

The complex subspace
1,0 1
Tp C Tp

is named the holomorphic cotangent space of X at p.
Proof. We assume the existence of a second chart of X around p € X

w:S—T

Then
unv #£0.

With respect to the chart z we have the Taylor expansions of w

‘V—W@)=%guﬁiz—AM)+%%Uﬁ%Z—ﬂpD mod m ,
and of w

Fp) = Top) - 2(p) + ) G- E(p)) mod i,
They imply

dow— ow 4 ow e
pw—aiz(P)' pZ+éTZ(P)' pL

_ ow ow _
dyw = a—z(p) -dpz+ 872(17) -dyZ.
The holomorphy of the transition function

-1

woz
implies
ow 0
0z
and together with Remark 4.4
8W_§;_O
dz  dz
Hence
adw ow

dpw = a—z(p) -dpz and d,w = a—z(p) “dpZ

with non-zero coefficients because woz~! is locally biholomorphic. As a conse-
quence the splitting
1 _ 71,0 70,1
I,=T"&T
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is independent from the chosen chart, g.e.d.

4.2 Exterior derivation

From real analysis it is well-known that differential forms of higher order are gen-
erated by the exterior product of first oder differentials. We recall the underlying
algebraic construction, the exterior algebra of a vector space.

Remark 4.8 (Exterior product). For a complex vector space V the exterior product
2
AV
is the complex vector space with elements
ViAVy, VI,Vo €V
which satisfy the rules
(Vi+V2)AV3=VIAV3+V2AV3
(A-vi)Ava =24 - (Vi Avp)
vi Avy = —vp A v (alternating)
If (vi,...,v,) is a basis of V then the elements

ViAvj, 1 <i<j<n

are a basis of A\?V. As consequence

dim/z\V: (Z) - @

Lemma 4.9 (Basis of sz). Let X be a Riemann surface. Consider a point p € X and
a chart around p of X
z: U=V

with decomposition
z=x+1i-y.

Then each of the following elements

dpx Ndpy and dpz NdpZ = —2i-dpx Ndpy
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is a basis of the 1-dimensional exterior product of the smooth cotangent space
2
2. _ 1
T, :=\T,

Definition 4.10 (Differential forms). Consider a Riemann surface X. For j = 1,2
define _ ) ‘
iy — J
I'X:= LJ)CGX]jr
with the canonical map
pj:TjX—>X7 Vi x ifveij.
A differential form on an open set ¥ C X of order j is a section of p;, i.e. a map

®:Y — T/X with p;o @ = idy.

In Definition 4.10 the condition
pjo® = idy
means that a differential form @ of order j evaluates at each x € Y to a value
o(x)eT/
in the smooth cotangent space respectively in its exterior power.

If
z:U—=V

is chart of X around p € Y then any first order differential form @ on U NY has the
form

o=f-dz+g-dz

with two functions f,g: UNY — C. Here dz and dz are the differential forms on U
which evaluate at a point p € U to

dpz € Tp1 respectively dpz € Tpl.
Any second order differential form 1 on U NY has the form
n=h-dzANdz
with a function 2: UNY — C. Here

dzNdzZ
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evaluates at p € U to
dpzNdyZ €Ty

Definition 4.11 (The sheaves of respectively smooth, holomorphic, and mero-
morphic differential forms). Let X be a Riemann surface.

1. A first order differential form
a):Y—>T1X, Y C X open,
is smooth respectively holomorphic respectively meromorphic if for any chart
z2:U—=V
the restriction to U NY has the form
olUNY =f-dz+g-dZ
with smooth functions f, g respectively
olUNY = f-dz
with a holomorphic respectively meromorphic function f.
2. Similarly, a second order differential form
0:Y -T?X,YCX open,

is smooth if for any chart
z:U—=V

the restriction to U NY has the form
olUNY = f-dzAdz
with a smooth function f.
3. For j = 1,2, the presheaf
&I(U):={@:U — T/U : smooth}, U C X open,

with canoncial restrictions is a sheaf &/ on X, named the sheaf of smooth differ-
ential forms of order j. Analogously one obtains the subsheaves

EW & and £ c &1

with the sections
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EVU) ={we&'(U): okx) eT! forallxe U}

and
ENU) ={we&'U): o) e TH forallxc U}.

One defines
&Y= & and & = &2

as respectively the smooth structure sheaf and the sheaf of smooth differential
forms of highest order.

4. The presheaf
QYU):={w:U — T'U : holomorphic}, U C X open,

with canoncial restrictions is a sheaf Q! on X, named the sheaf of holomorphic
differential forms.

5. The presheaf
AN U) :={w:U — T'U : meromorphic}, U C X open,

with canoncial restrictions is a sheaf .#' on X, named the sheaf of meromorphic
differential forms.

Definition 4.12 (Exterior derivation with respect to charts). Let X be a Riemann
surface and
z2:U—-C

a chart of X. For j = 0,1 we define C-linear maps
d,d',d":&(U) — &)

as follows:

» j=0:For f € &(U) set

df=0f-dze &) andd"f:=df dze ¥ (U)

and
df :=d'f+d"f € &U) (Total differential)
e j=I:For
o=g-dz+h-dze & (U)
set

dw:=dgNdz+d'hNdz=dhNdZ=oh-dzNd7 € E*(U)
d"w:=d"gNdz+d"hANd7=d"gNdz=dg-dZNdz € & (U)
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and
do:=do+d"oc & (U).

In Definition 4.12 note

d'gndz=0and d"hNdz=0.

Proposition 4.13 (The sheaf morphism exterior derivation). Let X be a Riemann
surface. The locally defined exterior derivations from Definition 4.12 are indepen-
dent from the choice of the charts. For j = 0,1 they define sheaf morphisms

dd.d":& — &

with
d'(&)c &P and d" (&) c &1

Proof. Consider a second chart
w:S—T.

Using the holomorphy of the transition function we obtain

dr= L awandaz— Zaw
Z—m w an Z_ﬁ w,

compare proof of Proposition 4.7. As a consequence

J 9 aw a9 ow
9z w9z 9z aw oz

1. j=0: Consider a smooth function f € &(U N S). With respect to the chart z we

have 5 5
_of ;o
As a consequence
df dw 9dz af dw d7
df_%.aiz.%.dw+ﬁ.8iz.ﬁ.dw
Hence 5 5
L of o
dff%derﬁ-dw

which is the exterior derivation obtained by using the chart w.
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2. j=I:
i) First we proof the independence for the exterior derivation d':

Because
4160 U) =0

it suffices to consider
o=f-dze&OVWUNS).

Transforming dz we obtain with respect to the chart w

oo (Za) (5 2)

and
0 d7 af 0z
/ [ pp— [p— . W—= —+ —— . W
dow= w<f 8w> dw A\dw 5w I% dwA\dw
Here 2
Z
“wow
because 3
¥4
%—O.
Using
8f_c9f dz
ow  dz ow
we obtain

af 0z 07 af
/ = — —_— —_— _ — v
dw= 3z <8w dw> A <8w dw) Iz (dzNdz),

which equals the definition of d’ @ with respect to the chart z.

ii) The proof of the independence of d” is analogous.

iii) The independence of
d=d +d"

follows from part i) and ii).

Proposition 4.14 (Restriction and iteration of derivations). Let X be a Riemann

surface. The exterior derivations satisfy:

1. Restriction:
d2'=0and d'|&0 =d"|6% =0.
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2. Iteration:
0O=dod=d od =d"od": & — &

and
dlod//:_d//od/

i.e. each mesh is anticommutative:

!/

&ra &rtlg

d// \{ Jv dl/
!

gp,q—%—l - gp+1,q+1

Proof. 1. The proof follows directly from the local representation.

2. It suffices to prove the analogous claim on the level of stalks. Here the question
is local and w.l.o.g. X = C:

(dod)(f) =d(df) =

af of\ 9*f I*f 9*f ot
=d <8z+ z?z) = a—zzdz/\dzﬂ—ﬂdz/\dz-k%dz/\dz-i-a—zzdz/\dz—
r2f _
= 5% (dZNdz+dzNdZ) = 0.
Moreover 5
af °f
N _ | ¢S _7 7 _
(dod)(f)=d <az dz) 92 dzNdz=0
and 2
(@ od")(f) = 52 dzndz=0
07
Eventually

O:(dod):(d/+d//)o(d/+d//):d/Od/+dlod//+d//od/+d//od//

implies
dod"=-d"od, qed.

Definition 4.15 (Closed and exact differential forms). Consider a Riemann sur-
face X. For an open set U C X and m € N differential forms @ € & (U) withdw =0
are named closed and differential forms of the form dw € & (U) are named ex-
act.
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4.3 Residue theorem

In complex analysis an important property of a holomorphic function f with isolated
singularities are the residues at the singularities of f. The residue at a singularity is
defined by means of the Laurent expansion of f. On a Riemann manifold the Laurent
series and also the residue depends on the choice of a chart, hence it is not invariant.
The solution is to define the residue not for a function but for a differential form.

Definition 4.16 (Residue of a holomorphic differential form with an isolated
singularity). Let Y C X be an open subset of a Riemann surface, and consider
a point p € Y and a differential form

e (Y\{p}), pev.

After choosing a chart of X around p
7:U—VwithU CY, z(p) =0,
the differential form is given as

o|(U\{p}) = [-dz

with a holomorphic function

feoU\{p}).
One defines the residue of @ at p € Y as

res(w;p) == res(foz '; 0) e C.

Similarly to the terms in complex analysis one classifies in the situation of Def-
inition 4.16 the singularity of @ depending on the singularity of f as removable, a
pole or an essential singularity. A differential form is meromorphic if all singular-
ities are removable or poles. These definitions are independent from the choice of
charts on X.

Proposition 4.17 (Residue of a differential form). Let Y C X be an open subset
of a Riemann surface and consider a differential form

0eQ'(Y\{p}). pev.

The value
res(®; p)

from Definition 4.16 is independent from the choice of a chart around p.
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Proof. 1) The specific case ® = dg: Consider a holomorphic function

g€ 0(U\{p})

and a chart around p
z:U—=V.

g=Y cu?

nez

The Laurent series

implies the representation

d
dg:d/g: %dz: (Z n'Cn'an> dZ

nez

In particular
res(dg;p) = 0.

Apparently the result is independent from the choice of the chart.

d
ii) The specific case ® = e with ord(g; p) = 1: If the function g € &(U) has a
zero of first order with respect to the chart z then
g=z-hwithhe O(U), h(p) #0.

Then
dg=h-dz+z-dh
and
dg h-dz+z-dh dz dh

+
8 z-h z h

dh dh
Now h(p) # 0 implies the holomorphy " € Q' (U) and res (h;p> =0.Asa

res| —p|=res| —p| =1
g Z

independently from the chosen chart.

consequence

iii) General case: Assume
o= f-dzwith f € O(U\{p}).

Consider the Laurent expansion

91
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) oo
f:ZCn'Zn:<ZCn'Zn>+ch+ch'Zn~
n=0

nez n=-—oo

and define the Laurent series

-2 =3
Cn n+1 Cn n+1
= —z + "2
& n;mn—i—l V;)n—kl

Then

dz

ow=dg+c_1-—

Z

and

res(w;p) =0+c_1=c_;.

Both summands are independent from the choice of the chart according to part i)
and ii). The result proves the independence of res(®; p) and finishes the proof, g.e.d.

To prepare the step from the level of germs to the level of gobal objects we recall
some results from topology concerning locally finite covering and paracompactness.

Definition 4.18 (Paracompactness and partition of unity). Consider a topolog-
cial Hausdorff space X.

1. Locally finite covering: An open covering ¥ of X is locally finite, if any
point x € X has a neighbourhood W C X which intersects only finitely many open
sets from the covering, i.e. for only finitely many V € ¥

WNV #0.

2. Refinement: Consider an open covering % = (U;)ics of X. An open covering (V;) jes
of X - possibly with a different index set J - is a refinement of % if a map

O:J—1
exists satisfying for all j € J

Vi CUsj
Notation:

V<U,

3. Paracompactness: If each open covering of X has a locally finite refinement
then X is paracompact.

4. Relatively compact subset: A subset U C X is relatively compact if its closure U
is compact. For two subsets V C U C X the notation

Vccu

is a shorthand for
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V C X relatively compact and V C U.

Here one first takes the closure V with respect to the topology of X, and then one
requires V C U.

5. Shrinking: Consider an open covering % = (U;);e; of X. An open covering ¥ = (V;)ie;
of X - with the same index set [ - is a shrinking of % , expressed as

V<< U,

if foreachi el
VvV, cc U;.

6. Support: The support of a function
f:X—=C

defined on a topological space X is defined as

supp f:={xeX: f(x) #0}.

Similarly one defines the support of differential forms on open sets of a Riemann
surface X.

7. Partition of unity: A partition of unity subordinate to an open covering % = (U;)ies
of a Riemann surface X is a family of smooth functions

@i : X — [0, 1] with supp(¢;) CU;, i €1,

satisfying the following properties:
 The family (¢;);¢; is locally finite, i.e. each point x € X has a neighbourhood W
in X with
W Disupp(¢i) # 0
for only finitely many i € I,

e and

Z¢i=1-

iel

Note that the sum is well-defined due to the condition on locally finiteness.

Consider a Hausdorff space X, a relatively compact open set U C X and an open
subset
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VCcUwithV CU.

Then the closed subset V of the compact set U is compact itself, hence
Vccu.

As a consequence: If a covering % = (U;);es of a Hausdorff space X is formed by
relatively compact open subsets U; C X, i € I, then any shrinking

YV =Vi)iet <<%

satisfies for each i € /
V,ccU;.

We will apply the concepts from Definition 4.18 always in the context of Riemann
surfaces X. Hence we may assume that the open coverings of X under consideration
are formed by relatively compact subsets of X.

Proposition 4.19 (Partition of unity). Each Riemann surface X is paracompact,
and each open covering of X has a subordinate partition of unity.

Proof. 1) Paracompactness: By definition X is second countable. Any topological
manifold is locally compact. As a consequence X is paracompact, [35, 1.8.7 Satz 2].

i) Shrinking theorem: Every locally finite open covering of a paracompact space
has a shrinking, [35, 1.8.5 Satz 2; 1.8.6 Satz 2].

iii) Partition of unity: Each locally finite open covering of a paracompact space has
a subordinate partition of unity, [35, 1.8.6 Satz 3].

Remark 4.20 (Radé’s theorem on second countability). In Definition 1.2 of a Rie-
mann surface the required second countability already follows from the other con-
ditions. The result is due to Rado, see [8, §23].

Proposition 4.21 (Differential forms with compact support). Let X be a Riemann
surface and consider a differential form ® € &' (X) with compact support. Then

[ qo=o

Proof. The claim is a direct application of Stokes’ theorem on smooth manifolds.
But one can avoid the general case of Stokes’ theorem. Using a partition of unity as
atool for a “divide and conquer” method the claim follows already from the specific
case of Stokes’s theorem for open disks in R:



4.3 Residue theorem 95

We choose a finite covering
U = (U)k=1,..n

of the compact set supp @ with charts
2k U — Vi

and a partition of unity (@), subordinate to % with supp ¢ CC Uy. Then
0= +..+0,

with each
W =@ -0 E (g)(X), k=1,..n,

having compact support
supp @, CC Uy.

The claim reduces to compute for each k=1, ...,n

[ dor

Therefore we may assume w.l.o.g. X = C and
supp ® C Dg(0)

for suitable R > 0. Stokes’ theorem for open subsets of R? implies
/ / do = 0=0
Dg(0) |z|=R

0|9DR(0) =0, g.e.d.

because

Theorem 4.22 (Residue theorem). Ler X be a compact Riemann surface and let

P1s--+sPn ex

be finitely many pairwise distinct points. For any diffential form

weE Ql(X\{pl,...7pn})
holds

n
Z res(®; py) = 0.
k=1
Proof. Set

X' :=X\{p1,-sPn}
The differential form @ € Q'(X’) is not defined at the singularities. In general ®
does not extend as a holomorphic form into the singularities. But one knows from
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the classical residue theorem, that the Laurent series at the singulartity can be ob-
tained by integrating along a circuit around the singularity. Here the integrand is
holomorphic. The strategy of the proof in part i) modifies @ around each singularity
to a smooth form g- @ € &(X) which extends by zero into the singularity.

i) Smoothing ® at each singularity: For each k = 1,...,n we choose a chart
around py

z Uy — D1 (0)

and we may assume for i # j
U;nN Uj =0.

Moreover, for k = 1,...,n we choose a smooth function ¢ € &(X) with compact
support
supp ¢ CC Uy

and satisfying for a neighbourhood U; CC Uy of py
KU = 1.
Consider the smooth function
gi=1—(¢1+...+¢) € EX).

It satisfies fork=1,...,n
glUg =0.

The product
g-oe&(X)

is well-defined and has compact support, because X is compact. Proposition 4.21

implies
d(g-w)=0.
// (8- )

ii) Extending each d(¢y. - @) by zero into its singularity: On
X' =X\ {p1,., P}
the restriction @|X’ is holomorphic and therefore satisfies
do=0.
For each k = 1,...,n holds in U, N X’
o=

hence in U/ NX'
0=d(¢ 0) =dw € E*(U\ {p}).
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see Figure 4.1.

Fig. 4.1 supp d(¢y - ) dashed

The extension of d(¢y - @) by zero to the point p; defines a global smooth differ-
ential form

d(¢- 0) € E(X)

with compact support contained in Uy \ U;.

The equation on X'
dg-0)=do—Y d(g.-0)=-Y d¢- o)
k=1

implies for the extension to X the equation

d(g-w>=—;d(¢k-w>.

o=//xd<g‘w>=—,g//xd(¢k-w>.

iii) Applying Stokes’ theorem for open disks in the plane: For each k = 1,...,n the
differential form d(¢y - @) has compact support in Uy. Hence

//Xd(¢k'w)=//de(¢k'w)

Part i) implies
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and w.l.o.g. we may assume
Uy =Dg(0)CC

such that
supp ¢ CC Dg(0) and ¢|De(0) = 1

for suitable 0 < € < R < oo, Applying sucessively the equality
d(¢y-®)=dw =0onUj,

Stokes’s theorem for open sets in the plane, and the residue theorem from complex
analysis in the plane show

/de(q)k'w)://ag\z\gzed(q)k'w) = lz‘:R(bk'O)— ‘z|:£¢k-(0=
—/‘Z‘zsq)k-w: _/|z\=ew: —27i - res(@; py)-

Z/ d(¢p-0)=2mi- Zresa)pk) g.ed.

=1

We obtain

Remark 4.23 (Residue theorem). Consider the Riemann surface X = C, the point p =0 € X

and the holomorphic form

d
—Ze a'(ch).

Then
res(@; p) =2mi # 0.

The example shows that Theorem 4.22 needs the assumption of compactness.



Chapter 5
Dolbeault and de Rham sequences

5.1 Exactness of the Dolbeault sequence

The present section solves the partial differential equation
df = g with smooth source g € &(X)

for disk domains
X =Dg(0) CC with 0 < R < co.

The result is called Dolbeault’s lemma.

Theorem 5.1 (The inhomogeneous d-equation with compact support). For each
smooth function g € &(C) with compact support exists a smooth function f € &(C)with

§f:g.

Proof. The solution will be obtained by an integral formula using the Cauchy ker-
nel. The important step of the argument is Stoke’s theorem.

We define

FiCoC, f(2): zm//C—dCAdC

To show that the integral is well-defined for each fixed point z € C we introduce
polar coordinates around z

¢ =z+re® withd{ ANdE = —2ir drAd6

Hence

2n _|_ 27 .
:—*/ "8k :,e Fdrd@——*/ /gz+re e 0 drde
re'

99
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with R > 0 suitable. Hence the function f is well-defined on C. After the substitu-
tions
first { = z+w, d{ = dw, then eventually w = {

~ omi // C—ch/\dc_i //DR w d Ndw =

271?1 //DR Z+C dCAdZ

The integral depends smoothly on the parameter z. Hence we may interchange inte-
gration and differentiation with respect to Z.

72) = //DR Z+C gdCAdgzmlLo//fxswgchdC

with the annulus

we obtain

Ag:={feC: e<|{|<R},e>0

The chain rule applied to

dg(€+2) and to dg(C+2z)
07 ot

shows for § € A

d8(+2) 1 _dg(§+a) 1_ 2 (g(¢+2)
Jdz ¢ ¢ ¢ a ¢
because
%,
¢
We obtain
af(2) mg%/Aeac< )dC/\dC——hm// do
with the differential form
o(g) =5 g(ég“) dg € £19(4,)

Stoke’s theorem for a disk in the complex plane applies:

z) = —lim dow = —lim ® = lim [0}
e—0./JA, £—0.J9A, £—0 |¢|=¢
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because for || =R
o(§) =0
Using the standard parametrization of the circuit with radius € > 0
¢ =g-e% withd{ =ie-e%d0 =il dO
gives

_ 1 2

f(z) =lim —- [ g(z+¢&-€%) do=g(z), g.ed.
e—=0 27 Jo

We now generalize Theorem 5.1 to the case of an arbitrary smooth source g, not
necessarily having compact support. The proof will make use of exhausting a given
disk by a family of relatively compact disks.

Theorem 5.2 (Dolbeault’s lemma for the inhomogeneous d-equation). Consider
a disk
X := Dg(0) with radius 0 < R < .

Then for each smooth function g € &(X) exists a smooth function f € &(X) with
df =g.

Proof. Because the right-hand side g € &(X) does not have necessarily compact
support, one cannot obtain a solution just by integrating the source function multi-
plied by the Cauchy kernel.

1) Applying Dolbeault’s lemma with compact support: We construct an exhaustion
of the disk Dg(0) by a sequence of relatively compact disks. Therefore we choose a
sequence of radii

O<Ry<..<R,<..<Rwith imR,=R
n—o0

and set
X, :=Dg,(0),neN, X_|:=0

Then we choose for each n € N a smooth function
Vi € £(X)
with compact support
supp W, CC X,41 and y|X, = 1.

We extend each product
Vn-8

by zero in the complement X \ X;,+ to a smooth function
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V. g €6(C)
with compact support
supp (Wn-8) CC Xpy1-
Theorem 5.1 provides for each n € N a smooth function
fn € &(X) with gfn =Un- 8,
in particular on X, B
Ifn =28

ii) Enforcing convergence by modifying the local solutions by global holomorphic
functions: Each member f;, from the family (f;),en solves the d-problem on Xj,.
But the functions do not necessarily converge to a global solution on X. Because
the difference of two solutions is holomorphic we may modify each local solution
by a holomorphic function to enforce convergence. We construct the modification
by induction on n € N*,

Step n > 1 constructs f, € &(X) satisfying:

e OnX,
afn =8
e and

o~ 1
an — Jn—1 ||Xn72 < on—1'

Induction start n = 1: We set

fi=fi.

By part i) on X; B
dfi=g.

Induction step n — n+ 1: On X, by induction assumption
§f~n =8

and by part i) on X, - and in particular on X, -

§f n+l =&
Hence on X, B .
(fur1—fa) =0
which implies ~
Jos1 = fn
is holomorphic on the disk X,,. We approximate the difference by one of its Taylor
polynomials P with

o 1
H(fnJrl 7fn)*P||anl < ﬁ
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and define
fn+l ::fn+1 —P.
Then
~ ~ 1
an+1 _fn”Xn—l < 27
On X,4+1 we have due to part i)

gfn-&-l :gfn-&-l _§P:§fn+1 =8

which finishes the induction step.

The resulting family (f,,),cny satisfies:

e OnX,
ofn=2¢

e and
~ o 1
||fn+1 _anXn,l < 27

For each fixed z € X the sequence

(fn (2))nent

is a Cauchy sequence by construction, hence exists

f(z) == lim f,(z).

n—oo

For given n € N* we decompose
f=Fat Y (1 = fo)
k=n
On X, for each k > n the function
Jeni = Fe

is holomorphic, and the sum

oo

F=Y (o1 = o)

k=n

is compactly convergent, hence holomorphic by Weierstrass’ theorem about normal
convergence. As a consequence the function

f:fn“"Ez

is smooth on X,, and satisfies
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df =0fy+0F, =df, =¢g.
Because n € N is arbitrary we obtain

fe&(X)anddf =g, g.ed.

Definition 5.3 (Dolbeault sequence). On a Riemann surface X the Dolbeault se-
quence is the sequence of sheaf morphisms

050660l 0

with the canonical injection

0 — 8.

Theorem 5.4 is a consequence of Dolbeault’s lemma and the Cauchy-Riemann
differential equations.

Theorem 5.4 (Exactness of the Dolbeault sequence). The Dolbeault sequence on
a Riemann surface X is an exact sheaf sequence.

Proof. Exactness of a sheaf sequence is a local statement. Hence we may assume X = Dg(0)
is a disk.

1. Exactness at 0: Apparently the injection of stalks
Op— &,

is injective.

2. Exactness at &: For f € 0, we have
dy(f)=0e&)".
For the converse direction: The inclusion
ker[d, : & — &' C 0,

is due to the Cauchy-Riemann differential equations for open subsets of C.

3. Exactness at &%': Apparently
dy (&) =0.
Concerning the opposite direction consider the germ of a smooth form

- 0.1
W, =gpdzp €&,
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We may assume that @, € 51(7) ! has a representative
o 5 0,1
w=gdze & (X)

with a smooth function g € &(X). Theorem 5.2 provides a smooth function f € &(X)
with
df =g
As a consequence -
d'f=0fdz=g-d7i=w, g.e.d.

One says: The Dolbeault sequence is a resolution of the structure sheaf & by
sheaves of smooth differential forms.

5.2 Exactness of the de Rham sequence

Definition 5.5 (De Rham sequence). On a Riemann surface X the de Rham se-
quence is the sequence of sheaf morphisms

0sCoehetd g2 40

with the canonical injection

Theorem 5.6 (Exactness of the de Rham sequence). The de Rham sequence on a
Riemann surface X is an exact sheaf sequence.

Proof. Exactness of a sheaf sequence on X means exactness on the induced se-
quence of stalks at any point p € X. Hence we may assume X = Dg(0) a disk
and p = 0. Note that all germs of smooth differential forms have a representative
on X.

i) Exactness at C: Apparently the injection of stalks
C,=C=6,

is injective.
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ii) Exactness at &: Exterior derivation maps the germ of a constant function to
zero. Vice versa, if the partial derivatives of a smooth function vanish, then the
function is locally constant.

iii) Exactness at &': Consider a smooth function f € &(X). According to
Proposition 4.14 we have
d*f=0.

For the opposite direction consider a smooth differential form
o=fd;+g-dz€ & (X)
with smooth f, g € &(X) and dw = 0. The vanishing dw = 0 implies

df = dg.

We have to find a smooth function F € &(X) solving the system of two partial
differential equations B
JF = f and OF = g.

Using that X is starlike with respect to 0 € X we write down the solution F as an
integral: For a given point z € X set

1
F(z) ::/0 (f(t-z)-z+g(t-z)-7) dt

The integral is well-defined because the integrand assumes its maximum on the
compact interval [0, 1]. We may interchange integration and partial derivation with
respect to the parameters z and Z, which shows F € &(X). Partial derivation of the
integrand and using

dg=0df
gives
9(f(tz)-2) +9(g(tz) -7) = I f (12) -1z + f(12) + 9g(tz) - 12 =
= df(tz) - 1z+ f(tz) + 9 f (t2) - 1Z.
Using
‘- %f(tz) =1-(df(tz) - z+df(tz) -2)
shows

aF(z):/U1 (f(tz)+af(tz)~tz+§f(tz)~t2) dt:/o1 (f(tz)ﬂjtf(tz)) dt =

Id
= | —(t-f(tz)) dt = .
[ 212 dt = 1)
Analogously, one verifies

JF =g.
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iv) Exactness at &*: We have to show that the sheaf morphism
d: &% 6?

is surjective. As a corollary of Dolbeault’s Theorem we will show that even the

restriction
d|gt0) = g" . £10) 5 &2

is surjective: Consider a smooth differential form
o =g-d7Adz € &*(X)
Theorem 5.2 provides a smooth f € &(X) with

adf =g.
We define
n:=f-dze &0X).

Then -
dn=d"'n=0fdziNdz=gdzNdz= 0, q.ed.

One says: The de Rham sequence is a resolution of the sheaf C of locally constant
functions by sheaves of smooth differential forms.

From a topological point of view the proof in Theorem 5.6 of the exactness of
the de Rham sequence uses the existence of a primitive for starlike domains and
Dolbeault’s solution of the d-problem. Apparently, Theorem 5.6 is a statement about
the smooth structure X,,,, and holds independently from the existence of any
complex structure. In the context of smooth manifolds one proves the theorem as a
consequence of the Poincaré lemma for the d-operator. The Poincaré lemma is an
analogue of the Dolbeault lemma.

The whole content of the present chapter carries over to higher dimensional com-
plex manifolds and their smooth structure. And there, in the context of higher di-
mensions, the results show their full strenght, see e.g., [14, Kap. I, §4].

Remark 5.7 (Poincaré Lemma). Consider a star-like domain
X cC~R%
Then for any 1-form @ € &'(X):
dw =0 (closedness) = ® = dn for a suitable n € &' (X) (exactness).

The proof results from the integral formula in the proof of Theorem 5.6.






Chapter 6
Cohomology

For a Riemann surface X the functor of sections over a fixed open set U C X
Shy — Ab

from the category of sheaves of Abelian groups on X to the category of Abelian
groups is left exact, i.e. for any short exact sequence of sheaf morphisms

07595 70
and for any open set U C X the sequence of morphisms of Abelian groups
0—ZU) % 9w) 2% 2 )
is exact. But in general, the morphism at the right-hand side
4(U) 2% 7(U)

is not surjective, see Remark after Proposition 2.10.

Cohomology, or right-derivation of the functor of sections, is the means to ex-
tend the exact sequence of Abelian groups above to the right-hand side by defining

groups
HI(U,Z), q>0,

and obtaining a long exact sequence in the category Ab.

109
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6.1 Cech Cohomology and its inductive limit

A suitable type of cohomology for sheaves on a Riemann surface X and also on
more general complex manifolds is Cech Cohomology. We now develop the basic
theory.

Definition 6.1 (Cochains, cocycles, coboundaries and Cech cohomology classes).
Consider a topological space X, a sheaf . of Abelian groups on X and an open
covering Z = (U;)jer of X.

e For each g € N the g-th cochain group of % with respect to % is the Abelian
group

cw,7)= [] FWU,n..nU,), (%, F):=0.

(ig...iq)€l9H!

Hence a g-cochain is a family
I = igwiq)ig...igers1

of sections f;, i, € F (Ui, N...NUj,) over the g+ 1-fold intersections
U; = UiOﬂ...ﬂU,'q

0--ig

of the open sets of the covering. The group structure on C?(% ,.% ) derives from
the group structure of the factors.

* For each g € N the coboundary operator
§:=81:C1UU,F)— CT (U ,F)

is defined as
8f = g = (gi()'-'izﬁ»l)(io...iq+1)61q+2
with the cross sum of restrictions

q+1
o k
8ig-igr1 = Z (_1) ']cio...fkik+]...iq+1|Uio~~~ik~~~iq+1
k=0

Here i, means to omit the index i.
* For each ¢ € N one defines the group of g-cocycles
29U, F) = ker[CU (U, 7) 2 TV (w0, 7)),

the group of g-coboundaries
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) Sq—l

BU U, F) :=im[C" (U, F clu, F),

and after checking
8708171 =0
the g-th Cech cohomology group of .F with respect to the open covering %

29U, F)

Hq(%,ﬁ) = W

Elements from HY(% ,.%) are named g-th Cech cohomology classes of .F with
respect to the covering % . Two cocycles from Z9(% ,.%) with determine the
same cohomology class in H4(% ,.%) are named cohomologous.

Remark 6.2 (Cohomology).

1. Cocycle relation: Mostly we will be concerned with cohomology in dimension g =0, 1,2
because a Riemann surface has real dimension = 2. For g = 0, 1 the cocycle con-
dition has the following meaning:

s g=0:A family (f;); € C°(%,.%) is a 0-cocycle iff for all i, j € I
fi—fi=0onU;NUj,
i.e. if the cochain satisfies on the intersections U; N U; the equality

fi=T1j

Because .7 is a sheaf, 0-cocyles correspond bijectively to global sections f € % (X)
and because
BY%,7)=0

we have

HN %, 7)=2°",F)=F(X).
o g=1: Afamily (f;;);; € CY(%,F) is a l-cocycle iff for all i, j,k € 1
0= fix— fix+ fij

i.e. the cochain satisfies on the 3-fold intersections U; N U; N Uy the cocycle
condition

Jie = fij + fik-
With the first cohomology group a new concept enters sheaf theory. The group

H (% ,7)

often collects the obstructions against glueing local solutions of a problem to
a global solution. Theorem 6.14 will show that on a Riemann surface all ob-
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structions vanish in the category of smooth functions, but not in the category
of holomorphic functions. A first means to classify compact Riemann surfaces
will be the size of the groups H' (% , ©), see Definition 7.17.

2. Iteration of the coboundary operator: One verifies that the composition of the
coboundary operator from Definition 6.1 satisfies for each ¢ € N the equation

8708971 =0,

i.e. cochains and coboundary form a complex of Abelian groups. For the proof
one uses that the sum in the definition of the coboundary operator is an alternating
sum. For example for g = 1:

A, 7) S 7)) S A, 7)
satisfies
8 ((fi)ier) = (8ij = fi— fi)ijer €CH (U ,.F)
and

8'((gij)ijer) = ((hijk = gjx — gix + &ij)ijer) € CHU . F).
As a consequence
hije = (fx — fi) = (fi = fi) + (fi — fi) = 0.
Hence
B, F) C 29U, F)

and the quotient

Z9U ,F)

B, 7)

)

bR

is well-defined.

3. The cohomology with respect to an open covering introduced in Definition 6.1
is named Cech cohomology and the corresponding objects are often written with
the Cech accent like in H"(%,.%). We will not use this notation.

Our next aim is to remove the dependency of the cohomology on a given open
covering of the Riemann surface X. We show how to abstract from the covering to
obtain a cohomology theory which only depends on X and on the sheaf .%.

Definition 6.3 (Refinement of open coverings). Consider a Riemann surface X,
and two open coverings % = (U;)ic; and ¥ = (V) jej of X.

o If ¥ < % with respect to the refinement map

T:J=1
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then 7 induces for any sheaf .% on X a restriction
79U\ F) = 2V ,F)
which maps the family
I = (figig)ig...ig With sections fi ;. defined on U;,N...N U,

to the family
v ‘ .
ty (f) =8:= (gj0-~-jq)j0~~jq
with sections defined as the restriction
g/OJq = fT(]())T(jq) |V/O N...N qu

* The restriction map is compatible with coboundaries, hence induces a refinement
map between the cohomology groups

1Y HU U, F)— HI(V,F).

Lemma 6.4 (The refinement map in cohomology). Consider a topological space
and a refinement of coverings

V= (V))jes <U = (Ua)aer

with respect to
T:J—=1

Then for any q € N the restriction
1Y HUU,F)— HI(V,F)
does not depend on the choice of the refinement map
T:J—1.

If g = 1 then the restriction map is injective.

Proof. 1) Independence: We only prove the case g = 1. For the general case see [14, Kap. B, §2.3]
and for its proof [7, §7, Satz]. Consider a second refinement map

o:J = IwithV; CUgs;), JEJ.

For a given cocycle
f= (faﬁ)aﬁ EZ](%,y)

we have to show that the two restrictions

I,Z/ (f) = gT = (g,fl) € Z! (7/, y) with g,fl = fr(k)‘c(l) onV, NV,
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and
sY(f) =:8% = (g0) € Z'(V,.F) with g = fopyo) on VN Vi
are cohomologous. By definition for any k € J
Vi C U‘L’(k) N Uc(k)
We define the cochain
h=(h)kes €CO(V,.F)

by the restrictions on Vj
hi := foek)

Then on V;, NV, the 1-cocycle condition implies

g — 8k = fowyot) = Fetyet) = Fowot) + fouyew) — Fowye) + frwyeq) =

= fotyrk) — Jowyzq) = e — M

Hence
g7 —g"=—6h

which proves the independence.

ii) Injectivity: Consider a cocycle

f= (focﬂ)ocﬁ 621(02/’9)
and assume
tf () =0eH' (V,7)
Hence a cochain
g=(2)i €C'(V,.7)
exists such that on
VinViNUq C Uiy NUy(jy NUa
(68)ij = 8j — & = fr(iye(j) = frlha + far(j) = far(j) — faz(i)
ie.
Jar(iy — & = far(j) — 8j
Keeping o fixed and varying i shows: The family

(fom:(i) —&i)i
is the restriction of a section
he € F(Uy)
satisfying on each Uy NV
he = far(i) —&i

For fixed o, B and variable i we have on
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UaNUgNV;
due to the cocycle condition
fap = fox(iy T feip = faet) — &) — (feiy — &) = ha —hg

Note fpek) = —fr(n)p-

As a consequence on Uy N Uﬁ

faﬁ = hq _hﬁ = (_hﬁ) —(—ha),

showing
f=06h
with
h = (_ha)a € CO(%72).
Therefore

[f]=0cH (%, F), q.ed.

Definition 6.5 (Cech cohomology groups). Consider a topological space X and a
sheaf . of Abelian groups on X. For each g € N the inductive limit

HY(X,7) = imH (%, 7)

with respect to the family of open coverings of X and refinement maps
tf HYU,F) — HI(V ,F)

according to Definition 6.3 is named the g-th Cech cohomology group of X with
values in .%.

Lemma 6.4 ensures that in Definition 6.5 the refinement map between cohomology
groups does not depend on the choice of the refinement map ¥ < % . Therefore
the inductive limit is well-defined.

Remark 6.6 (Cech Cohomology). Consider a topological space X and a sheaf .% of
Abelian groups on X.

1. Consider two open coverings % and ¥ of X. Then two cohomology classes

[fo) € HY (% ,F) and [fy) e H(V ,F)
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are named equivalent with respect to refinement if a common refinement
W<VadW <U

exists with
ty ([fa)) =ty (Ify]) e HIW . F).

According to the definition of the inductive limit: Two cohomology classes which
refer to different open coverings are equivalent if and onl if they define the same
class in HX,.7).

2. For locally constant sheaves like Z or C on a manifold the Cech cohomology
groups from Definition 6.3 are isomorphic to the singular cohomology groups as
defined by the methods of algebraic topology, see [39, Théor. 4.17]. In particular,
for a compact Riemann surface X holds

H*(X,7Z)="7and H*(X,C) =C

because the underlying 2-dimensional compact topological manifold is ori-
entable.

Corollary 6.7 (Vanishing of H'(X,.%)). Consider a topological space X and a
sheaf F. Then are equivalent:

H'(X,.7)=0
e and for all open coverings % of X
H (% ,7)=0.
Proof. The result follows from the injectiviy of the restriction, see Lemma 6.4,
tY H' (%, F)—H (V,F)

for any refinement
YV <U, q.ed.

Theorem 6.8 is the particular case ¢ = 1 of the general Leray theorem which
states: The Cech cohomology cohomology cohomology of X with values in a
sheaf .7 can be computed as the Cech cohomology with respect to an open covering % , if .#
is acyclic with respect to %, i.e. if % has no cohomology on the subsets of the cov-
ering for the dimension ¢ = 1. Generalizing the theorem to arbitrary values g € N is
a difficult and lengthy task.

Theorem 6.8 is of fundamental importance for the explicit computation of coho-
mology groups. The theorem and Definition 6.9 are named in honour of Jean Leray
who invented the concept of sheaves.
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Theorem 6.8 (Leray). Consider a topological space X, an open covering of X
U = (Uoc)ocel
and a sheaf F on X. If the pair (F,% ) satisfies for all o € I
H' Uy, F)=0
then

H'(X,Z)=H'%,7).

Note. The group H'(Ugy,.%) denotes the first cohomology of the open set Uy
with values in the sheaf .. It is not a Cech cohomology group with respect to a
covering.

Proof. The proof will show that for any refinement
V=Vj)jes <% = (Ua)aer

the refinement map
t? H (U, F)— H(V,F)

is an isomorphism of Abelian groups.

i) The map is injective due to Lemma 6.4.

ii) For the proof of the surjectivity assume a refinement map
T:J =1 withV; C Uy, j el
Consider a cocycle
f=iyez'(V.7)
We have to find a cocycle

F= (Faﬁ)aﬁ EZI(%Ng)

such that
1t/ (F) = f = (Feye(jy — fij)ij € B (V. F)
i.e. the difference is even a coboundary.

* The cocycle (f;j)ij restricts to each Uq to a coboundary
(fij),'j = (8a,i —goc,j)ij € Bl(Uoc nNY,F)

due to H' (Ug NV, F) = 0. And on Uy N Up the family
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(80, —8p.,); €COUaNUsg NV ,.F)
defines a section Fog € F (Ug NUg):

Choose arbitrary but fixed indices a, 8 € I. The open set Uy, has the open cover-
ing
UgNY = (Ua ﬂVj)jg.

The assumption of the theorem and Corollary 6.7, applied to the open set Uy C X
and its covering Uy, N Y, imply

H (Ugn Y, 7)=0
Hence a cochain
8a = (goc.,j)jel S CO(Uoc nNY,F)
exists such that for i, j € J

- onUgNV;NV;

fij=8a.j—8a.i
- onUgnV,nV;

Jii=28p.j—8p.i
- henceonUaﬁUﬁﬂViﬂVj

8o.j—8ai = [fij = 8p,j — 8B,

8a,j —8B,j = 8a,i —8B,i
Hence fixing a, 8 € I and varying j € J shows

(ga7j—gﬁ7j)jgj eZO(UaOUﬁﬁ”f/,ﬂ’)

is a cocycle on Ug MUpg. Therefore the sheaf property of .7 implies the existence
of a section

with for all j € J
Fa[}‘Ua ﬁUﬁ ﬁVj =8a,j —8B,j

s The family (Fog)ap € CY (U ,ZF) is even a cocycle:
For each j € J the cocycle relation
Fa)/ = Faﬁ + Fﬁy

is satisfied on each
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because

Fop +Fpy = (8a.j —8p.;) + (8p,; — 87.j) = 8aj = 87,j = Fay-
Hence the cocycle relation is satisfied even on

(Foc[i)ocﬁ € Zl(%,y).

e The cochain

hi=(—g);); €C'(V, F)

satisfies
tY(F)—f=8heB'(V,ZF):

‘We define the cochain
h=(hj)jes €C(V,.F)

as
hj:=—8qj),; € F(V;)

It satisfies on V; NV

(Oh)ij = hj—hi = g¢(i)i — &x(j).; = (&ciri — &(j).i) — (&x(j),j — &x(j).i) =
= Fetiye(y) = fij
hence

Sh=1t¥(F)—fecB'(¥,7), qed.

Definition 6.9 (Leray covering). Let X be a Riemann surface. An open covering % = (U;)er
is a Leray covering for a sheaf .# on X if for eachi € [

H'(U;,.F) =0.

Leray’s theorem 6.8 shows for a Leray covering % for .7
H'(X,Z)=H'\%,7).

Hence Cech cohomology with respect to a Leray covering equals sheaf cohomology.
There is no need to compute an inductive limit.
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6.2 Long exact cohomology sequence

Remark 6.10 (Left exactness of the functor I'(X,—)). On a topological space X the
covariant functor “global sections”

I'(X,—):Sheaf, — Ab, I'(X,.7) = F(X),

is left-exact, i.e. for any short exact sequence of sheaves of Abelian groups on X

0%9&%&%%0

the sequence of Abelian groups

01X, 7) 2 rx,9) 28 rix)

is exact.

Here Sheaf, denotes the category of sheaves of Abelian groups on X and Ab
denotes the category of Abelian groups.

Note: For any open covering % of X and any sheaf .% holds
rx,7)=7Xx)=2%,7)=H(%,#)=HX,%).

Definition 6.11 (Connecting morphism). Consider a topological space X and a
short exact sequence of sheaves of Abelian groups

04?&%@%40,

see Definition 2.8. A morphism, named connecting morphism of the short exact

sequence,
d:H'(X, ) — H'(X,.F)

is defined as follows: For all x € X the morphism
8 Y = I

is surjective by definition of the exactness of the sheaf sequence.

* Hence for any element
he #(X)=H(X, )

an open covering % = (U;);e; of X exists and a family

& €YU, icl,
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satisfying for all i € 1
Bu;(g:) = hi == h|U;.

» For each pair i, j € I on
U,'j = UiﬂUj

the elements

gij=8;— & €9 (Ui)
satisfy

Bui; (8i7) = hj|Uij — hi|U;; = 0.

Hence there is a family

f=fij)ijec (%, 7)
satisfying on U

anj(ﬁj) = &ij-
For each triple i, j,k € I on
Uij :=UiNU; N U
holds
o, (fix — fie + fij) = gjx — ik + 8ij = 0.

Because ay, is injective, the family f = (f;;); ; is even a cocycle

fez'(w,7)

and the class
[fleH (%, 7)

is well-defined.
* Via the canonical map induced by the inductive limit
n:H\(%,F)—H'(X,.7)

we define
a(h) := n([f]) eHl(X,ﬁ).

Remark 6.12 (Connecting morphism).

1. The construction of d in Definition 6.11 operates by “climbing stairs” according
to
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(04
0— 7 9 H — 0

(fij) < (gij =g — &)
1
(gi)

(i)
2. The definition of the connecting morphism from Definition 6.11
d:H'(X,#) — H' (X,.7)

is independent from the choice of % and the choice of (g;); € Z' (% ,%), hence
a well-defined morphism of Abelian groups.

3. Definition 6.11 generalizes to a family of connecting morphisms between the
higher cohomology groups

01 :HY(X,#) — HI" (X,.7), g €N,

with @9 := 9, see [7, §8 Satz 1].

Theorem 6.13 (Long exact cohomology sequence). Let X be a topological space.
A short exact sequence of sheaves of Abelian groups on X

07 %95 w0,

induces a long exact sequence of Abelian groups
0
0= H' (X, 7) % H(xX,9) B HO(x, o) &

HX,.7) % x,9) % 1 x, )

Proof. 1) Exactness at
H°(X,.#) and H(X,9)

follows from the left-exactness of I' (X, —), see Remark 6.10.

ii) Exactness at HO(X, %#):
¢ First, assume that
h=(h), € 22U, ) =H(X, )

satisfies
h=0cH (X, 7).



6.2 Long exact cohomology sequence 123
By definition the element 94 is represented by a cocycle
f=fipy ez (% . F),
and by assumption f is a coboundary: There exists a cochain
F=(F)ieC(%,7)

satisfying on U;; = U; NU;
fij=Fj—F.

Hence
a(fij) = a(Fj) — a(F).
By construction
a(fij) =8 —8i-

Therefore
We obtain a global section
G:=(gi+a(R),cZ’(%,9)=H"X,9)
satisfying
B(G) = (B(s:); = (hi); =h € H'(U . A) = H(X, 7).
¢ Secondly, consider an element
g=(81);€2°(%,9)

and set
h=pB(g)-
If
f= (fij),‘j EZI(%vth)

represents d°/ then according to the definition of 9%/
a(fij)) =8;—8 =0
Injectivity of a implies f = 0, in particular
[f]=0c H (% ,.7) and 3°h := n([f]) =0 € H'(X,.%).

iii) Exactness at H'(X,.%) and at H' (X ,9): See [8, §15, Satz 15.12], q.e.d.

Theorem 6.13 generalizes to connecting morphisms between cohomology
groups H9(X,—) of arbitrary order ¢ > 2. The proof presents some technical
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diffulties. They can be solved by introducing cohomology in the broader context of
presheaves and exact sequences of presheaf morphisms.

6.3 Computation of cohomology groups

Theorem 6.14 (Cohomology of the smooth structure sheaf). The smooth struc-
ture sheaf of a Riemann surface X satisfies

H'(X,&)=0.
Proof. According to Corollary 6.7 we have to show
HY (%,6)=0
for each open covering % = (U;);e; of X. Consider an open covering % and a

smooth partition of unity (¢;);c; subordinate to %, see Proposition 4.19.

Consider a 1-cocycle
1= f), € 2'(%.6).
Choose an arbitrary but fixed index i € I. For each k € I the product
O fii :UinUy — C
has support in U; N Uy and extends by zero to a smooth function
fii € E(U).
The sum

F; = E:LfL'E é?(LG)

kel
is well-defined. On U;NU; we have

F—Fi=Y fi—Y fiy=Y 0 (fuii—fij) =

kel kel kel
==Y O (futfis) ==Y 0 fij=Fi- Y 0= fii
kel kel kel
Hence
f=0F

with the cochain
F = (F)er €CO(%,8), q.ed.
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Analogously to Theorem 6.14 one proves by means of a partition of unity for
other sheaves of smooth objects:

H'(X,6Y)Y=H'(X,6")=H'(X,6'"0) =H'(X,6%) =0
and with some additional work for all these sheaves also the vanishing
HI(X,—)=0,g>1.

Theorem 6.15 makes precise in which way elements of a first cohomology group
act obstructions.

Theorem 6.15 (The theorems of Dolbeault and de Rham). Consider a Riemann
surface X. Then

1. Dolbeault: The resolution of the structure sheaf € by the Dolbeault sequence,
see Definition 5.3, induces an isomorphism of complex vector spaces

HO(x,&%1)

HI(X’ﬁ) =~ d//
im[HO(X, &) L5 HO(X, 601

The resolution of the sheaf !

dl/
050 5 &0 0l 40
induces an isomorphism of complex vector spaces
HO(X,&M)

H] (X7Ql) =~ d//
im[HO(X,&19) L5 {O(x, £11)]

The groups on the right-hand side are named the Dolbeault groups Dolb®' (X)
and Dolb™ (X) of X respectively.

2. de Rham: The resolution of the sheaf C by the de Rham sequence, see Definition 5.6,
induces an isomorphism of complex vector spaces

ker[HO(X,&1) 1>H0(Xag2)]
imlHO(X, &) % HO(X,&V)]

H'(X,C) ~

The group on the right-hand side is named the de Rham group Rh' (X) of X.

In addition one has apparently the Dolbeault groups

H(X,0) = ker[H’(X, &) d_N>H0(X7gO,1)} —: Dol (X)
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HO(X, Q1) = ker[HO(X,£10) L5 HO(X, £11)] =: Dolb"°(x)

Proof (Theorem 6.15).

1. The exact Dolbeault sequence, see Theorem 5.4,

00— &L 60 0

induces the long exact cohomology sequence

0= H(X, 6) — HO(X, &) L5 HO(x, 601 25 H'(X, 6) — H'(X, &) =0

which proves the claim about &.

Exactness of the sequence of sheaves

05 Q' 5 g0 L o1 g

means exactness of the corresponding sequence of stalks at each point x € X.
Hence we may assume X =Candx=0¢€ C.

« Exactness at Q: We have the injection Q! < &0

Exactness at &1’0: If
o=fdzeQ!

then d” @ = 0 because f is holomorphic. For the converse assume
n=fdee &’

with d”’1 = 0. Then df = 0, hence ® € Q.

Exactness at @“}1’1: Consider a form
o=gdiNdze &M
Theorem 5.2 provides a smooth germ f € &, satisfying
af =g.

We set
n:=fdzc &

Then _
d'n=0fdz Ndz=gdz Ndz= .

The resolution of Q! induces the long exact cohomology sequence
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0= HO(X, QY = HO(X, 619 L mOx, 1) L B (x, Q1) — HI (X, 619 =0
which proves the claim about Q.

2. The de Rham sequence

05C—oebe' e 50

is an exact sheaf sequence, but it is not a short sequence. Hence we split the de
Rham sequence into two short exact sequences according to

d
A

0—-C—¢&
T

NS
7
7N
0 0

by introducing the sheaf

T =kerl&' S £ =iml& L &)

Note that the kernel of a sheaf morphism is a sheaf. We obtain the two short exact
sequences
05CoeL 750
and J
0=F 5656 =0
* The first sheaf sequence has a long exact cohomology sequence with the seg-
ment
0 d 170 % 1
H(X,&)—>H (X,¥) —H (X,C)—-H (X,&)=0

which implies

Here
im[HO(X,&) % HO(X, 7)) = im[H(X, &) % HO(X, &)

* While the long exact cohomology sequence of the second sheaf sequence has
the segment

0 HY(X,.7) = HO(X,6Y) L HO (X, 67)
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which shows
H(X,.7) = ker[H'(X,6") % HO (X, 62)).
Combining the results from both cohomology sequences we obtain

ker[HO(X,&1) 4 HO(X, £2)]

H'(X,C) ~ y
im[HO(X,&) S HO(X,&1)]

which finishes the proof, q.e.d.

Theorem 6.16 (Cohomology of the structure sheaf of a disk). Consider a disk
X:=Dg(0)CC, 0<R< 0.
Then
H'(X,0)=0.

Proof. The idea of the proof is to consider a holomorphic cocycle from the view-
point of smooth functions. The cocyle splits in the smooth context due to Theorem 6.14.
Then Dolbeault’s Theorem applies about the solution of the inhomogenous d-differential
equation.

i) We apply Corollary 6.7. Consider an open covering
U = Ui)iel
of X and a cocycle

f= (fl'j)i_’jel € Zl(%a ﬁ)‘

We consider f € Z' (% ,&) as a cocycle with values in the sheaf & of smooth func-
tions. Theorem 6.14 states
H'(X,&)=0.

Hence a cochain

(81)ier €CO(U,6)

exists such that for all i, j € 1

fij=8j—&i
ii) Because f;; is holomorphic
o O _ 98 98
- dz dz 0f

Hence a global function i € & (X) exist which satisfies for all i € [

dgi

hU; = —
|l az
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iii) Theorem 5.2 provides a global function

P
g € &(X) with (.7‘;' —h.

Finally, the cochain
F = (F = gi—(g|U)ie1 € C°(% , &)

satisfies foralli € 1
JF;  d(gi—(8|Uy))
7z 0z

:0’

which implies

Felu,0).
Apparently for all i, j € 1
Fi—Fi=(g;— (8|Uj) — (¢i— (8|Ui)) = gj — 8 = fij
ie.

S(F)=feB (%,0), qed.

Theorem 6.16 shows: Any Riemann surface X has a Leray covering % for its
structure sheaf &: One takes coordinate neighbourhoods homeomorphic to a disk
as elements of the covering. The theorem is the basis for the computation of the
cohomology of locally free sheaves on Riemann surfaces.

Proposition 6.17 (Cohomology of the structure sheaf of P'). The structure sheaf
of the projective space satisfies
H'(P',0)=0.

Proof. The standard covering % = (Up,U; ) from Example 1.4 is a Leray covering
of P! due to Theorem 6.16. Hence Leray’s Theorem 6.8 implies

H'(P',0)=H (% ,0)

Consider a cocylce

(for:fro) € Z' (% ,0)
Because Uy N Uj is biholomorph equivalent to C* the holomophic function
fio=—fo € O(UpNU1)

is determined by its Laurent series with respect to the coordinate u := ¢ on Uy

Sfio(uw) = Z cp-u'.

nez
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On Uy NU; we have
fro(u) = fo(u) + fi(u)

with the definitions

—1 o 1 n
fow):=Y cp-uand fi(u):=) ¢yt =) cp <>
n=eo n=1

neN u
To split the function f we introduce the two holomorphic functions

80 :Up — C, go(x) := — fo(u(x)),

and
1 (o)
g1:U—-C gilx):=fil —|= c_,-v(x)"
Then for all x € Uy N U, holds
Jo1(x) = —go(x) +g1(x)

i.e. on Uy N U holds the splitting

Jor=—go+egi

Hence

% ,0) =B (% ,0)

which implies
H' (%,0)=0=H'(P',0), q.e.d.

Theorem 6.18 generalizes Proposition 6.17.

Theorem 6.18 (Cohomology of the twisted sheaves on P'). The cohomology of
the twisted sheaves on P!
£ :=0(k), ke,

satisfies
0 k> =2

dime H'(P',.2) = {1+(—k—2) k<-2

In particular
dime H'(P', 2) = dimec H'(P!, 2" ©4 Q).

Proof. The standard covering
% = (UOa Ul)

is a Leray covering of P! for .. We choose coordinates
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21 20
u:=—andv:=—
20 11

with the transformation

Hence
We have

On one hand,

VAR AE { Z ¢, -u" : convergent Laurent series}.

n=—oo

On the other hand,
Bl(%,f) = {S()—Sl S g(U()l) : (S(),Sl) S f(U()) Xj(Ul)}

Using on Uy, the u-coordinate we obtain coboundaries as the following holomorphic
functions

« 0
B\, &)~ { Z cp-u —uk- Z dy-u" : convergent Laurent series} czZNw, <)
n=0

n=-—oco

From 1( )
VA4
Hl IP)I — ?
( 7°§’ﬂ) Bl(%’g)
results
dimc H'(P', %) = 0 k>=2
1+ (-k=2) k<=2

Recalling from Exercise 29 the isomorphy
Q' ~0(-2)

shows
LR =LV 0s0(-2)=0(—k—2).

The dimension of
H(P!, 0(—k—2))

has been computed in Example 2.11 and confirms

dime H' (P!, 2) = dim H*(P', 0(—k —2)) = dim H*(P!, 2" ®, Q'), q.e.d.
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Theorem 6.17 is a particular case of Serre’s duality theorem for invertible sheaves,
see Theorem 10.28.

Cech cohomology and cohomology theory for complex manifolds of arbitrary
finite dimension respectively complex spaces is the content of [7, §7 and §8]
and [14, Kap. A and Kap. B].

The book [17, Chap. VI] introduces sheaf cohomology by using sheaf resolu-
tions by fine sheaves: Chap. VI, Sect. B, Theorem 4 proves the uniqueness of the
cohomology theory for paracompact Hausdorff spaces. The book [12] is devoted
to sheaf theory and provides different methods to obtain a cohomology theory. A
general reference for sheaf theory is [3].



Part 11
Compact Riemann Surfaces






Chapter 7
The finiteness theorem

On a compact Riemann surface X the structure sheaf satisfies
dim H*(X,0) = 1.

The result is a consequence of the open mapping theorem for non-constant holo-
morphic functions. The finiteness theorem is a far reaching generalization: For all
invertible sheaves .2 on X and all g € N holds

dim H1(X, %) < .

This finiteness result does not generalize to the sheaf .# of meromorphic functions:
We have seen that .2 (P!) is a pure transcendental field extension of C, hence

dim HO(P', .4 ) = oo

If not stated otherwise, all vector spaces in this chapter are complex vector spaces
and all dimension formulas refer to their complex vector space dimension.

7.1 Topological vector spaces of holomorphic functions

The present section combines functional analysis and complex analysis. Our first
aim is to provide certain groups of holomorphic functions and holomorphic cochains
with the structure of a topological vector space. In general these spaces are infinite-
dimensional vector spaces. Therefore one has to provide them with the additional
structure of a topological vector space. One of the strictest structures of this kind are
Hilbert spaces. More general structures are Fréchet spaces.

Cohomology groups are cokernels. Hence an element of a cohomology group
is an equivalence class. First, one has to define a topology on cocycles and on the

135
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subgroup of coboundaries. Secondly, one has to obtain a well-defined topology on
the quotient. All these topologies are generally obtained by means of a suitable atlas
of the manifold. Therefore the final step is to verify that the induced vector space
topology is independent from the chosen atlas.

Definition 7.1 (Fréchet space).

1. A topological vector space is a vector space such that addition and scalar multi-
plication are continuous functions. We assume that the base field is C, provided
with its Euclidean topology.

2. A seminorm on a vector space V is a map
p:V—-oRy
satisfiying:
i)Forall A € CandforallveV
p(A-v)=|A[-p(v)

ii) Forall vi,vo, €V
p(vi+v2) < p(vi) +p(v2).

A seminorm p is a norm if in addition
p(v) =0 <= v=0.

3. A topological vector space V is a Fréchet space if V is a complete Hausdorff
space and the topology is defined by a countable family (p,),cn of seminorms,
i.e. the finite intersections of sets

V(j,e)={veV:p;(v)<e}, >0,
form a neighbourhood basis of 0 € V.

Apparently the concept of Fréchet spaces generalizes the concept of Banach
spaces by replacing a fixed norm by a countable family of seminorms. A sequence

(fv)veN

in a Fréchet space V is a Cauchy sequence if for each neighbourhood of zero W C V
exists N € N such that forall v, u > N

fv_fu cW.

Each Fréchet space V is metrizable, e.g. by the metric
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d(f,g) = i i pn(f_g)

0 [,8 €V.
nzozn 1+ pu(f—g)

Definition 7.2 (Topology of compact convergence). Consider an open set U C C.
On the vector space &'(U) of holomorphic functions on U the topology of compact
convergence is defined as follows: A sequence

(fv)veNv

of holomorphic functions f, € O(U), v € N, is convergent towards f € O(U) if
and only if for each compact K C U

lim fy|K = fIK
V—oo
as the limit of uniform convergence.
Proposition 7.3 (Fréchet space ¢'(U)). Consider an open set U C C. The vector

space O(U) of holomorphic functions on U provided with the topology of compact
convergence is a Fréchet space.

Proof. One chooses an exhaustion (U, ),cn of U by relatively compact subsets
U, CCUpt1, n €N,
and defines the seminorms
pa: OU) =Ry, pulf) = Ifllu, = sup {1£@)] : z€ U}
The Hausdorff property follows from the equivalence
f=0 <= p,(f)=0forallneN.
Completeness of &'(U) follows from Weierstrass” convergence theorem, see [41, Ch. 3],

q.e.d.

The vector space of complex square-integrable functions L?(U,C) is a Hilbert
space with respect to the Hermitian scalar product

<—,—>:L}*U,C)xL*(U,C) = C, < f,g >= / f(2)-g(z) dxndy
Ju
For each f € L*>(U,C) denote by

12wy = vV<f.f>

the induced norm.
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Definition 7.4 (Square-integrable holomorphic functions). For an openset U C C
denote by

2(W,0)={f € OU): |f}) <=} C (U.C)

the subspace of square-integrable holomorphic functions.

Proposition 7.5 (Estimating L’>-norm by sup-norm). For an open setU C C
and f € L*(U,C) holds

£ 2wy < Vvol(U) - [ fllu < ee.

vol(U) := //U dx Ady.

Here

Lemma 7.6 (Orthogonal basis). Consider a point a € C and the disk
D :=Dg(a), 0 <R < oo.
1. The family of monomials
On(2) = (z—a)", nEN,

is an orthogonal basis in L*(D, 0) with

2n
2 _ 2
10nlli2p) = 7R S

2. For f € L*(D, 0) with Taylor series
f)=Y e (z—a)
n=0

the coefficients of the Taylor series equal the Fourier coefficients with respect to
the orthogonal basis, i.e.

o < fi@, >

T

||¢"”L2(D)

In particular
(=] 2
2 2 on lcnl

— n'R . R R,
Hf”LZ(D) n;() n+1

Proof. 1. i) One computes the values
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< On, 9 >cC

by introducing polar coordinates.

ii) To verify completeness of the orthogonal family we have to show for
each f € L*(D, 0):

<fy@u>=0forallme N = f=0.

The holomorphic function f € &/(D) expands into a Taylor series with center a
and radius of convergence > R

f@=Y e (z—a)"
n=0
Consider a radius 0 < r < R and set

D,:=D,(a) CCD

The Taylor series of f is uniformly convergent on D,. For each m € N

st f] fete-ar e

oo . s 2r r .
— ch.// (Z_a)l’l,(z_a)mdx/\dy: ch,/ / anrerl_ele(l’lfm) dp/\d@z
n=0 JJ Dy n=0 0 0

er

m+1

,
:27t-cm-/ p?dp =nr*-c,-
0

The Holder estimate implies

J[15-0nl dxndy =< 1,00 >< 1 iz Wollizioy <

Hence

lim / f~$mdx/\dy=//f~$mdx/\dy

r—R D, D
which implies

r2m R2m
<f,0 >=//f$ dxAdy=lim nr*-cp- ——=cp-TR> - ——.
The assumption
<f,0n,>=0

for all m € N implies: For all m € N

cn=0



140 7 The finiteness theorem
hence f =0.

2. The Parseval equation applied to the orthogonal family (¢, ),cn implies the for-
mula for ||f\\i2(D), q.e.d.

Proposition 7.7 shows: If a holomorphic function f on an open set is square-
integrable, then its L?>-norm majorizes for any compact subset the maximum norm
of f. Corollary 7.8 then concludes that L*>(U, ©) is a Hilbert space.

Proposition 7.7 (Estimating sup-norm by L?-norm after shrinking). Consider
an open set U C C and denote for each r > 0 by

U :={z€eU: D,(z) CU}

the subset of points with boundary distance at least = r. Then each f € L*(U,0)
satisfies the estimate:

1
r-\/T

1fllw. <

N2

Proof. Consider the Taylor expansion of F with center a point a € U,
f@=Y e (z-a)
n=0
Lemma 7.6 implies

1
[f(@)]* = leof* < e ||f||i2(D,(a))
Hence
1 1
|f(a)] < o 1A 20, (ay) < E 1Al 2y
and

1
1 fllo, < E 1A llz2w), g-ed-

Corollary 7.8 (The Hilbert space L>(U, 0)). Consider an open set U C C ~ R?
and the complex vector space of square-integrable holomorphic functions on U

12U,0):={f e 0W): |fI2) <}
The subspace of holomorphic square-integrable functions

L*(U,0) c [*(U,C)
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is a closed subspace of the Hilbert space L*(U,C), hence itself a Hilbert space with
respect to the induced scalar product.

Proof. Consider a sequence (fy)yen of holomorphic square-integrable functions
and assume the existence of a square-integrable function f € L?(U,C) with

f= ‘}ij}ofv ie. Jg{}onfv —fv||L2(U) =0

We have to show that the limit f is holomorphic. Because holomorphy is a local
property it suffices to prove that the restriction of f to suitable open subsets of U is
holomorphic. For each subset U, C U with D,(z) C U for all z € U, Proposition 7.7
implies
1
1f = Follve < == lIf = Foll 2w,

Weierstrass” convergence theorem implies the holomorphy of the restriction f|U,,
q.e.d.

The Hilbert space L>(U, &) is named a Bergmann space.

7.2 Hilbert spaces of holomorphic cochains

We now carry over the Hilbert space topology on square integrable holomorphic
functions to cochains and cocyles of Cech-cohomology. In order to apply the results
from Section 7.1 we choose on a given Riemann surface X a finite family of charts
which map biholomorphically onto disks in the plane.

Definition 7.9 (Square integrable cochains). Consider a Riemann surface X and
a finite family of charts on X

0;: U = D;(0) disk, i=1,...,n.

For a family

gesay

of open subsets

set

Y:=JUCX.
i=1

Then consider the Cech-cochains of Y with respect to the open covering % :
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« Forn=(f;) €CO%,0) set
||n||i2(o)/) = Z Hfl”%} € R* U{oo}
i=1
« For& = (fij) eCH(%,0) set

||§||i2(az/) =) ||ﬁj||i2 € RT U {eo}

ij=1
Here
Ifill2 == I fio &7 2wy
and
1fijllz2 = HﬁJO¢i_1||L2(¢i(U;ﬁUj))

We define the complex vector spaces of square integrable cochains on Y with re-
spect to % as

ng(%, 0)={ne CO(oz/7 0): Hn”iz(ag/) < oo}
and
Cpp(%,0)={E €C (U, 0): |2 <}
Note. Definition 7.9 does not presuppose that (U;*);e; covers all of of X.
Lemma 7.10 (Square integrable cocycles).
1. The vector spaces of square integrable cochains
Clo(%,0):={n eCO(%.,0): |Mlj2y <=} CCO(%,0)

and

CL(W,0):={E€C'(U.0): |E|%y,, <=} CC\%.0)
are Hilbert spaces.
2. Their subspaces of cocycles
ZEZ (%7 ﬁ) = ZO(%7 ﬁ) mc?Z (%a ﬁ)

and
ZL(%,0):=2"(u,0)nC),(% ., 0)

are closed, hence Hilbert spaces too.

The open mapping theorem for Hilbert spaces is the main ingredient from func-
tional analysis to prove the finiteness theorem 7.16.
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Remark 7.11 (Open mapping theorem of functional analysis). Any surjective con-
tinuous linear map
f:H — H;

between two Hilbert spaces is an open map. One proves the result in the more gen-
eral category of Banach spaces by using Baire’s category theorem, see [21, Satz 9.1].
The result generalizes to Fréchet spaces [31, Theor. 2.11].

In the following we often consider pairs of open coverings % and ¥ of a topo-
logical space, which form a shrinking

V<< YU.

Recall from Definition 4.18 that both coverings of a shrinking have the same index
set I, and for all i € I holds
VvV, ccU;.

Results about the cohomology of a Riemann surface X can be proven by referring
to suitable fine coverings of X. Lemma 7.12 shows how to extend a cocycle without
changing its cohomology class with respect to families

W <<V <<U

We work with the Hilbert spaces of square integrable holomorphic cochains. The
relative compactness of pairs of open sets

Vccu

is used to conclude that holomorphic functions on U become bounded when re-
stricted to the compact closure
VcUu.

Boundedness in the sup-norm then allows to estimate the L2-norm of the restriction.
We show by using the Dolbeault lemma: Any cocycle & € Zzz( ) (¥, 0) extends to

acocycle ¢ € Z,{z(%) (% , 0) such that with respect to #

§=¢+8n

with a cochain
ne ng(,,///)(”//, o).

In addition, the L?>-norms of { and 7 depend continuously on the L?-norm of €.
Lemma 7.12 will be used for the induction step in the proof of Proposition 7.14.

Lemma 7.12 (Extending cocycles and restricting cohomology classes). Con-
sider a Riemann surface X and a finite family of charts on X
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Assume families of open subsets

W <<V <<U<<U.

Then a constant C > 0 with the following property exists: For each & € Z£2 (v,0)
exist

* acocycle § € Z£2 (%,0) and

* acochainm € ng(W, 0)

satisfying with respect to W
=¢6+dm

in particular

Ll =[Elw]en (7, 0)

and
max{|| ¢l 22> IMll2om} < C-1E 2y

Proof. We set
n n
V==V, W= |#|, U == U’
i=1 i=1
i) Extend the cocycle from ¥ to % : First, we consider the smooth category and split
E=(&j)ijmtm €2 (V,0) CZN(V &)
as
éij =8j—8i
with a smooth cochain (g;)i—1, . € C°(7,&). Because
d//gij — 0
we have on V;NV;
d//gi — d//gj
and obtain a global differential form

oc&4(V)

satisfying foralli =1,...,n
olV,=d"g;.

Because
wccv
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we may choose a function y € &(X) with
supp Wy CV and y|W = 1.

We obtain an extension
v-oc&NU).

For each i = 1, ...,n on the coordinate neighbourhood U; Dolbeault’s Lemma, The-
orem 5.2, provides a smooth function 4; € &(U;") with

d"h; =y 0|U;.
As a consequence, on the intersections U;" N U;f the functions
F,'j = hj — h,’

are holomorphic. Because
U CCU”

estimating the L?-norm against the sup-norm according to Proposition 7.5 provides

a cocycle
$ = (FjlUiNU,))ijo1,..n € Z),(% , 0).

i) Construct a coboundary on # : For each i = 1,...,n we have on W;
d'hi=y-0=0=d"g,
which implies the holomorphy of
hi —gi.

Because
W <<V <<U*

the estimate from Proposition 7.5 assures

hence on #
{-&=aon.

iii) Estimate the L*-norms:The Cartesian product of Hilbert spaces
H:=Z2,(%,0)xZ,(V,0)xCH(W,0)

is a Hilbert space with induced norm
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16.& Ml = 1€y, + 1€, + 1M

Its subspace

A={(LEmeH: (=E+onon W} CH

is closed because the restriction as well as the coboundary map are continuous.
Hence A is a Hilbert space itself. The canonical projection

pr2 :A_>Z£2(7/7ﬁ)v (6,6.;m) =&,

is linear and continuous. It is surjective according to part i) and ii). The open
mapping theorem, see Remark 7.11, implies: The map pr; is also open. Hence a
constant C > 0 exists such that any

é € Z[{Z (7/7 ﬁ)
has under pr, an inverse image

x:(Ca€7n)€A

with
Xl 2 < C-N1€ll200), g-ed

Lemma 7.13 prepares the proof of Proposition 7.14. It formalizes the result:
Those holomorphic functions on an open set U C C with a high fraction of their L?-norm
concentrated near the boundary of U form a finite-dimensional subspace of L?>(U, ©).
Hence Lemma 7.13 indicates the point where certain subspaces of holomorphic sec-
tions with finite co-dimension are identified.

Lemma 7.13 (Finite codimension). Consider a pair of relatively compact open
subsets
WccucC

Then for each € > 0 a closed subspace A C L*(U, O) exists with finite codimension
such that for all f € A

12wy < € 1 ll2w)

Proof. i) Topology: Because W is compact and W C U we may choose a radius 7 > 0
and a finite set
P .= {al,...,ak} cw

such that
W C |JD,p(aj) cc | Di(aj) CU

acP acP
We choose n € N such that

k
on+l <&
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Consider
A= {fGLZ(U,ﬁ) :ord(f; a) > nforalla € P},

the closed subspace of all functions which vanish at least of order n at each point
of P. Then
ACL*(U,0)

has codimension at most & - n.

ii) Estimate: For each fixed a € P and f € A we consider the Taylor series of f with
center a

For any 0 < p < r Lemma 7.6 implies
oo 2v+2 )
Iy = Lyl

In particular for r/2 < r

1 - r2v+2

1 1
2 -
||fHL2 /2 )) = 22n+2 Z V1 ‘ V| = 22n+2 ”f”LZ (Dy(a ) = 22n+2 ||f||L2

or
1
12 o, p(a) < gt I l2w)
Because a € P is arbitrary and
n
W C U Dr/Z(a)

k=1

we get

k
Il ow) < sazr Il < € Ifllpw), g-d-

Applying Lemma 7.13, Proposition 7.14 identifies certain closed subspaces
of Z' (% , 0 with finite co-dimension, which can be neglected for the cohomology
in the final proof of the finiteness theorem.

Proposition 7.14 (Restricting cohomology along relatively compact coverings).
Consider a Riemann surface X and a finite family % * = (U} )i=1,...n of charts on X

¢;: U = Di(0),i=1,...,n.

Assume families of open subsets of X
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W <<U<<U.
Then the image of the canonical restriction
H' (% ,0)—H'(W,0)
is finite-dimensional.

Proof. 1) Providing a distinguished finite-dimensional subspace of Z£2(02/ ,O0): We
insert a further family
W <<V <<U.

Lemma 7.12, applied to the triple of families, provides a constant C > 0 as scaling
factor for the extension from ¥ to % . We fix

11

£=3c

as the scaling factor for the restriction from % to #". Lemma 7.13 provides a closed

subspace
ACZL(%,0)

with finite codimension such that for all o € A
ol 2y < € lltll 2 )

Let
S:=Atcz,(%.0)

be the orthogonal complement of A. It is finite-dimensional. Each induction step in
the subsequent part of the proof will use the orthogonal decomposition

1
ZL,(%,0)=AaS

Note: We use the fact that in a Hilbert space each closed subspace has an orthogonal
complement; an analogoue does not hold in general Banach spaces much less in
Fréchet spaces.

We claim: The restriction of Z! (%, &) to # is cohomologuous with the restriction
of the finite-dimensional subspace S, i.e. for each cocycle

Ecz\ (w,0)

exist

* acocycle 6 €S CZ),(%,0) and

s+ acochainn € CO(#,0)
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such that on #
c=E48n, ie [o]=[E|cH (W,0).

ii) Inductive construction of ¢ and 1: Choose an arbitrary but fixed
Ecz (w,0)
The estimate from Proposition 7.5 allows to set
M =G| 2(y) <o
because ¥ << % is a shrinking. Hence Lemma 7.12 applies to the restriction
ElV ez,(V,0):

There exist
S €Z,(U,0)and g € CYL (W, 0)

such that on #
So=¢&+0mo

and
max{ 16l i2¢a), IMollizn) } <€ 1€lliary = CM

The orthogonal decomposition splits
$o =: o + op with unique o € A and oy € S.

Then
oy +0p =&+ 810

149

Our aim is to decrease step by step the error term ¢ € A by modifying oy to ¢ and
1o to M, such that in the limit the error term « vanishes. The idea to decrease the

sucessive error terms ¢, : Each step makes a round trip comprising

 the restriction from % to ¥

¢ and the extension from ¥ to %

The round trip reduces the error term by a factor at least 1/2.

We will obtain ¢ and 7] as convergent series

c=Y oy, 0,€5CZ,(%,0),
v=0
and

Tl = Z nv, nv ECEz(W,ﬁ)
v=0

By induction on v € N we verify: There exist elements
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Sy €ZL(U,0), Ny €CHLW,0),000 €ACZH(U,0), 6, €SCZH(U,0),

satisfying:
e OnW
v =0ay_1+0Mny,
e on%
gv = Oy + Oy

¢ and the estimate

1
max{||Cvll o) 1MVl o)} < 75-CM

Start of induction v = 0: With
o_1:= 5

the start of induction has been constructed above.

For the induction step (< V) — v+ 1:

1. By induction assumption the splitting
v =0y +oy

and the estimate for {, imply the estimate

1
llowll 22 < 2T'CM

Lemma 7.13 implies for the restriction of a, € A to ¥

1
lowll2ip) < €-llawll 2y < M

2. Lemma 7.12 applied to
|V €Z,(V,0)

provides elements
Cvi1 €Z(%,0) and 1y 11 € CHL(Y, 0)
satisfying with respect to #
Cvi1 =0y +0My 41

3. Splitting the extension {1 due to the ortogonal decomposition

€
$vi1 = Oy 1+ 0y EADS=Z,(%,0)
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provides the new error term Q.1

4. By induction assumption for j < v all constructed elements satisfy

§i=aj+oj
which adds up to
\4
av+ZG,—§+5(Z j)
j=0 Jj=0
The estimate from Lemma 7.12 implies the estimate
1
max{||Svsill2ia) IMviilleont < C-llavlipe) < 557-CM

This finishes the induction step.

iii) Convergence of the solution: Thanks to the estimate from part ii)

max{[[Svllr2c) Mvllrzon }< 5v CM

and the apparent estimate

max { ol 2y, 0l 2ar) | < N6vllizary

the two series
c:= Z oy €SCZ,(%,0)andn = va ChL(W,0)

are convergent and

lim av == O‘
V—roo

Hence on #
c=&E+6n, ged.

7.3 Finiteness of dim H'(X, 0') and applications

Due to the preparations referring to square integrable cocycles from Section 7.2 we
are now ready to prove the finiteness theorem 7.16.

Proposition 7.15 (Finite-dimensional restriction of cohomology along relatively-
compact pairs). Consider a Riemann surface X and a pair of relatively-compact
open subsets
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Yiccr,CX.
Then the image of the restriction map
H'(Y,,0) — H'(Y,,0)
has finite dimension.

Proof. Because Y is compactand Y| C ¥» we can find a finite family of charts on X
¢;: U = Di(0), i=1,...,n,

and families
W <<U<<U*

satisfying:

n n
Y CYl = UVV, CC?2 = UU,'CYZ.
i=1 i=1

e andforalli=1,...,n the sets
¢i(Ui), 9i(W;) C C

are disks.

The coverings % and % are Leray covers of respectively Y, and ¥, for the structure
sheaf @, see Theorem 6.16. Hence Leray’s Theorem 6.8 implies

H'(Y,0)=H (%,0)and H' (¥,,0) =H' (%, 0).
Proposition 7.14 implies that the restriction
H'(,,0) — H'(V,,0)
has finite-dimensional image. The restriction factorizes as
H'(Y,,0) — H'(V,,0) = H' (V,,0) = H' (1, 0).
Hence it has finite-dimensional image, qg.e.d.

As a corollary to Proposition 7.15 we obtain the fundamental finiteness Theorem 7.16
for compact Riemann surfaces.

Theorem 7.16 (Finiteness). For a compact Riemann surface X
dimcH' (X, 0) < oo.

Proof. We apply Proposition 7.15 for the special case
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XZY] =Y2, q.e.d.

Definition 7.17 (Genus). The genus of a compact Riemann surface X is defined as

g(X) :=dimc H'(X,0).

Due to Proposition 6.17 holds
g(Ph) =o0.

Proposition 7.18 is the first example of the principle that finiteness of the holo-
morphic cohomology implies the existenc of a meromorphic object with suitable
properties. Here the finitesness of the cohomology of the structure sheaf implies the
existence of a meromorphic function with suitable properties.

Proposition 7.18 (Existence of meromorphic functions). Let X be a Riemann
surface and Y CC X a relatively compact open subset. Then for any point p € Y
exists a meromorphic function f € 4 (Y) with a single pole, located at p.

Proof. Proposition 7.15 implies that the image of the restriction is finite-dimensional
dim im[H (X,0) — H'(Y,0)] =: k < o
Consider a chart of X around p
z: Uy — Dg(0)
Setting U; := X \ {p} defines an open covering
% = (Uo,Un)

of X. We consider the commutative diagram of horizontal restrictions with respect
to the refinement, and with vertical projections to the inductive limit

HY (% ,0) — H (% NY,0)

‘ﬁ

H\(Y,0)

H\(X,0)

Lemma 6.4 implies that the map
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n:H (% NY,0)—H\(Y,0)
is injective. Hence for the upper horizontal restriction
dim im[H (% ,0) - H' (% NY,0)] < k.

On
UoNU; =Uo \ {p} =:Uj

the holomorphic functions
1/7 € OU]), j=1,...k+1,
represent k + 1 cocycles
g ez (%,0) with (§)),, = 1/

The finiteness condition implies that the classes of the cocycles become linearly
dependent when restricted to Y: There exist complex numbers ci,...,cx41, not all
zero, and a cochain

n = (fo, 1) €CO(% NY,0)

such that on Uy NY
kt1

Z Cj- é’j = 57’[
j=1
As a consequence on Uj NY holds
k+1

Y (1)) = fi—fo.
=1

The cocycle
k+1

(fo+ Y. cj-(1/2). fye 22w Ny, )
i=1

J

defines a meromorphic function
fea(Y)
with a single pole at p € UpNY, q.e.d.
Note that Proposition 7.18 does not specify the order of the pole at p. The proof
only bounds the order by k£ + 1. In case of the complex torus
X=Y=C/A

holds the isomorphiy of sheaves
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0~Q'

The residue theorem, Theorem 4.22, implies: There is no meromorphic function on
the torus with exactly one pole, and this pole having the order = 1.

Corollary 7.19 (Existence of global meromorphic functions). Let X be a com-
pact Riemann surface. Then for any point p € X exists a meromorphic function f € 4 (X)
with a single pole, located at p. In particular the field

M (X)#£C
is an infinite-dimensional complex vector space.

Proof. The proof follows from Proposition 7.18 with Y := X, q.e.d.






Chapter 8
Riemann-Roch theorem

The theorem of Riemann-Roch is the fundamental result about the dimension of the
cohomology of a distinguished class of sheaves on a compact Riemann surface X.
The present chapter studies the theorem for sheaves ¢ attached to a divisor D. The
basis for all calculations is the finiteness result for dim H' (X, &) from Chapter 7.

Chapter 9 will refine the Riemann-Roch theorem by Serre’s duality theorem.
After introducing line bundles L and the corresponding invertible sheaves we then
show that any invertible sheaf has the form &) for a suitable divisor D on X. Hence
both theorems hold for the class of locally free sheaves of rank 1. The most general
domain of validity of both theorems is the class of coherent &-modules, which cov-
ers in particular all locally free sheaves of arbitrary finite rank. These sheaves arise
from vector bundles on X. But we will not cover this case.

8.1 Divisors

A divisor formalizes a set of poles and zeros of a given order for meromorphic
functions or differential forms on a Riemann surface X. E.g., a single pole at a point
x € X, with order k € N, is formalized by the map

—k x=xg

D:X—>Z,D(x):{0 %30

Similarly, an arbitrary set of poles is specified.

Definition 8.1 (Divisor). Consider a Riemann surface X.

1. A (Weil) divisor D on an open set U C X is a map

157
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D:U—7Z

with support
supp D :={x €U : D(x) # 0}

a discrete set, closed in U. Note. A discrete set A C U is closed in U iff it has no
accumulation point in U.

The set Div(U) of all divisors on U is in a canonical way an additive Abelian
group.

2. A point p € X defines the point divisor P € Div(X) with

1 x=p

P:X—>7Z,x— )
0 otherwise

3. For two divisors D1, D; € Div(U) one defines
Dy <D,
if forallx e U
D (x) < Dy(x).
In particular, D > 0 iff D(x) > 0 forallx € U.

A divisor D is named effective or non-negative if D > 0. Note. Apparently each
divisor D € Div(U) can be written as the difference

D=D;—D,

of two effective divisors D, D, € Div(U).

4. For compact X each divisor D € Div(X) has finite support supp D. Hence the
degree of the divisor
deg D := Z D(x)eZ
xesupp D

is well-defined.

Definition 8.2 (Divisor of meromorphic functions and differential forms). Con-
sider a Riemann surface X .

1. The divisor of a meromorphic function f € .#Z*(X), denoted div f or (f), is the
divisor
div f: X = Z, (div f)(x) := ord(f; x)

These divisors are named principal divisors.
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2. Two divisors Dy, D, € Div(X) are equivalent, denoted
Dy~ D,

if D; — D; is a principal divisor. The quotient group by the subgroup of principal
divisors
Cl(X) := Div(X)/{D € Div(X) : D principal}

is named the divisor class group of X.

3. For a meromorphic differential form @ € .#'(X), with @|U # 0 for all U C X
open, the divisor
divw:X -7

is defined locally: For a given point p € X one chooses a chart around p
z:U—=V.
On U one has the local representation
olU = f-dz
with a meromorphic function f € .#*(U). One defines
(div ©)(p) := (div f)(p)

The definition is independent from the choice of the chart because a holomorphic
coordinate transformation does not change the order of a pole.

Note that we do not define the divisor of a meromorphic function or of a differ-
ential form if they vanish identically in the neighbourhood of a point. For a compact
Riemann surface X Corollary 3.24 implies

deg(f) =0

for any meromorphic function f € .#*(X). Hence the degree induces a group ho-
momorphism with the same name

deg:Cl(X) — Z.

Every divisor D € Div(X) on a Riemann surface X singles out a subsheaf
Op C M

of meromorphic functions on X: One considers all meromorphic functions f with
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(f)>-D

For an effective divisor D, these are meromorphic functions with poles of no higher
order as defined by D. If D < 0, these are holomorphic functions having zeros at
least of the order defined by D.

The sheaves &p will play a dominant role in the study of compact Riemann sur-
faces X. The cohomology of &) is the subject matter of the Riemann-Roch theorem
in the present chapter and of Serre’s duality theorem in Chapter 9. We shall then see
that the sheaves Op are exactly the invertible sheaves of holomorphic sections on
line bundles on X.

Definition 8.3 (The sheaves of multiples of a divisor). Consider a Riemann
surface X.

1. For a divisor D € Div(X) the presheaf of multiples of the divisor —D
Op(U):={fe#U): ord(f;x) > —D(x) forallxc U}, U C X open,

with the canonical restriction of meromorphic functions is an ¢-module sheaf,
denoted Op. It is named the sheaf of meromorphic functions which are multiples
of —D, for short the sheaf of multiples of —D.

One defines the &-module sheaf
Q) =Q'®,0p.
Then
QLU) :={we.#'(U): ord(w; x) > —D(x) forall x € U}, U C X open.
2. For two divisors D1, D; € Div(X) with
Dy <D,
one has a canonical inclusion of sheaves
Op, — Op,.
The quotient sheaf, i.e. the sheafification of the presheaf
U— Op,(U)/0Op,(U), U C X open,

is denoted
D
Hp,* = Op,/ Op,.

It fits into the short exact sequence of sheaf morphisms

0—>6"Dl—>ﬁD2—>Jf£2—>O
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Note. Concerning the minus sign in Definition of & textbooks are not uniform:
The sheaf & equals the sheaf ¢'(d) from [16] with

0=-D.
Very useful is the vanishing result from Proposition 8.4.

Proposition 8.4 (Divisors of negative degree). Consider a compact Riemann sur-
face X and a divisor D € Div(X) with deg D < 0. Then

H°(X,0p) =0.
Proof. The divisor of a non-zero meromorphic function f € H(X, 0p) satisfies
(f)=-D>0

As a consequence, the principal divisor (f) has positive degree, a contradiction to
Corollary 3.24, which implies deg (f) =0, q.e.d.

Definition 8.5 (Sheaf of divisors). Consider a Riemann surface X. The presheaf of
additive Abelian groups

U — Div(U), U C X open,

with the canonical restriction of maps is a sheaf on X, denoted 2 and named the
sheaf of divisors.

Proposition 8.6 (Divisor sequence). On any Riemann surface X the following se-
quence of sheaves of Abelian groups is exact
0= 0" > 90

Here the sheaves of Abelian groups O* and #* are considered multiplicatively,
while 9 is considered additively.

Proof. The sheaf morphism

) Y 9(U) = Div(U), f > div f, U C X open,

is well-defined. It is surjective because each divisor - having discrete support - is
locally the divisor of a meromorphic function, g.e.d.
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The connecting morphism of the divisor sequence from Proposition 8.6
d:H'(X,2) - H'(X,0%)
is obtained as follows: Represent a given divisor
D e Div(X)=H"(X,2)

with respect to a suitable open covering % = (U;);; of X by a 0-cochain of mero-
morphic functions

(fi)ier € cu .,

with
D|U; =div f;, i€ I.

Then
oDcH (% ,0%)

is represented by the 1-cocycle of holomorphic functions without zeros

fi

g= (gij)i,jel e Zl (%,ﬁ*) Wlth g” = f
1

and
D= [g| € H'(X,0").

Proposition 8.7 (Cohomologyy of the sheaf of divisors). The sheaf 2 of divisors
on a Riemann surface X satisfies

H'(X,2)=0

Proof. 1) Integer valued partition of unity: Consider an arbitrary open covering %
of X. Second countability of X implies the existence of a countable refinement

V= (Va)nen <%
Proposition 4.19 implies the existence of a shrinking
W <<V
and a partition of unity (@,),cn subordinate to # = (W, ),en. i.e. satisfying

supp(9n) C Wy

For each x € X:

e For at least one n € N holds x ¢ W,
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» There exists an open neighbourhood W of x with
WnWw, #0
for only finitely many n € N
For each n € N define

1 xeW,butx¢ W, fork<n
0 otherwise

On: X = Z, Pp(x):= {

For each x € X we have

Z O(x) =¢u(x) =1, xeW,butx ¢ Wy fork <n
keZ

Then (@,),en is an integer valued partition of unity subordinate to #'.

ii) Splitting by means of an integer valued partition of unity: The proof is similar to
the proof of Theorem 6.14. For a given open covering % we choose a countable,
locally-finite refinement

V= (Vi)ieZ <U

with a subordinate integer valued partition of unity (¢;)
cocycle

iz see part 1). Consider a

f= (fij)ij € Zl(qf/v@)
Choose an arbitrary but fixed index i € Z. For each k € Z the product

O fri: VinVie — Z

has support in V; N'V; and extends to a function

fii Vi = Z,
i.e.
Jui € 2(V7).
The sum
F=Y fuc2(V)
keZ

is well-defined. On V;NV; we have

Fi—F=Y fj—=Y =Y, 0 (fii—fu) ==Y 0 Fii=fij- Y, %= fij

keZ kEZ kEZ keZ keZ

Hence

f=6F
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with the cochain
Fi= (R €COV,2), qed.

8.2 The Euler characteristic of the sheaves ¢

The hard part of the proof of the Riemann-Roch theorem for the sheaves Op on
compact Riemann surfaces is the finiteness theorem which has been proved in The-
orem 7.16. The subsequent computation of the Euler characteristic of the sheaf &p,
attached to a divisor D € Div(X), is a simple reduction. It starts with the considera-
tion of effective divisors.

The sheaf %Dlz is the means to compare the cohomology of two divisors D; < D».

Lemma 8.8 states the cohomological properties ijDlz. Together with Lemma 8.9 it
prepares the proof of Theorem 8.10.

Lemma 8.8 (Comparing two divisors). Let X be a Riemann surface and Dy, D; € Div(X)
two divisors with

1. Then

2. For compact X holds
dim¢ HO(X,%”DL?Z) =deg Dy —deg D.

Proof. The set
S:={xeX:Di(x) #Dy(x)}

is a discrete set, closed in X.

1. A given class from H! (X, %1?2) can be represented by a cocycle from
1 D,
Z(U, )
with a suitable open covering % of X. We choose a refinement
V=Vi)iet <%

such that each point s € S is contained in V; for exactly one index i € I. As a
consequence, fori # j €l

D
APV =0
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which imples

1 Dyy
Z\(v,p72)=0.
We obtain for the inductive limit
1 Dyy
H (X,j‘fD]z) =0.

2. For compact X the set S is finite and

HO(X, %) =T1(6p,)s/(0p,),

seS

Hence
dimc H*(X, %) = Y. dimg (0p,)s/(6p,), =

seS

=Y (Da(s) — Di(s)) = deg D> —deg D;.
ses

Here we used that the quotient of stalks

(ﬁDz)S/(ﬁDl )5

is isomorphic to the space of all Laurent series of the form
7D] (S)fl
Z cn- 7t
n=—=D;(s)

The latter is a vector space with the finite dimension

D;(s) —D(s), g.ed.

Lemma 8.9 (Comparing the cohomology of the multiples of two divisors). Con-
sider a Riemann surface X and two divisors

Dy <D,

on X. Then the inclusion
ﬁDl — ﬁDz

induces a surjective morphism
H'(X,0p,) — H' (X, 0p,)

with injective dual
i H'(X,0p,) - H'(X,0p,)".

Proof. The claim follows from the long exact cohomology sequence
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0— H(X, 0p,) = H'(X, 0p,) — H(X, #52) %

H'(X,0p,) — H'(X,0p,) > 0=H"(X, /")

of the sheaf sequence from Definition 8.3 and the application of Lemma 8.8, q.e.d.

Theorem 8.10 (Riemann Roch theorem for the sheaves 0p). Consider a compact
Riemann surface X with genus g(X) and a divisor D € Div(X). Then:

1. The complex vector spaces
H(X,0p) and H' (X, Op)

are finite-dimensional.

2. The Euler characteristic of Op
2(Op) :=dim H*(X, Op) —dim H' (X, Op)
has the numerical value
x(Op)=1—g(X)+degDeZ

Proof. The proof rests on the Finiteness Theorem 7.16 for the zero divisor D = 0
with its multiple the structure sheaf & = &)p. The long exact cohomology sequence
reduces the case of a general divisor to the specific case D = 0.

i) Effective divisor D > 0: Lemma 8.9 implies
0— H(X,0) — H(X,0p) — H (X, #") - H'(X,0) = H' (X, 0p) — 0
Due to the compactness of X Theorem 1.9 implies
dimH°(X,0) =1,
and Theorem 7.16 implies
g(X):=dim H' (X,0) < o

Lemma 8.8 implies
dim H*(X, /P) = deg D < o

As a consequence, the long exact sequence above implies
dim H' (X, 0p) < o

and eventually
dim H*(X, 0p) < oo



8.2 The Euler characteristic of the sheaves p 167

Computing the alternate cross sum of the dimension of the finite dimensional vector
spaces of the exact sequence gives

0=1—dim H*(X,0p) +deg D — g(X) +dim H' (X, Op)

or
x(Op) = 1—g(X)+deg D

ii) General case D € Div(X): We decompose D as the difference of two effective
divisors
D =D _DZa DlaDZ > 0.

Then D < D;. Lemma 8.9 implies the exact sequence
0— H(X,0p) — H(X,0p,) = H' (X, ") = H' (X, 0p) — H' (X, 0p,) = 0
Part 1) and Lemma 8.8 imply

dim H(X, 0p), dimH" (X, 0p), dim H'(X, ") < co.

Therefore also
dim H'(X,Op,), dim H'(X,0p,) < o

Computing the alternate cross sum gives
0 = dim H(X,0p) — dim H*(X, Op, )+

+(deg Dy —deg D) —dim H' (X, Op) +dim H' (X, 0p,)
Due to part i) applied to D

dim H'(X,0p,) —dim H'(X,0p,) = 1 — g(X) + deg D,
As a consequence

0=dim H'(X,0p) — 1 +g(X) —deg D + (deg D| — deg D) —dim H' (X, Op)
or
x(Op)=1—g(X)+deg D, qg.ed.
Theorem 8.10 shows: The value
x(0p) —deg D=1—g(X)

is an invariant of the Riemann surface X, independent from the divisor D.






Chapter 9
Serre duality

The Riemann-Roch theorem on a Riemann surface X computes the holomorphic
Euler characteristic

x(Op) =dim H*(X,0p) —dim H' (X, Op).
Serres duality theorem replaces the first cohomology group
dim H' (X, Op)
by the 0-th cohomology group
dim H°(X,w_p)

with
O_p=0_pRe®
and o a distinguished sheaf on X. Recall as a particular case Theorem 6.18 about
the twisted sheaves
£ =0(k)
onX =P
dim H' (P!, £) = dim H'(P!, 2" @, Q).

9.1 Dualizing sheaf and residue map

The theorem is based on the dualizing sheaf @ and its residue map defined on H' (X, ).
To define the residue map we have to consider also meromorphic differential forms.
Therefore we first consider the cohomology of meromorphic functions and differ-
ential forms.

169
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Theorem 9.1 (Cohomology of the sheaves .7 and .#"'). For a compact Riemann
surface X
H' (X, #)=H"(X,.#") =0.

Proof. i) Meromorphic functions: A given class & € H'(X,.#) is represented with
respect to a suitable open covering % = (U;),; by a cocycle

(fi)i; €2 (U , ).
After shrinking %7 we may assume that for each i, j € I the meromorphic function
fij€ A (UiNU))
has only finitely many poles. We choose a refinement
V= (Va)aeA <w

with the refinement map
T:A—1

such that for each pair i, j € I each pole of
fij € A (UiNUj)

is contained in Vj, for exactly one o € A. As a consequence
Fr(aye()Va N Vp

has no poles, i.e.

(fij)ij GZI(%a%)

is mapped under the restriction
LI U, M) =TV, M)

to the subspace of holomorphic cocycles

Z\v,0)cz' (v, ).
As a consequence, the embedding

O — M

induces in the direct limit a surjective map

HY(X,0) = H\(X,.%)
The finiteness of dimc H'(X, €) implies

dimc H' (X, ) < oo.
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Because is H! (X, .#) is also vector space over the field H(X,.# ), and the latter is
an infinite-dimensional C-vector space due to Corollary 7.19, we conclude

H'(X,.#)=0.

ii) Meromorphic differential forms: According to Corollary 7.19 we may choose a
non-zero global, meromorphic function f € .#(X) and set

n:=df € 4" (X).

The map
%%%17g’_>g'na

is an isomorphism of sheaves with inverse

M — M, .

Here the quotient

q:=¢/neH (X, /)

has to be computed locally with respect to a chart

z:U—V
If
n=fy-dzand { = f;-dz
then
|U = Ee///(U)
fn
Hence

H'\(X,.#)~H"(X,.#")

with the first group vanishing due to part 1), g.e.d.

Lemma 9.2 is a consequence of the Riemann-Roch theorem. It provides non-zero
sections for divisors with large degree.

Lemma 9.2 (Growth of dim H(X,Q))). For each compact Riemann surface X
exists a numerical constant ko € Z such that for all divisors D € Div(X)

dim H*(X,Q}) > ko +deg D.

Proof. We choose a non-constant global, meromorphic function f € .# (X) accord-
ing to Corollary 7.19 and set

n:=df e .#4"(X).

Denote by
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K :=divn € Div(X)

the divisor of 71 and set
ko :=1—g(X)+deg K

The map
Opik = Qp, f— -1,

is an isomorphism of sheaves. Theorem 8.10 implies
dim H*(X,Q)) = dim H*(X, Op. x) =

=dim H'(X,0p+x) +1—g(X) +deg(D+K) > deg D+ko, q.e.d.

Definition 9.3 (Dualizing sheaf). Let X be a Riemann surface. The sheaf
0:=Q!

of holomorphic differential forms is the dualizing sheaf of X.

The next step is to define on a compact Riemann surface X a residue map
res: H' (X, 0) = C.

Therefore we relate elements from H' (X, ®) to meromorphic differential forms and
consider the residue of these forms. The construction is based on the following
results:

* The injection
Q. 7',
* the vanishing
H' (X, .#")=0

e and the residue theorem applied to Mittag-Leffler distributions of differential
forms.

The Mittag-Leffler problem from complex analysis in the plane asks for mero-
morphic functions with given principal parts on a domain G C C. It is well-known
that the problem is solvable for G = C. The concept of a principal part does not
carry over literally to a Riemann surface X because the Laurent expansion of a mero-
mophic function at a pole depends on the choice of a chart around the pole. To obtain
on X an absolute notion of the principal part one has to replace meromophic func-
tions by meromorphic differential forms. The formal means is the Mittag-Leffler
distribution of differential forms.
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Definition 9.4 (Mittag-Leffler distribution of differential forms). Let X be a Rie-
mann surface.

1.

Consider an open covering % of X and a meromorphic 0-cochain u € C%(% ,.#")
with holomorphic coboundary

S = (wj— )iy € 2" (% , o).
For a given point p € X the residue of u at p, defined as
res(U; p) :=res(l;; p) fori € I with p € U,

is independent from i € I because the coboundary éu is holomorphic.

. A Mittag-Leffler distribution of differential forms on X is a pair

ML= (% 1)
with an open covering % = (U;);es of X and a meromorphic 0-cochain
welu,.n"
with holomorphic coboundary
Su ez (%, m).

For any point p € X the residue of the Mittag-Leffler distribution at p is defined
as
res(ML;p) :=res(U; p).

. For compact X a Mittag-Leffler distribution ML has only finitely many poles,

because the poles of a meromorphic function have no accumulation point. In
particular, there are only finitely many points p € X with

res(ML; p) # 0.
The complex number

res ML := Z res(ML; p) € C
peX

is the residue of the Mittag-Leffler distribution ML.

Definition 9.5 (Residue map). Let X be a compact Riemann surface. Then define
the residue map on X

res: H'(X,0) = C

as follows: Any class
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neH (X, 0)
can be represented by a cocycle
(nij),'j € Zl(%a (J))
with respect to a suitable open covering % = (U;);c; of X. Because Theorem 9.1
implies
H' (%, #") =0,

the injection
0=0"— .7

provides a Mittag-Leffler distribution
ML(n) = (% 1), p € CO(% ,.M"),

satisfying
6“ = (nij)ij € Zl(%vw)

in particular
[bu]=neH (X,0).

Set
res 1 := res ML(1).

Lemma 9.6 (Independence of the residue map). On a compact Riemann surface X
the value res(n) € C of the residue map in Definition 9.5 is independent from the
choice of the Mittag-Leffler distribution ML(1).

Proof. The proof is based on the residue theorem.

Assume that a given element 1 € H' (X, @) is represented by two cocyles, possi-
bly with respect to two different open coverings. Passing to a common refinement %
of the open coverings we may assume for k = 1,2 two representatives of ]

nfecl(w,.n"
and Mittag-Leffler distributions
(%, u*) with Su* = n*.
The meromorphic cochain
pwo=p'—prec®(u,n"
satisfies

[u]=[6p' —ép’l=In'-n*|=n-n=0cH (%, ).
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Hence there exists a holomorphic cochain

0 € CU% ,0) with Su = o € B' (%, w).
First, the holomorphy of ¢ allows to compute the residue as

res() =res(L — 0).
Secondly,
o(u—0)=0
shows that the cochain
u—oeclu, u"

is even a O-cocyle, i.e. a global meromorphic form
pw—oecZu, n"=.4"X).
The Residue Theorem 4.22 implies

0=res(u— o) =res(u)ie. res(u') = res(u?), g.e.d.

Definition 9.5 defines the residue map
res: H'(X,0) = C

in a form which at once explains the name: The final value res(1n) is the sum of
finitely many local values, which derive as the residues from the singularities of the
meromorphic representation of the 1-class 1 € H'(X, ®). This form of res(n) will
be used in Section 9.2 for the investigation of Serre duality.

There is a second representation of res(1), this time obtained by integrating a
global object, the smooth Dolbeault class of 1. Proposition 9.7 proves the
equivalence of both representations. This result shows at once by applying Stokes’
theorem that the residue as defined by Definition 9.5 is independent from the
choice of a Mittag-Leffler distribution. Hence Proposition 9.7 is also a substitute
for Lemma 9.6.

The main tool in the proof of Proposition 9.7 is again the residue theorem.

Proposition 9.7 (Residue map via integration of Dolbeault class). Consider a
compact Riemann surface X and the Dolbeault isomorphism from Theorem 6.15

dolb - H' (X, Q") = Dolb™ (X) = HYX, 6
olb: H'(X, Q') = Do ()7im[d”:HO(X,é@‘?O)%HO(X,é“J)]

and the integration

WﬂMM%QMH/ZC
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Then the residue map renders commutative the following diagram

dolb

Dolb"! (X)

Note that the integral in Proposition 9.7 is well-defined: Due to Stokes’ theorem it
depends only on the class [{].

Proof. The proof uses the Dolbeault resolution from Theorem 6.15

o e X
of the sheaf Q! and the connecting morphism
HX, &' S H (X,0Y) >0
of the corresponding long exact coholomology sequence. Consider an element
neH (X,Q"
represented with respect to a suitable open covering % of X by a cocycle
(mij)ij € 21 (%, Q).

i) Connecting morphism as lift of Dolbeault morphism: Due to the definition of the
connecting morphism any ¢ € H°(X, &) with

dolb(n) = [¢] € Dolb"' (X)

satisfies
adl=n
and vice versa.
H'(X, Q"
Q/// dolb
ﬂJa§ L] Dolb" (X)

ii) Constructing an inverse image of the connecting morphism: Due to

H'(X,6") =0
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exists a smooth cochain
1,
O = (O'i)iel S CO(%,(g) '0)

satisfying for each i, j € 1

Nij = 0j — O;.
Because
dnij=d"nij=0
we have
do; =do;.

Hence there exists a global form
{eH (X, 6M)
satisfying for eachi € I
€|Ui = dG,'.

iii) A Mittag-Leffler distribution of n: Choose a Mittag-Leffler distribution ML(n)
of the given class 1
ML(n) = (%)

The 0-cochain
p=(w)ieC(%,.u")

satisfies for i, j € 1
Hj— Hi = Nij-
We study the finite pole set of u
P={ay,..,an} CX
and the residues at the different poles. Set
X' :=X\P.
For each i, j € I we have on U;NU; N X'
Hj—Hi=TMij = 0j—0i

or
Oi — Hi=0j—H;.

Hence a smooth global form
pe&x)

exists, which satisfies for each i € I on X' NU;

p = 0i— U;.
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Hence for eachi €1
C|X/ NU; = d(O'i — [,L,) = do; because d([,L,'|X/ﬁU,’) =0,

or globally in X’
¢ =dp.

For each k = 1,..,n we now make a local study around the pole a; € P. There exists
a chart of X around a;

2k : Wi — D1 (0) the unit disk,
and we may assume an index i(k) € I with Vi, C Uj). Moreover for j # k
VinViy = 0.

We choose a smooth function
Vi € £(X)

with
supp W C Vi and y|V, =1

for an open neighbourhood V] CC V; of ay. Set

gZZI—ZWkeg(X).
k=1

Then
g-pe&x)

vanishes in a neighbourhood of each point from P and extends by zero into the pole.
Therefore it can be considered as a global smooth form

g-pe&X)

and Stokes’s theorem implies

J[dte-p)=0

For each k = 1,..,n the restriction on V/ \ {ax}
d(yi-p) = dp = doy = dojyy) — Wiy = Aoy
extends to a smooth form on V. Due to the vanishing of
Vi p on X"\ supp Wi

the form extends even to a smooth global 2-form
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d(y-p) € EX(X).
We have .
p=gp+) W-pand{=do
k=1
hence

C:dcr:d(g~p)+2d(1/fk~p)

As a consequence by using Stokes’ theorem

(intodolb)(n)://XC:é (/Xd(y/k-p)> :é (/ (Ve Oi) — Wi - i )>

For each k = 1, ...,n Stokes theorem implies for the first summand

/ d(Yi- o)) =
Vi

While for the second summand the residue theorem in the complex plane gives
1 n
oy -(intodolb)(n) = ~ 5 Z // Vi - MiGk) kg‘l res(Wi - Wi(e)s ax) =

= Z res(Wrys ax) = res ML(n), q.e.d.
k=1

9.2 The dual pairing of the residue form

Definition 9.8 (Residue form). Let X be a Riemann surface and D € Div(X) a di-
visor. Consider the sheaf morphism

O_pXOp~(0RgO_p)x Op— ®
defined for small U C X open as multiplication
©-p(U) x Op(U) = o(U), (n®gh)— (gh)-n
The sheaf morphism induces a bilinear map
H(X,0_p) x H'(X,0p) — H' (X, o).

It is defined in Cech cohomology with respect to an open covering % = (U)ier of X
as
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HY (% ,0_p) x H (% ,0p) = H (% , ®)
(Ca (flj),,) = (C ’fij),'j
Its composition with the residue map from Definition 9.5 defines the bilinear residue

form
res

(=, —)p:=[H'X,0_p) x H'\(X,Op) = H' (X, 0) =5 C]

Remark 9.9 (Dual pairing). Consider a field K and two finite-dimensional K-vector
spaces V, W with a bilinear map

r:Vxw—K.

Then the following properties are equivalent:
e The map r is a dual pairing, i.e.

— Injectivity of the map
VWY visr(v,—),

— and injectivity of the map
W= VY wesr(—,w),

e The induced map
iv: V=W viesr,—),

is an isomorphism.
Proof. We have the equivalences
(r(v,=)=0 = v=0) < (V=W", visr(v,—), injective)

and
(r(—,w)=0 = w=0)

< (W—=VY wesr(—,w), injective)

< (V= WY, visr(v,—), surjective), g.e.d.

In the following we apply Remark 9.9 with
V=H"X,0_p)and W =H'(X,0p)

and r the residue form.
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Theorem 9.10 (Serre duality). Let X be a compact Riemann surface and D € Div(X)
a divisor. The residue form

(=, —)p:=[H'(X,0_p) x H'(X,0p) — H' (X, 0) ™ C]
is a dual pairing. In particular, it induces an isomorphism with the dual space
H'(X,0_p)~H'(X,0p)"

and hence in particular

dim H*(X,0_p) = dim H' (X, Op).

The proof of Theorem 9.10 has to show that the map
('77)D : HO(Xva) %Hl(XaﬁDy/ nw— (717*)0,

is an isomorphism. Injectivity of iy will be proved in Proposition 9.11, surjectivity
in Proposition 9.13.

Proposition 9.11 (Residue form: Injectivity). Consider a compact Riemann surface X
and a divisor D € Div(X). Then the linear map

(.,—)p:H'X,0_p) = H' (X,0p)",n— (n,-)p,

is injective. In particular
dim H*(X,w_p) < o

Proof. That H*(X,®_p) has finite dimension follows from Theorem 8.10 as soon
as the claim of injectivity has been proved. Therefore we have to show: For each

n GHO(X7w*D)a n 7& 07

exists
5 S HI(X, ﬁl))

such that the residue form evaluates to
(n,8)p #0.
i) Construction of &: We construct an element & € H' (X, Op) such that the product
né e H'(X,0)
has a Mittag-Leffler distribution

ML(NG) = (%, )



182 9 Serre duality
satisfying
(1.&)p = res i = res(u; p) = 1

for an arbitrary point
p € X \supp D.

We choose a point p € X with D(p) = 0. The divisor D vanishes also in a neigh-
bourhood of p in X. With respect to a chart around p

z:Uy — Dy (O) with D|U0 =0

we have
1’]|U0 = f'dZ

with a non-zero meromorphic function

f S ﬁ_D(UO).

Because
(div f)(p) = D(p) =0

the function f is even holomorphic in an open neighbourhood of p. W.l.o.g. f has
no zeros in

Uy :=Uo \{pr},

but possibly f(p) = 0. As a consequence the reciprocal functions

1 *
geﬁ(uo)

1
div( —| =0>-D|U; =0

U =X\ {p}.

With respect to the open covering

has no zeros and satisfies

We set

U = (Uy,U,) with UyNnU; = Uy .
we define the cochain
(éij)ij € Zl (%7 ﬁD)
setting

1
Elo:= 5 € Op(U;y).

Then



9.2 The dual pairing of the residue form 183

§:=[(&),;l eH'(X,0p)

ends the construction.

i1) Computing the residue: With
neH X, 0_p)=2%%,0_p)

the product cochain
né eH'(X,0)

is represented by the cocycle ((né)ij)ij € ZY(% , ) with
1 dz .
(MS)o = fdz: — = —€ o(Uy)

zf  z

It splits by the meromorphic cochain

dz
= (o= — w:=0) € CUU M),

Hence the Mittag-Leffler distribution

ML(E) == (% ,p)
satisfies

d
res ML(NE) =res L = res (Z; p) =1, g.ed.
z

Lemma 9.12 prepares the proof of Proposition 9.13. It shows under which
condition the residue form (-, —)p, is surjective for a divisor D; if the residue
form (-, —)p, is surjective for a smaller divisor D < D;.

Lemma 9.12 (Comparing the residue forms of two divisors). Let X be a compact
Riemann surface. Consider two divisors Dy,D, € Div(X) with

D < Ds,.

They induce the injection
ﬁDl — ﬁDz

and the commutative diagram
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.D2
I'p
0 — H'(X,0p,)Y —> H'(X,0p,)"

('7_)02[ [('7_)&

0 — H'X,0_p,) — H°(X,0_p,)

with horizontal maps induced by Lemma 8.9.

If two elements
A €H(X,0p,)" andn € H*(X,w_p,)

satisfy

then

Proof. The horizontal maps in the commutative diagram above are injective due to

Lemma 8.9. By assumption
div n > Dj.

The proof has to “lift” the section n € H*(X,@_p,) to H*(X, ®_p,). We show by

indirect proof
divn > Dy

Assume the existence of a point p € X with
(divn)(p) < Da(p).

We choose a chart around p
z:Ug — Dy (0)

obtaining the local representation

N|Uo = f-dz with f € .4 (Uy), div f > D;|Up.

W.lo.g.onUj :=Up \ {p} holds

S
I

Dy =0
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* and f|U; € O*(Uy).
Set U := X \ {p} and consider for the open covering of X

U = (Uo,Uh)

the cochain

$=(fo.f1) eCO (%, M)
with

1
fo:= Eand f1:=0.

The estimate
(divn)(p) = (div f)(p) < D2(p)

implies

(div Z]f> (p) =—(div f)(p)— 1> —Ds(p),

hence
e, op,).

Because in U

1
fo—fi= ;6 0" (Uy)

we have
8¢ez\u,0)=2"(%,0p,) =2 (%, 0p,).

For k = 1,2 we take the respective cohomology classes
& =160l € HI(X,ﬁDk).

On one hand, by construction
&=0
because 8¢ € B (% , Op, ), and therefore

(777‘51)01 :lg?(l)(él) = }L(éz) =0.

On the other hand,

(n,&1)p, =res(ng) =res (iz, 0) =1#0,

a contradiction. The contradiction proves
div(n) > Dy, ie.n € H'(X,0_p,).

From
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follows

Dy . . . .
because i Df is injective, q.e.d.

Proposition 9.13 (Residue form: Surjectivity). Consider a compact Riemann
surface X and a divisor D € Div(X). Then the linear map

(=)o H'X,0_p) = H'(X,0p)" .1 (1n,-),
is surjective.
Proof. Consider an arbitrary but fixed non-zero linear functional
Ae Hl(X,ﬁ’D)V.
We have to find an element
no € H°(X, 0_p) with A = (19, —)p.
Therefore we will apply Lemma 9.12 and consider divisors D' € Div(X) with
D' <D.
The Riemann-Roch theorem estimates the dimension of the cohomology of certain

sheaves O and wg with divisors E € Div(X) derived from D.

1) The divisors D, = D —nP: We choose a point p € X and the corresponding point
divisor P € Div(X). For arbitrary natural numbers n € N we consider the divisors

D, :=D—nP € Div(X).

Note
D, <D

Corollary 7.19 implies for large n € N
HO(X, 0,p) £ {0},

Any
WEHO(Xaﬁ’ZP)7 W#Oa

defines by multiplication an injection
my : Op, = Op, f—=y-f

If
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A:=div y € Div(X) and D' := D, — A € Div(X)
then due to D,, < D the inclusion factorizes as
[6p, < Op) = [0, ~ Opy — Op)

with the sheaf isomorphism
Zlnv/

ﬁDn e ﬁDl

Lemma 8.9 implies the injectivity of
H'(X,0p)" = H'(X,0p)" ~H'(X,0p,)", A+ Lomy.
ii) The particular case D,,,n > 0: Consider the map
a:H(X,0,p) — H' (X,0p,)", y Aomy,
The map « is injective, because
Aomy =0
implies ¥ = 0 by the injectivity of
H'(X,0p) = H'(X,0p,)"

from part i) and because of A # 0.

Set as shorthand
B:=(—)p, :H'X, 0 p,) —~H(X,0p,)"

The map f is injective due to Proposition 9.11. Consider the diagram
0 o, m v
H (X,ﬁnp) — H (X,ﬁl)n)

B

HO(X7 w*Dn)

We claim: For sufficiently large n € N there exists
(W7 TI) € HO(X7 ﬁnp) X HO(X7 wan),

such that
A’ om‘ﬂ/ = (X(W) = ﬁ(n) = (n7_)Dn e Hl(X7ﬁDn)v'

Therefore we have to show

OC(HO(X, ﬁnP)) ﬁﬁ(HO(X7w—Dn)) 7é {0} C Hl(Xv ﬁDn)v
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or
dim H*(X, O,p) +dim H*(X,@w_p,) > dim H' (X, 0p,)" .

Consider n € N.
* On one hand the Riemann-Roch theorem 8.10 implies
dim H*(X,0,p) > 1—g(X) +n
* On the other hand, Lemma 9.2 provides a constant ky € N such that
dim H*(X,w_p,) > ko —deg D, = ko — (deg D —n) = n+ (ko — deg D)

e Ifn>deg D then
deg D, = (deg D) —n <0

and Proposition 8.4 implies
H(X,0p,) =0.
Then the Riemann-Roch theorem 8.10 implies
x(Op,) = —dim H'(X,0p,) =1 —g+deg D, =1 — g+ (deg D) —n

i.e.
dimH"(X,0p,)" =dimH' (X, 0p,) =n+ (g— 1 —deg D)

Summing up, we obtain for n > deg D
dim H°(X, O,p) +dim H* (X, @_p,) >

(1—gX)+n)+(n+ko—deg D) =1—g(X)+ko—deg D+2n

and
dimH (X,0p,)" =dim H'(X,0p,) = —1+g(X) —deg D +n.

As a consequence for n > 0
dim H*(X,0,p) +dim H*(X,w_p,) > dim H' (X, 0p,)"

which implies
H(X,0,p)NH (X, 0_p,) # {0}.

We obtain elements
v eH(X,0,p) andn € H'(X,0_p,)

with
Aomy = (1,-)p,

iii) Reduction to the general case D > D, Part ii) shows: For n >> 0 exists a pair
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(W7 n) € HO(X? ﬁnP) X HO(X7 wa,l)

satisfying ( )
A oMy = n,—)b,-

If
A:=divyand D :=D,—A<D

then multiplication by y also defines sheaf isomorphisms
My
O_pr — W_p,

We obtain an element

n 0
No:=—€cH (X,0_p)
v D
with
A = (M0, —)pr
The commutative diagram
lﬁ ~ my
0 — Hl(XaﬁD)v - Hl(XaﬁD’)v - Hl(XaﬁDn)v
('7_)D[ ('a_)D']‘ ('a_)Dn[
~m

= My
0 — H'X,0_p) — H'X,0_p) —> H'(X,0_p,)

and Lemma 9.12 imply 19 € H*(X, 0_p):

A — A — vy

e

Mo ---> Mo —— 1N

Hence
A =(No,—)p, q-ed.

Proof of Theorem 9.10. The claim follows from the Propositions 9.11 and 9.13,
when taking into account Remark 9.9 and the finiteness result from the Riemann-
Roch Theorem 8.10, g.e.d.

Remark 9.14 (Serre duality).

1. Consider a compact Riemann surface X and choose a fixed non-zero meromor-
phic form
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neH (X,.#")

with canonical divisor
K :=divn € Div(X).

Then 7 defines a sheaf isomorphism

9

.Ql i} ﬁ}(7 CI—> —.
n
In particular
Wg = ‘QlK ~
If we apply Serre duality
('a_)D :HO(X7w*D) i)Hl (Xa ﬁD)v

with the divisor
D:=K,

then we obtain
HO(Xawa) :HO(Xaw*K) :HO(Xaﬁ) i)Hl(XaﬁK)v :Hl(XaQI)v

2. The proof of Serre’s duality theorem 9.10 rests on the Riemann-Roch theorem.
In addition, it uses meromorphic differential forms and the vanishing

H' (X, #")=0.

The original proof of Serre [33] is different. Serre uses fine resolutions by the
sheaves of smooth forms and Fréchet topologies on their vector spaces of sections
with distributions as dual spaces, see also [16, Chap. VI].

9.3 Applications of Serre duality and Riemann-Roch theorem

Corollary 9.15 (Cohomology of the dualizing sheaf). Let X be a compact Rie-
mann surface with dualizing sheaf @. Then

dimH'(X,0) =1

and
res: H' (X, 0) = C

is an isomorphism. Moreover

dim H'(X, ) = g(X)
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is the genus of X.
Proof. Remark 9.14 proves

H'(X,0)~H'(X,0)"

which implies
dimH'(X,0) =dim H*(X,0) = 1.

The residue map
res: H' (X, 0) — C

is non-zero, hence an isomorphism. In addition

¢(X):=dim H' (X,0) = dim H*(X,0) = dim H*(X,Q"), q.e.d.

Corollary 9.16 (Genus of the torus). The complex torus T = C/A has the genus
g(T)=1.
Proof. The torus T is covered by complex charts z; : U; — V;, i € I, with
zi =2+ Aij, Aij € A locally constant.

Therefore on U; N U;
dz; =dz;

and there exists a global form dz € Q'!(T) without zeros. The sheaf morphism
0= Q' fs fdz

is an isomorphism. Therefore
o~Q '~ 0.

Corollary 9.15 implies

g(T)=dim HY(T,Q") = H)(T,0) = 1, q.e.d.

Proposition 9.17 (Degree of a canonical divisor). On a compact Riemann surface X
for all non-zero meromorphic forms n € H°(X,.#") the canonical divisors

K :=divn € Div(X)
are equivalent, and have degree

deg K =2g(X)-2.
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Proof. i) Degree of non-zero sections of H*(X,.#"): Remark 9.14 shows
Q' ~ ok,

Hence Theorem 9.10 and Theorem 8.10 apply to the sheaf Q!. For two non-zero
meromorphic sections from . ! (X) the quotient

Me 1x)
M2

is a well-defined non-zero, global meromorphic function, which can be seen using
charts. Note that the inverse of a non-zero meromorphic function is again meromor-
phic. Hence Corollary 3.24 implies

deg e =0ordeg n =deg 1,
m
independent from the choice of the meromorphic sections.

ii) Riemann-Roch and Serre duality: Due to part 1) the Riemann-Roch theorem
implies
2(Q2Y) =x(0k) =1-3g(X) +deg K
Serre duality implies, see Remark 9.14,
H'(x,Q"Y=H'(X,0)",
hence by definition of g(X)
2(QY=—x(0)=dimH"(X,0)—dim H*(X,0) = g(X) — 1
As a consequence
gX)—1=1—g(X)+deg K

or
2¢(X)—2=degK, g.ed.

Theorem 9.18 (Riemann-Hurwitz formula). Consider a non-constant holomor-
phic map
f:X—=Y

between to compact Riemann surfaces. Denote by
n(f) := card X,

the cardinality of the fibres of f, which is independent fromy € Y. For each x € X
denote by

v(fs x)
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the multiplicity of f at x, by
b(fs x) =v(f; x)—1

the branching order of f at x. Then the total branching order of f

b(f):= Y b(f: x)

xeX

and n(f) relate to the genus of X and Y as

¢ =1+ i) (ery - 1),

The idea of the proof is to link the numerical characteristics of X and Y by the
degree of a non-zero global section n € H(Y,.#"') and its

pullback f*n € HY(X,.#"). Then introducing local coordinates allows to
calculate the

Proof. We choose a non-zero meromorphic form
0 1
neH (Y, #").

and consider its pullback
ffmeH (X,.7").

Proposition 9.17 implies
deg(divn) =2g(Y)—2 and deg(div f*n) =2g(X)—2
For a given pair y € Y and x € Y, we choose charts
2:U(x) = V(x)and w:U(y) = V(y)

around x € X and y € Y respectively, such that

and the composition

wo foz
has the form
w=2zF
with
k:=v(f; x)

the multiplicity of f at x, see Definition 3.21 and Proposition 1.6. If
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NU(y) = gdw and dw = d(zk) —k-Z 1 dg

then
frm=k7" g dz

We now vary x € X, and y € Y, obtaining
ord(f*n; x) := ord (k-2 g(2); x) = b(f; x) +v(f; x)-ord(n; y)

Because independently fromy € Y

n(f)=Y v(fix)

x€Xy

we obtain by applying ¥ cx,

Y, ord(f'm;x) =) (b(f: x) +v(f: x)-0rd(n; y))

xeXy xeXy

and by applying in addition },,cy

deg(div f'n) =Y ord(f'n;x)=7Y Y ord(f'n;x)=

xeX YyeY x€Xy
-y (z ord(f*n: x>> : (2 b x)) - <n(f)~ Y. ord(n; y>> -
yeY \xeXy xeX yey
— b(f) +n(f) - deg (div ).
Hence

26(X) ~ 2= b(f) +n(f) - (28(Y) ~2), g.ed.

Recall from Corollary 3.23 that a non-constant holomorphic map between two
Riemann surfaces is surjective if its domain is compact.

Corollary 9.19 (Holomorphic maps between compact Riemann surfaces).
1. Any compact Riemann surface X has a surjective holomorphic map
f:X —P!

2. Each holomorphic map
f:Pl =X

with X a compact Riemann surface X of genus g(X) > 1 is constant.

Proof. 1. For any compact Riemann surface X exist non-constant holomorphic
maps
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f:X =P

because the latter are the meromorphic functions on X, see Theorem 1.10 and
Corollary 7.19 implies the existence of non-constant meromorphic functions
on X.

2. For a non-constant holomorphic map
f:X—=Y
the Riemann-Hurwitz formula from Theorem 9.18 implies for non-constant f
—2=0b(f)+n(f)- (28(X) =2) 2 b(f) +n(f)

a contradiction, q.e.d.






Chapter 10
Vector bundles and line bundles

10.1 Vector bundles

A vector bundle of rank k& € C on a topological space X is a family of local products
U, i X (Ck

with respect to an open covering (U;),; of X, which glues on the intersections U; N U;
while maintaining the vector space structure. Definition 10.1 gives the formal defi-
nition and introduces the relevant concepts.

Definition 10.1 (Vector bundle). Consider a topological space X.

1. A continuous complex vector bundle of rank k € N on X is a topological space E
together with a continuous map

p:E—=X

satisfying the following properties:

e Each point x € X has an open neighbourhood U C X and a homeomophism
gv:p (U) SUxCH

named a linear chart, such that the following diagram commutes

197
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* For each two linear charts
¢ =0y, i=12withUpp:=U1NU2, #0
exists a continous matrix-valued function
g12:Upp — GL(k,C)
such that the transition function
dr2:=¢100, 1 Upp x C* - Uppy x CF
satisfies for all (x,v) € Upp x CF
$12(x,v) = (x,812(x) - v).
2. For a continuous vector bundle p : E — X and a covering % = (U;);e; of X by
open sets U; with linear charts
¢;:p” ' (Ui) = Ui x C*
the family (¢;);cs is an atlas of the vector bundle.
3. If X is a Riemann surface than a continuous complex vector bundle
p:E—X
is holomorphic if it has an atlas (¢;);c; with holomorphic matrix-valued functions
gi; :UiNU; = GL(k,C) c C¥ i, j el
Here a tuple of functions is holomorphic iff each component is holomorphic.

4. A vector bundle of rank k = 1 is a line bundle.

Remark 10.2 (Fibres of a vector bundle). Consider a complex vector bundle of
rank =k
p:E—=X

on a topological space X. For each x € X a linear chart
ov:p "(U) = UxCt

with x € U defines on the fibre E, := p~!(x) the structure of a complex vector space
by the restriction
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pulEy: Ex = {x} xC*:
If z1,20 € Ex, A € C, and
du(z) = (nw) € {x} x Y i=1,2,

then
21 +22 = ¢Jl(x7u1 +u) €E,

and
A7 = (])ljl(x,}wul) € E,.

The vector space structure on E, does not depend on the choice of the linear
chart ¢y : If

oy :p (V)= VxCk
with x € V is a second linear chart, then for j = 1,2
Ov(z;) = (x,v;) = (x,8vv - u;).
As a consequence
Oy (v +v2) = oy (v guy (%) ug + guy (x) - up) =

= ¢y (x,quy (%) (w1 +w)) = ¢y ' (x,ur +u2)
And similarly for the scalar multiplication. In particular:

up ZOE(Ck — V] zgy,v(x)-ul :OECk7

i.e. also the zero vector in the fibre E, is well-defined, independent from the choice
of a linear chart.

While the vector space structure on E is uniquely determined, there is no canon-
ical isomorphism E, ~ CK.

For a line bundle on X the matrix functions
gij:UuinU; — C*= GL(],(C)

satisfy a cocycle relation and therefore define a class in H! (X, 0*).

Proposition 10.3 (The matrix-functions of vector bundles and line bundles).

1. Let X be a topological space, consider a vector bundle
p:E—X

of rank =k, and let
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(9i: p~ " (Ui) = Uy x CY)iey
be an atlas of L. The corresponding family
(g : UinU; — GL(k,C)),;
of matrix-valued functions satisfies on the threefold intersections
Ui =U;NU;NU, CX

the relations
8it = 8ij- &k : Uyje — C~.
2. As a consequence, the atlas of a line bundle defines the cocycle

8= (8ij)ijer € Z(% ,€7).

The cohomology class
ls] € H' (X, 6")

does not depend on the choice of the atlas, it is uniquely determined by the line

bundle.
3. Analogously, a holomorphic line bundle on a Riemann surface X defines a class
g] eH'(X,07).
And conversely, any class from
HY(X,€*) or H' (X, 0%)

defines respectively a continuous or holomorphic line bundle on X.

Proof. ad 3) Represent a given class from H' (X, 6*) by a cocyle
g=(gi)ijez"(%,0%)
with respect to an open covering % = (U;);es. On the disjoint set
i UixC
consider the relation
(x7v,<) ceUxCn~ (X,Vj) S Uj X C < v; :g,-j(x) "Vj
The cocyle condition implies that the relation is an equivalence relation. Define
L:= (UielU,» xC)/ ~

with the quotient topology. Then the canonical map
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p:L—=X, [(x,vi)] = x
is continuous. The family
p*I(U,-) =[U; xC] % Uy x Cinduced by id : U; x C — U; x C

is a holomorphic atlas of L, because the matrix-functions of its transition functions
are the holomorphic functions

gijZUiﬂUj—)C*

are holomorphic.

Due to Proposition 10.3 we will often identify a line bundle with its class
from H'(X, 0*), or even with a representing cocycle from Z'(% , 6*) with respect
to the open covering % of an atlas of the line bundle.

Definition 10.4 (Sheaf of sections of a vector bundle). Consider a topological
space X and a continuous vector bundle of rank = k

p:E—X.
1. Then for any open U C X the complex vector space continuous sections
6p(U):={s:U — E: scontinuous and pos = idy}

with the canonical restrictions for V C U defines a sheaf %%, named the sheaf of
continuous sections of E.

2. If X is a Riemann surface and the vector bundle is holomorphic then a continuous
section
s:W—=FE

on an open set W C X is holomorphic, if each point x € W has an open neigh-
bourhood U CW and a linear chart

o:p '(U)—UxCt
of the vector bundle such that all components of the map
¢pos=(id,s1,....s¢) : U — U x CF
are holomorphic. The presheaf
Og(U) :={s:U — E : s holomorphic and pos =idy}, U C X open

with the canonical restriction of sections defines a sheaf &, named the sheaf of
holomorphic sections of E. For a line bundle L one often writes



202 10 Vector bundles and line bundles
L =0, L-

In both cases addition and scalar multiplication of sections is done poinwise. One
adds and multiplies the values of sections due to the vector space structure on the
fibres of the vector bundle.

Proposition 10.5 (Local representation of sections of a vector bundle). Consider
a vector bundle
p:E—=X

and an atlas

iel

((])i : pil(U,-) — U; X (Ck)
with respectively continuous or holomorphic matrix-valued functions
gi;:UiNU; = GL(k,C) cC¥ i, je
1. For an open set U C X the vector spaces of global sections
e (U) or Og(U)
correspond bijectively to the families of continuous or holomorphic maps
(si:UNU; = C)igy

satisfying on U NU; NU;
Si = &ij )

ie forallxe UNU;NU;
5i(x) = g1 () - 8,(x) € C.
2. If X is a Riemann surface and the vector bundle is holomorphic, then the family
Me(Ui) = {si 1= (Si1,.8ik) © Sijp--Six € AUy}, i €1,

with
Si = &ijSj, l?.] € 17
and the canonical restrictions is a JB-sheaf with 9B a basis of open sets U C X

with corresponding linear charts ¢y of E. The family extends to ./, the sheaf
of meromorphic sections of E on X, see Proposition 2.17.
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10.2 Line bundles and Chern classes

The present sections deals with the following concepts to investigate a Riemann
surface X:

* Holomorphic line bundle: A line bundle on X is a map
p:L—=X
which has over small open sets U C X a product structure over U
oy :p ' (U) = UxC.

Over the intersections U; N U, the respective product structures transform holo-
morphically into each other. Hence the fibres p~!(x) are complex lines varying
holomorphically with the base point x € X.

e Invertible sheaf: An invertible sheaf .Z on X is a generalization of the structure
sheaf & of X: On small open sets U C X the restricted sheaves

Z|U and O|U
are isomorphic, see Definition 2.15.

s Cocycle of the sheaf 0*: The group of cocycles Z! (% , 6*) for an open covering %
of X and the multiplicatively cohomology group H' (X, 0*).

» Divisor: A divisor D on X is a discrete and closed subset of points of X with
prescribed integer multiples. Each integer is considered the order of a pole or a
zero at the corresponding point, see Definition 8.1.

We will show that on a compact Riemann surface these concepts are nothing but
different views onto one and the same mathematical object. The equivalence of co-
cycles, line bundles and invertible sheaves is just a formal computation. For the
equivalence of cocycles and line bundles see Proposition 10.3, part 3). If not stated
otherwise we will therefore identify both concepts in the following. But the equiva-
lence of divisors and line bundles is a non-trivial result. The proof will be completed
by Theorem 10.23.

On the projective space P! the twisted sheaves &'(k), k € Z, are the sheaves of
sections of line bundles. Each is characterized by the integer k € Z. The concept
of Chern classes - or more precise Chern integers - generalizes the attachment of
integers to line bundles on any compact Riemann surface X. But different from the
case X = P! for general X the Chern number does not determine the line bundle.
Nevertheless, the Chern number is the only invariant which enters into the Riemann-
Roch theorem for the Euler number of the line bundle.
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Proposition 10.6 (Line bundles and invertible sheaves). Consider a Riemann sur-
face X. For any a holomorphic line bundle

p:L—=X

the sheaf £ of holomorphic sections of the line bundle is an invertible sheaf. Vice
versa, any invertible sheaf on X is the sheaf of holomorphic sections of a line bundle
onX.

Proof. 1) Consider a holomorphic line bundle
p:L—X.
For any open set U C X from an atlas of the line bundle we have
LU ~0|U.

ii) Consider an invertible sheaf . on X and assume an open covering % = (U;);es
of X with sheaf isomorphisms

¢ L |U; = O|U;.
For each pair i, j € I the holomorphic map
9io9;!
defines a holomorphic matrix function
gij:UinU; — C*.

The cocycle
(gij)[vje[ € Zl (62/7 ﬁ*)

defines the line bundle L with & its sheaf of holomorphic sections, g.e.d.

We now show that any divisor D € Div(X) defines a line bundle
p:L—=X

such that
ﬁD ~Z.

Theorem 10.7 (Line bundle of a divisor). Let X be a Riemann surface and con-
sider a divisor D € Div(X). Then for a suitable open covering % = (U;);; the
divisor has the form

D|U; = div f;

with a cochain of meromorphic functions f = (f;)ie; € CO(U , M).



10.2 Line bundles and Chern classes

1. The cocycle

fi

defines a line bundle, the line bundle of the divisor D,

g= <gij = ) EZI(OZ/,ﬁ*)

p:L—=X.
Denote by L its sheaf of holomorphic sections.

2. The family
(fi)ies €CO(% A1)
defines

e a meromorphic section of L, i.e.
f=(f)ier € H'(X, ML)

- even holomorphic for effective D -

e and by multiplication
a well-defined isomorphism of O-module sheaves.

3. The dual line bundle

p/ LY =X

is defined by the cocycle
1 f; .
g = <g,v, =—= fj> ez\(%.0")

8ij i ijel

It satisfies
ID=[g'| e H'(X,0%)

with

0:H(X,2) - H'(X,0%)
the connecting morphism of the divisor sequence from Proposition 8.6.
Proof. 1. For each pair i, j € I on U;; := U;NU;
D|U;; = div (fi|Uy;) = div (f;|U;;)-

which implies
fi
i

ii=——€ o* U;;
J f] ( ])

205
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The cocycle relation is obvious.
2. i) By definition for each pair i, j € 1
fi=gij fj
Hence Proposition 10.5 proves that the family
(fi)ier €CO(U M)

defines a meromorphic section of the line bundle. For an effective divisor D each
function f;, i € I, is holomorphic by definition.

ii) For any open set U C X any meromorphic function
feopU),
which is not locally-constant equal to zero, satisfieson UNU;, i € I,

div f > —D = —div f;

or
div (f-fi)>0

Hence

f-fieoUnuy).
The transition rule

Ji=gij [

implies

fofi=gij-(f 1))
According to Proposition 10.5 the family

I fi

represents a holomorphic section from .2 (U).

3. The claim follows from Proposition 8.6, g.e.d.

Remark 10.8 (Line bundles and divisors).
1. Note. For a given divisor D € H%(X, ) the line bundle

p:L—=X

defined by the class
oD H'(X,0%)
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has the sheaf of sections ., which is the dual(!) of Op, i.e.

<=0y,

2. Line bundles of the form & are invertible subsheaves of the sheaf .# of mero-
morphic functions on X. Theorem 10.23 will show the converse of Theorem 10.7:
Any holomorphic line bundle on a compact Riemann surface is the line bundle
of a divisor. Moreover, on a non-compact Riemann surface X any line bundle L
is even trivial, i.e. it is the line bundle of the zero divisor. For the latter statement
see Theorem 10.23.

Definition 10.9 (Canonical line bundle). For a Riemann surface X the line bundle
K:=0g cH (X,0%
of a canonical divisor K € Div(X) is named the canonical line bundle on X .

The Chern class of a holomorphic line bundle is the connecting morphism of the
exponential sequence. This definition does not require any sign convention.

Definition 10.10 (Chern class of a line bundle). Let X be a compact Riemann
surface. The connecting morphism 0 of the exponential sequence
0-Z—0%50"=0
is named the Chern morphism
c1:=0d:H'(X,0%) = H*(X,Z).
If a line bundle L is represented by the class & € H!(X, &) then
ci(L):=0& e H*(X,Z)

is named the Chern class of L.

Note: Because the Chern class is a group homomorphism we have

c1(Ly-Ly) =c1(Ly) +c1(Ly).

The Chern morphism is not restricted to holomorphic line bundles. The Chern mor-
phism is also defined for smooth or continuous complex line bundles: One has to
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replace in the exponential sequence the sheaves of holomorphic functions by the
corresponding sheaves of smooth or continuous functions.

Proposition 10.11 prepares the proof that a global differential form on X, which
represents the Chern class of a given line bundle, can be computed by means of an
object from differential geometry, a Hermitian metric of the line bundle.

Proposition 10.11 (Hermitian metric on line bundles). Consider a compact Rie-
mann surface and a holomorphic line bundle

p:L—=X.
Assume that the line bundle is represented with respect to the open covering U = (%) ye;

by the cocycle
§=(Cap) €Z" (%, 07).

1. Then a cochain exists
h=(hg) € CO(% ,6R%)

with &g’ the multiplicative sheaf of positive smooth functions on X, such that
the coboundary satisfies

h
8h=(|Eupl?) € Z" (% &R, . |Egp|* = hifor all pairs o, B € 1.
o

2. The cochains from part 1
h=(hg) € CO(%, &%)
correspond bijectively to the smooth Hermitians metrics of the line bundle: If
p:L—=X

has the atlas N
(@ : Pil(Uoc) — Uq X C)ger

then the Hermitian metric
<—,—>LxL—C

is defined on the fibres
an X € UOC)

by using the linear chart ¢y, as the map

Ly x Ly = C, (z,w) =< z,w>=ug - hg(x) Vg,

9o (2) = (x,uq) and ¢po (W) = (x,vq).
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Proof. 1. The sheaf & is acyclic: Denote by
ErRC &

the subsheaf of smooth real-valued functions on X. By means of a partition of
unity one proves
H'(X,&)=0

in an analogous way as Theorem 6.14. The real exponential function defines a
sheaf isomorphism

exp: &p — ERYy, frrexp f.
Hence

H'(X,6r%) =H'(X,6r) =0,

which finishes the proof.

2. Independence of the linear charts: In order to prove that the metric < —, — > de-
rived from the cochain (hy) € CO(% , &R’ ) is well-defined we consider a second
linear chart N

(P[; Ipil(Uﬁ) — Up X C.

Ifxe UaNUg and
(z,w) € Ly x Ly with ¢g(z) = (x,up) and @g(w) = (x,vp)
then
Uug = Eop(x) -ug and vo = Eup(x) - vg.

Hence

hg(x) -

g - he(x) Vo :‘g'aﬁ(x)'uﬁ~|€O£W~Vﬁ(x)~’g'aﬁ(x) =ug-hg(x)-Vg, g.e.d.

Apparently the construction from Proposition 10.11 allows to introduce also on
vector bundles a smooth Hermitian metric.

The proof of Proposition 10.13 will make use of the topological result from
Lemma 10.12.

For an open covering % = (U;);es of a topological space X the nerve N(% ) of %
is the family of all finite subsets J C I with support

supp J := ﬂUi #0.
icJ
Lemma 10.12 (Coverings with contractible intersections). Any open covering of
a compact Riemann surface X has a refinement . = (S;);c; with
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ns

il
contractible for all J € N(%).

Proof. One uses the existence of a triangulation of X. Let V be its set of vertices. The
vertex star Sy of a given vertex v is the union of all singular 2-simplices containing
the vertex v. One may assume that each vertex star S, is contained in an open set of
the original covering. Set

S = (87)vev

with S denoting the open kernel. Each 2-simplex of X is contractible to each of
its vertices. Hence the intersection of the vertex stars of finitely many vertices is
contractible to each of these vertices, q.e.d.

O

Fig. 10.1 Triangulation of P!

Figure 10.1 shows a triangulation of the Riemann surface P! by singular sim-
plices obtained from the 2-faces of the tetraeder. They are the 2-simplices of the
standard simplex in R3. The triangulation has

* the vertices or O-simplices O,A,B,C
 the 1-simplices OA,OB,OC,AB,AC,BC

e the 2-simplices OAC,OBC,0AB,ABC.
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Typical vertex stars are
So = OAC,0BC, OAB and S, = OAC,0AB,ABC

E.g., the intersection
SoNSs = OAC,0AB

is contractible.
The Chern class of a line bundle is an element from H>(X,Z) and maps via the

canonical map
j:H*(X,Z) — H*(X,C).

Like the Chern morphism also the de Rham isomorphism
HO(X,&?)

deRham : H*(X,C) — Rh*(X) = y
im[HO(X,&1) 5 HO(X,&£2)]

is independent from any sign convention. The de Rham isomorphism is induced by
the de Rham resolution, the proof is analogous to the proof of Theorem 6.15. The
composition of both maps allows to represent Chern classes by de Rham classes.

Proposition 10.13 (Mapping Chern classes to de Rham classes). Consider a
compact Riemann surface and a holomorphic line bundle

p:L—=X.
Assume that the line bundle is represented with respect to the open covering % = (Uq) oc;
by the cocycle
&= (8ap) €Z" (%, 07).
Any Hermitian metric of L
h= (he) € CO(U , &%)
defines a global differentialform

1
¢ = <2~d”d’ log ha> eZ%w, &' =H(x, &)

i

with the property: The form  is the de Rham representative of the Chern class ¢ (L),
i.e. the composition of Chern morphism and de Rham morphism

HO(X,&?)
im[HO(X, &) 4 HO(X, £2)]

H'(X,0%) < HX(X,Z) L H*(X,C) 2R, pp2(x) =

satisfies
[{] = (deRhamo joci)(L) € Rh*(X).
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Proof. The proof has to follow the composition of the de Rham isomorphism with
the Chern morphism. Therefore we have to make explicit the two morphisms: The
Chern morphism is a connecting morphism and the de Rham isomorphism results
as the composition of two connecting morphisms. Hence we have to consider three
times the construction “climbing stairs”.

1. Chern morphism: Passing over to a suitable refinement, Lemma 10.12 assures
that we may assume all intersections

UaﬂUﬁ, o, Bel,

simply connnected. Hence on each Uy MUy exists a branch of the logarithm. The
final result is independent of the choosen branch because it depends only on the
derivation of the logarithm. The exponential sequence induces by backward stair
climbing

0 Z o o*

(capy) € Z2(% ,7.)

(Cocﬁy) € Zz(%a o)
|5
1
(m-zog éaﬁ> eC!(%,0) % (&up) € 2'(%,0")
the Chern morphism as the connecting morphism
1= 8 : Hl(Xvﬁ*) - HZ(X’Z)7 a(éaﬁ) = (caﬁ}/) € Zz(%7Z)
with

1
Capy = 5 (log &gy —log Eay+1og Eup)

2. De Rham isomorphism: The de Rham isomorphism is part of the following com-
mutative diagram
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H(X,&?)
V \
H'(X,7) RW(X) = HO(X’déaz)
im[HO(X,&Y) S HO(X, £2))]
H?*(X,C)

Here d| and 0, are the connecting morphisms in the splitting of the de Rham
resolution
0Coebethe? o

into the two short exact sequences

05C—ELF =0, 7 =kerl6' % &7,

and
0—>ﬁ—>£‘li>é"2—>0

We investigate how to obtain an inverse image
¢ eH'(Xx,67)

of a given element
[(capy)] € H*(X,C)

under the composition of the two surjective connecting morphisms
0, d
H(x,6%) 2 H' (X,.7) & H*(X,C).

« For o, : H'(X,#) = H*(X,C), (fap) > (capy):

0 C &

Y

(Caﬁy) € Zz(gz/v(c) - (Caﬁy) =0ne Zz(%vg)

|5

N = (ap) €CN(, &) L (fup) €2\ U, 7)

s Fordr: HOX,6%) = H'(X,.7), { (fap):
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d

0 F &1 &?

(fap) €21 (U, F) — (fap) = 6T €Z' (U ,&")

[

T=(14) €CO(%,E) A, Cez%w,86?)
3. Constructing the differential form { € H°(X,&?): According to part 2) the task
is to find for a Chern cocycle, i.e. the cocycle of the Chern class of a line bundle,
(capy) € Z2(% ,7.) with class ¢ = [(capy)] € H*(X,C)
an element { € H(X,&?) satisfying
deRham(c) = [{] € RW*(X).

This task has two steps:

e To find
neCY(%,&) with §n = (capy)

* and after setting

(fap) =dn € Z(U F)

to find
T1eC(%,E") with 8T = (fp)

The first step has been solved by part 1) of the proof: The cocycle
(%cﬁy) € ZZ(%aZ)

from part 1) with

1
CaBy = i (log gﬁy_log 5ay+108 éaﬁ)

represents the Chern class of the line bundle. Hence we may set

1
n= (naﬁ = Tm-l()g éaﬁ> GCI(%,éa)

To solve the second step we define

1
T= (Ta = Tm dIIOg ha) GCO(%,gl)
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We claim:
0T = (f, ap )
For the proof recall from Proposition 10.11

h/} :ha'|§aﬁ|2:ha'§aﬁ 'Eaﬁ-

Hence _
log hg = log hg +1log &up +10g & 4p

Because each function Eaﬁ is anti-holomorphic, which implies d’ Eaﬁ =0, we
obtain
d'log hg = d'log hq+d' log &up

Hence
1 !/
TB = Ta+ de lOg &(Xﬁ?
1 /!
focﬁ = %'d log éaﬁ =178 — Ta
which finishes the task.

Forall & €1
To € (g)l’()(Ua) — dTa = d”Ta S 60]7] (Ua)

Asa consequence

1
(i=dr= (dra = ﬁd”d’ log ha> e %% ,6*) =H(X,&?%), ged.
1

Apparently the form { € H?(X, &) constructed in the proof of Proposition 10.13
as an inverse image of the Chern class of a given line bundle is not uniquely deter-
mined. De Rham’s theorem shows that { is determined up to the image

imld : H'(X,&") — HY(X,&?)].

Remark 10.14 (Curvature form of a connection). Proposition 10.13 represents the
Chern class of a holomorphic line bundle on a Riemann surface X

p:L—=X

by the form

1
¢:= (M'd”d’ log ha> e, &M =H'(x, &)
1

which derives from a Hermitian metric 4 = (h) of the line bundle.
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1. Connection and curvature in the smooth category: The form
¢eH (x,6M

is the curvature form of a connection D of L. For a short introduction to connec-
tions of vector bundles see Chern [4, §5 and §6]: Consider a smooth manifold X
and a smooth complex vector bundle of rank = k

p:F—=X

Denote by .# the sheaf of smooth sections of F. A connection of the vector
bundle is a C-linear map
D:F =& 0 F

which satisfies the product rule
D(f-o)=df®oc+f-Do

for sections f € I'(U,&) and o € I'(U,.%) with open U C X. A frame of F on
an open set U € X is a family

5= (81,0, 80) "
of sections s; € I'(U,.#), j=1,...,k such that for all x € U the family
(s1(x), .52 (x))
is a basis of the fibre F;. The restriction D|I"(U,.%#) is determined by the element
D(s)=0®s
with a matrix of 1-forms
wel (U, ®cM(kxk,C))

named the connection matrix of the frame s. Consider a second frame s’ € I'(U,.%)
with connection matrix

o eI (U,&" @cM(kxk,C))

Then
s=g-s

with a matrix
geI' (U,&®cGL(k,C))

and the connection forms transform as

o g=dg+g-wc(U & @cC
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Taking the exterior derivative of the last equation shows that the corresponding
curvature matrices of the frame, matrices of 2-forms,

Q:=do-oro, Q :=do' -0’ N e (U,E @Mk xk,C))
transform as Q' - g =g-Q or
Q/:g.g‘g—l

2. Smooth line bundle: For a smooth line bundle L on a smooth manifold X,
i.e. k=1, the construction from part 1) simplifies due to the Abelian context.
The curvature matrix is a single, global form

Qe H'(X,&%).

If the line bundle L is represented by the cocycle (§4p) € Z Y% ,&%) then the
linear charts of L satisfy

do = Eap - O
and the corresponding frames

sai=9g ' (1) and sp 1= 95 (—,1)
transform as
SB = éaB So-
A connection on L|Uy, is determined by a single connection form
Wy € F(Ua,é”l),
which defines the value of the connection on the frame
D(S(x) = wa 'Sa

3. Holomorphic line bundle on a Riemann surface X: A Hermitian metric h = (hy)
on L satisfies

hg = |g[*ha with g = Egg.

The 1-forms
0 :=d'log hg € T(Ug, &), a €l

are well-defined due to the splitting induced from the complex structure on X
d=d +d"
The local forms define conncections
Dy : LUy = E' @ L|Uq, D(sq) := 0q @ sq

which glue to a global connection
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D: ¥ &' 0 &
because they transform as
wp =d'log hq =d'log(hg -g-3) = d'log hq +d'log g +d'logg =
g +d'log g = g +dlog g =g +dg-g"

or
Wg-g=dg+g- g

The last equation is the transformation rule of connection matrices. The connec-
tion forms are of type (1,0). Therefore

dwy =d" wg and Wy A 0y =0
and the local curvature forms
QUy := dg — g Ny = d" 0q = d"d'log hg € T'(Ug, &)
glue to a global curvature form
Qe H (X, &M

Proposition 10.13 shows that the (1,1)-form
L g c H'(x, &0
2mi ’ ’

which derives from the curvature form of the connection D, is a de Rham repre-
sentant of the Chern class c1 (L) € H*(X,Z).

Any Riemann surface X is an oriented smooth manifold. Hence integration
of 2-forms along X is well-defined. Lemma 10.15 defines the integration of the de
Rham classes.

Lemma 10.15 (Integration of de Rham classes). Ler X be a compact Riemann
surface. Then the integration map

int : RW*(X) = C, [{] — //X ¢,

is well-defined and surjective.

Proof. Well-definedness follows from Stokes’ theorem. Integrating a global volume
form on the oriented smooth manifold (X, Xy,,0,) shows that the map is not zero,
hence surjective, q.e.d.
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Note. The map from Lemma 10.15 is even an isomorphism.

Lemma 10.15 suggests to interpret Chern classes c1 (L) € H*>(X,Z) as integers.
There are two Z-linear isomorphisms

H*(X,Z) = Z

which differ by the factor (—1). Hence the choice of the isomorphism is a matter of
convention. Theorem 10.16 and Definition 10.17 show how to calibrate the integer
by the degree of the divisor of sections of .Z.

Theorem 10.16 (Chern class and section of a line bundle). Let X be a compact
Riemann surface and consider a holomorphic line bundle

p:L—X.

Then the divisors of all non-zero meromorphic sections of L have the same degree.
The degree can be identified with the Chern class c¢1(L) in a canonical way: The

composition
deRham int

H*(X,Z) L H2(X,C) 2Rham, pip2(x) ™, 7,
satisfies for all non-zero s € H(X, .47)
(—1) - (int odeRhamo jocy)(L) = deg div(s).

Proof. 1) The Hermitian metric (hy) induced by the section: Consider a non-zero
meromorphic section s € H%(X,.# ). We choose a linear atlas of the line bundle

(0o P (Ua) = Uy X C) ey
with “matrix” functions
Sap € 0" (Ugp), Ugp :=UaNUp, o, B € 1.
Then the section s is represented by a cochain
(Sa)aer € CO(%,///)
of meromorphic functions which transform according to
Sa = Gap -5 on Ugp.

The divisor
D :=div s € Div(X)

has finite support. It is the sum of multiples of finitely many point divisors



220 10 Vector bundles and line bundles

D= Y n,-P
pesupp D

We may assume that each p € supp D has an open neighbourhood V(p) with the
following properties

* Thesets V(p), p € supp D, are pairwise disjoint,

» for each p € supp D holds
V(p) CUqp

for a suitable at(p) € 1,

* and for all 8 # a(p)
V(p)nUs =0

We carry over the transformation rule from meromorphic functions to smooth func-
tions by modifying the family (s4): For each o € I the restricted function

Sa|(Ua \ supp D)

is holomorphic and has no zeros. In (U NUg) \ supp D

Isal® = [€apl-|sp |’

or
2

= |§oc[i|2'

2
1

5p

1

Sa

as a cocycle relation of smooth functions without zeros. For each & € I a smooth
modification of s¢ within the set V(p) € Uy, provides a smooth function

ha € & (Uq)

satisfying on Uy \ V(p)
2
1
ha = |
Sa
As a consequence, on Uy N Uﬁ holds
hg = |Eapl* - ha

Hence the cochain
(he)aer € CO(% ,67)

defines a Hermitian metric on the line bundle according to Proposition 10.11.

it) Integrating the de Rham class of the Chern class: Proposition 10.13 implies:
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(int odeRhamo jocy)(L) = //XC

with
§eH)X, &%)

satisfying for all o € 1
1
C|U(Z = ﬁ'd”d/ lOg ha-

Each point in

(Uoc\ U V(ﬁ)) O

pesupp D

has an open, simply connected neighbourhood where
d"d'log hy = —d"d'log sq —d"d'log 56, =0

because s is holomorphic. Hence the restriction satisfies

d"d'log hq| (Utx\ U V(P)) =0

pesupp D
and
1
(= — / / d"d'log h
/[( Q’nlpesép p/JIV(p) *
Because
d"d' =dd

Stokes’ theorem implies for each p € supp D, @ = a(p) € I and positive oriented
boundary JV (p)

// d"d'log hy = // dd'log hg = / d'log hy =
V(p) V(p) V(p)

d/
= —/ (d'log sq+d'log 5¢) = —/ d'log sq = —/ Cla
aV(p) IV (p) V(p) Sa

s,
= —2mi-res <a> = —2mi-ord(sy; p)

Sa

Hence

(—1)-(intodeRhamo jocy)(L) = —int({) = 7//X = Z Dord(sa(p); p)=degdiv(s), q.e.d.
pesupp

Definition 10.17 (Chern number). The Chern number of a line bundle
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p:L—=X
on a compact Riemann surface X is the integer
c™(L) := (—1)-(int odeRhamo jocy)(L) € Z.

The Chern number of the corresponding invertible sheaf .Z is

Note the minus-sign in Definition 10.17 for the Chern number. It results from the
minus-sign which is obtained in the formula from Theorem 10.16. Lemma 10.15
shows that the Chern number does not depend on the construction of a

particular { € H%(X,&?) in the proof of Proposition 10.13.

Example 10.18 (Chern number of the twisted sheaf). On the projective space
X :=P!

consider the line bundle
p:L—X

with sheaf of holomorphic sections the twisted sheaf
L =0(1).
It’s cocycle with respect to the standard covering is defined by
21 y
o1 := —€ 0" (Un),
20

see Example 2.11. A Hermitian metric on the line bundle is given by the family

(l’lo,h]) S CO(dZ/,(g)_t)

with )
|i]
= —————fori=0,1
" 202+ |z )2 o
because
hy
2_ 4

. . 21
With respect to the coordinate z = — on Uy we have
20
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1
ho(z) = —
"= e
and
d"d'log hy(z) = ———— dzAd
8 Pole) = (T
Hence 1)
1 1 -1
=—-d"dlogh =— ————d7Nd
¢ 27i 08 ho(2) 2mi (1+ a2 7
It implies

/PICZZIM-//(CU:;gz)zdzAdZ:zlm-//c(lﬂlz)z)zdz/\dZZ

_ ! // ! (=2i) dx Ady = I/M/m L drnde =
Tomi e (e YTy e T
1 o0 r

r
dr dr=-2.—=—1

= E'z”'/o 1122 :_2'/0 A+

because the integrand has the primitive

N =

1 1
2 1412

We obtain
(=1)- (int o deRhamo jo ¢y )(L) = */Pl c=1,
hence according to Definition 10.17
AML)=1€.
The sheaf ¢(1) has the holomorphic section
s = (s0,81) €Z°(%,0)

with

21
so:= —and s :=1.
20

It satisfies
s1=&10- So-

Apparently
div s € Div(X)

is the point divisor of the point 0 € P! and

deg(divs)=1.
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Corollary 10.19 (Degree of a divisor and Chern number of its line bundle).
Consider a compact Riemann surface X. Then the following diagram commutes:

H(X,2) N H'(X,0%) ., H*(X,Z)
|/
deg H*(X,C)
ldeRham
C int RI2(X)

Fig. 10.2 Canonical morphisms around the Chern class

In particular for any divisor D € Div(X)

deg D = ¢ (0p) € 7.

Proof. Represent a given divisor D € H’(X, 2) by a cochain
(Di =div f;), € CY(% , M)
with respect to a suitable open covering % = (U;);e;. Theorem 10.7 implies:

s The class dD € H'(X, 0*) represents the line bundle &)

* The sheaf &p has the meromorphic section (f;); € CO(% ,.4).
Theorem 10.16 implies
deg D = deg(div f;);i = (—1) - (int odeRhamo joc)(Op)

Because
oD = ﬁg and C](ﬁl\)/) = —Cl(ﬁD)

we obtain
deg D = (int odeRhamo jocj0d)(D)

The claim about the Chern number follows from Theorem 10.7

oD = 0}, q.ed.

The commutative diagram from Figure 10.2 relates several canonical morphisms
from different categories: The connecting morphism

HX,2) % H'(X,0%)
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induces a map

H'(X,2)

Cl(X)= im[HO(X, . #*) — HO(X, D)]

— HY(X,07%)

between objects with a holomorphic structure, while the Chern morphism
H'(X,0%) % H*(X,7)

maps objects with a holomorphic structure to topological invariants. But the Chern
morphism is analogously defined for smooth or even continuous line bundles. The
morphism, originating from a ring extension,

H*(X,Z) L H?(X,C)
maps topological invariants. The de Rham morphism

HZ(X, (C) deRham R/’ZZ(X)

is a morphism in the smooth category. Integration
RR}(X) 2 C
maps the smooth category to numerical invariants. The degree map
H(X,2) % ¢

induces a map
Cl(X)—7ZcC

which relates holomorphic entities to numerical invariants.

10.3 The divisor of a line bundle

The aim of the present section is to complete the proof that line bundles and divisors
are equivalent concepts on a compact Riemann surface. As a consequence the basic
theorems of Riemann-Roch and Serre carry over to line bundles.

Lemma 10.20 (Meromorphic sections of a line bundle). Let X be a Riemann
surface. The following statements are equivalent:

i) Vanishing
H' (X, . #*)=0.
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ii) Surjectivity of the connecting morphism of the divisor sequence
d:H'(X,2)— H'(X,0%)
iii) Each line bundle on X has a non-zero meromorphic section.
Proof. The divisor sequence on X
00" M —P—0
induces the long exact sequence
= HOX, ) = HOX,2) S H (X, 0%) = H'(X,.0") - 0=H"(X,2)

with the last group vanishing due to Proposition 8.7.

i) <= ii). Condition i) implies at once the surjectivity of d, i.e. condition ii).
For the converse assume the surjectivity of d. Then we have the factorization
[HO(X,2) % H (X, 0%) — H' (X, %) — 0] =

= [H(X,2) % H' (X,06%) = 0 — H' (X,.4*) — 0]
which implies H' (X,.#*) = 0, i.e. condition i).

ii) <= iii). Assume condition ii). The surjectivity of d states that any line
bundle L has the form
L=0dD

with a divisor D € Div(X). If D is defined with respect to the covering % = (U;) .,
by the cocycle
(div ), € Z°(% , 2)

(;)ieCO(OZ/,J/{*)

defines a non-zero meromorphic section of the line bundle L = dD, see
Theorem 10.7.

then the cochain

For the converse consider an arbitrary line bundle L represented by a cocycle
1
é = (gij),'jd €z (%76*)
and assume that L has a non-zero meromorphic section

feH (X, .41).
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Due to Proposition 10.5 the section provides a non-zero cochain
(fi)ier € CO(%M//*)

satisfying
fi=8ij fj

According to Theorem 10.7 the divisor

1
D:=|div—| €Z°(%,?)
fi i
maps to
L=0D, g.ed.

We now show that on any compact Riemann surface the third condition of
Lemma 10.20 is satisfied, and hence all conditions are satisfied. The proof of The-
orem 10.22 is not trivial, because until now the Riemann-Roch theorem has not been
proven for arbitrary invertible sheaves, only for sheaves of the form &p, D € Div(X).

Remark 10.21 (Finiteness theorem for line bundles). On a compact Riemann surface X
holds for any line bundle .2 € Pic(X)

dim H°(X,.%) < o0 and dim H' (X ,.2) < .

This result generalizes the Finiteness-Theorem 7.16 for the structure sheaf, i.e.
the trivial line bundle. The result can be proved in the same way by introduc-
ing Hilbert space topologies and using the compactness of the restriction map,
see [16, Kap. IV, § 3, Satz 7].

Theorem 10.22 (Existence of meromorphic sections of line bundles). Let X be a
compact Riemann surface and consider a point p € X. Then each line bundle

pr:L—X
has a non-zero meromorphic section with a pole at most at the point p.

Proof. Let £ be the invertible sheaf of holomorphic sections of the line bundle L.
Consider the point divisor P € Div(X), an effective divisor, corresponding to p € X
and the invertible sheaf

f] = ﬁp.

Due to Corollary 10.19 _
1 =deg P=c{"(%£)
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Any non-zero constant defines a holomorphic non-zero section
seH'(X,.2).

Theorem 10.16 implies .
deg(div s) =" (L) =1

Hence s has exactly one zero at p, and this zero has order = 1.

i) Calculating (£ ®¢ Z"): The tensor powers of the non-zero section
seH° X,-4)

define by multiplication an injective sheaf morphism
o son ag@n
£
After tensorizing with . we obtain a short exact sheaf sequence

0.2 Lo, L5 A =0

The quotient sheaf 57 is a skyscraper sheaf 7 with stalks

= C" q=p
0 q#p

H(X, ) ~C"and H'(X,.5¢) = 0.

It satisfies

The corresponding exact cohomology sequence is

0-H'X,Z)—-H' X, 222 - C"-H' (X, Z) - H' (X, 202" -0

The vanishing of the alternate cross sum

0=dimH"(X,Z)—~dimH(X, £ ® L") +n—dimH' (X, £)+dim H' (X, L ® L")
implies

dim H'(X, %) —dim H'(X,.Z) = dim H*(X, £ @ £7") —H' (X, @ L") —n

We have . ‘
(L) = () =

The product rule ' _ '
Ct]nt (,,2” ®$1®n) — Cllnt (g) —l—Cl]m ($1®n)
int

and subtracting ¢ (_Z’) on both sides of the equation give

dimH*(X, %) —dim H (X, Z) — " (&) =
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=dimH'(X, 2 ® L") —dim H' (X, £ @ L5") — M ZLE) — (L)

or
2L)=c"(L) =y (L L") " (L2 L"),

Hence foralln € N
const(L) = x(L - L") — (L LF)
is a constant independent from n.

ii) Proving H(X,.% ® L") # 0 for suitable n: Assume on the contrary: For
allneN
H(X.% 0 27" =0,

We obtain from part i)
const(L) = (L L") ML R LE") = —dimH (X, L@ L") — M (Lo L")

ie.
—dim H' (X, % ® L") = ML) +n- " (LA) + const (L),

a contradiction because
dimH' (X, % ® ") >0

and _
A"(L) =1

Hence there exists np € N and a holomorphic non-zero section
teH'X, 20 .27").

iii) Proving H(X,.47) # {0}: Set

__t 0
p = e e H(X,.41)

with the holomorphic non-zero sections
teH'(X, 2 ® %) and 5™ € HO(X,.2")

from part ii) and i). Then p is a non-zero meromorphic section of . with a pole at
most at the point p, q.e.d.

Theorem 10.22 has a series of important corollaries. The first, Theorem 10.23, is
a converse to Theorem 10.7.

Theorem 10.23 (Divisor of a line bundle). Ler X be a compact Riemann surface.
For each holomorphic line bundle L on X exists a divisor D € Div(X) satisfying

gﬁﬁp.
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Proof. Due to Theorem 10.22 each line bundle on X has a non-zero meromorphic
section. Then Lemma 10.20 implies the surjectivity of the connecting morphism

d:H’(X,2)— H'(X,0").

Due to Theorem 10.7: If
L:=-9dDcH'(X,07)

then
&L~ 0p, q.ed.

Theorems 10.7 and 10.23 show: On a compact Riemann surface X divisors and
line bundles are in bijective correspondence. More precisely: Let the Picard group
of X

Pic(X):=H'(X,0")

be the multiplicative group of isomorphism classes of line bundles, then the map
CI(X) — Pic(X), [D] — [6Dp),

is an isomorphism between the divisor class group and the Picard group of X. Taking
into account Proposition 10.6 the bijective correspondence extends to isomorphism
classes of invertible sheaves.

Proposition 10.24 (Examples of Picard groups).

1. The Picard group of a compact Riemann surface X splits as
Pic(X) = Pico(X)BZ

with
Pico(X) :={[L] € Pic(X): c1(L) =0}

the subgroup of line bundles with zero Chern class.

2. The projective space has
Pico(P') = {0}

3. Atorus T =C/A has
Pico(T)~T

Proof. 1. The exponential sequence from Proposition 2.10
0525 0% 0% >,
Theorem 10.23 and the isomorphy

H*(X,7)~7
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imply the exact sequence in cohomology
0 — Pico(X) = H' (X, 0%) 5 HX(X,Z) ~ 7. — 0
The sequence splits because the Z-module Z on the right-hand side is free. Hence
Pic(X) ~ Pico(X) B Z

2. For the projective space
HY(P',0)=0

due to Proposition 6.17. Hence the Chern morphism is also injective and there-
fore an isomorphism.

3. For a torus T one has
Pico(T) := ker[H'(T,0*) = Z) = im[H' (T, 6) — H' (T, %)) ~

_ H'(T,0) B H\(T,0) AT ged
" ker[H((T,0) — H\(T,6%)]  im[H\(T,Z) — H(T,0)] =T, g.ed.

Proposition 10.24 shows that the only line bundles on P! are the line

bundles &' (n), n € Z, of the twisted sheaves. By Grothendieck’s splitting theorem
any holomorphic vector bundle of rank k > 2 on P! is the direct sum of k line
bundles, which are uniquely determined, see [14, Kap. VII, §8, Abschn. 5].
Grothendiecks theorem shows once more the importance of the twisted sheaves.

Remark 10.25 (Jacobi variety). Proposition 10.24 shows that the Picard group of a
compact Riemann surface X is already determined by its subgroup Pico(X) of line
bundles with zero Chern class. The result

Pico(T)~T

for a torus T generalizes to higher degree. Consider a compact Riemann surface X
of genus g = g(X). We identify line bundles and divisors on X, in particular

Pico(X) =~ Cly(X)
with
Cly(X) := Divo(X)/ A4 (X) C CI(X)

the subgroup of divisor classes of divisors D with deg D = 0. Any choice of a
basis (@y,...,®,) of H*(X, Q") defines a g-dimensional torus Jac(X), the Jacobi
manifold of X: Consider the period lattice
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Per(@y, ..., ) = {(/wl/%) : }/GHI(X)} cce
Y Y

Jac(X) :=C" /Per(wy, ..., ).

and set

There exists a canonical map
Jac : Divo(X) — Jac(X)

defined as follows: For a given divisor D € Divy(X) and a 1-chain ¢ € C;(X) with
boundary
dc=D.

Jac(X) = [(/wlfwgﬂ € Jac(X).

The map Jac is well-defined and fits into the exact sequence of Abelian groups

Then

Jac

0— 4" (X)— Cly(X) — Jac(X) = 0

For the details of the construction see [8, §21].

Proposition 10.26 (Vanishing of H'(X,.#*)). On a compact Riemann surface X
holds
H' (X, .#*)=0.

Proof. The proof of the claim follows from Theorem 10.23 and Lemma 10.20, q.e.d.

Theorem 10.27 (Riemann Roch theorem for line bundles). Consider a compact
Riemann surface X. For any line bundle L on X the Euler characteristics satisfies

(L) =dim H'(X, L) —dim H' (X, ) = 1—g(X) + " (£).

Proof. The claim follows from the Theorems 8.10, 10.23, 10.16 and Corollary 10.19,
g.e.d.

Theorem 10.27 shows that in the proof of Theorem 10.22 the number const(£)
has the value
const(£)=1-g(X)

which is independent from .Z.
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Theorem 10.28 (Serre duality for line bundles). Consider a compact Riemann
surface X with dualizing sheaf ®. For any line bundle L on X the residue form

(=, =) [HX, 2 @5 0) x H (X, %) = H' (X,0) 25 C]

is a dual pairing.

Proof. The proof follows from the Theorems 9.10, 10.23 and 10.16, q.e.d.






Chapter 11
Maps to projective spaces

11.1 The projective space P

Generalizing the 1-dimensional projective space P! from Definition 1.4 we intro-
duce the higher-dimensional complex projective spaces. At this point we leave the
domain of Riemann surfaces and presuppose some basic results from the theory of
complex-analytic manifolds.

Definition 11.1 (n-dimensional projective space). For n € N consider the quotient
P = (C\ {0})/ ~
with respect to the equivalence relation
2= (20 r20) ~ W= (Wp,..,wp) :<=>3A€C*: w=2A-zeC""\ {0}
and the canonical projection onto equivalence classes
m:CI\ {0} = P, 2 [2].

For z = (z9,...,24) € C"1\ {0} the expression

(z0:..i24) i =7(z) EP"

is named the homogeneous coordinate of m(z). The quotient topology is named
the Euclidean topology of P". It is a countable Hausdorff topology. The space P
is named the n-dimensional complex projective space. If not stated otherwise we
consider P" equipped with the Euclidean topology.

Definition 11.2 (Standard atlas of P"). Consider the n-dimensional projective
space P". Its standard atlas is the family

235
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with the open sets
U :={(z0:...:20) €P": z; #£0}, i=0,...,n.

For each i = 0, ..., n the i-th standard chart is the homeomorphism

20 -1 % %+l Zn o .
— — yeen ) , the “hat” indicates omission of the term.

PR} b b)
Zi L T Zi

¢i:Ui—C" (z0:..:20) — (

Remark 11.3 (Projective space and projective-algebraic geometry).

1. The twisted sheaves: From the view point of complex analysis of several vari-
ables the projective space P" is an n-dimensional compact complex manifold:
The transformation between two charts ¢; and ¢; with i < j is the holomorphic
map on an open subset of C"

Vfij = ¢i0¢;] : (Pj(UlﬂUj) — ¢[(UiﬂUj)a

ceey s Ly PREET) 5 5 PREET)

WO Wisl g Wirl Wil I wipr wy
wi T ow; Wi wi Twiow wi )’

(W(),...,Wj;l,1,Wj+],...,wn) — (

see [19, Chap. 9.1].

The definition of line bundles on Riemann surfaces from Definition 10.1
literally carries over to line bundles

p:L—X

on complex manifolds X. The group of isomorphy classes of line bundles on X
equals the first cohomology group H' (X, 0*).

The twisted sheaf &(1) on P” is the sheaf of holomorphic sections of the line
bundle
p:L—P"

defined with respect to the standard charts by the cocycle

Zj «
§= (gij = Z’) ez\(u,0).

1

Analogously to Example 2.11 the sections of &/(1) are the linear polynomials

H(P", 0(1)) C Clzo, ..., Zn)-
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2. Zariski topology: Algebraic geometry provides the set P not with the Euclidean
topology but with the Zariski topology: A subset A C P" is closed with respect
to the Zariski topology iff A is the zero set of a set of homogenous polynomials
from C[zo, ..., zx]. The Zariski topology is coarser than the Euclidean topology.

3. The functor Proj: Following Grothendieck’s definition P” is a functor, see [18, Chap. I1.2].
When defined on the category of commutative rings R with unit then

Py := Proj R[z0, ..., 2n)
is the projective spectrum of the graded polynomial ring
S:= Rlz0,.02]

with the ususal grading by the degree of monomials. The projective spectrum is
the set of all homogeneous prime ideals

p C Swith @ Sy ¢ p,

d>1

provided with the Zariski topology of schemes. Here S; C S denotes the subset
of homogeneous polynomials of degree = d. The space P} is the basic example
of a projective scheme. In the particular case

R:=C

we obtain the complex n-dimensional projective scheme P¢. Its subspace of
closed points forms the set P” equipped with the Zariski topology.

11.2 Very ample invertible sheaves and projective embeddings

The first condition, that an invertible sheaf .Z on a Riemann surface X has to satisfy
in order to define a map into a projective space

X — P

is to be base-point-free.

Definition 11.4 (Base-point, globally generated sheaf). Consider a Riemann sur-
face X and an invertible sheaf .Z on X.

1. A point p € X is a base-point of 2 if for all sections s € H(X,.%) the germ at p
satisfies
spem,Zie. s(p)=0.
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2. The sheaf is generated by global sections or globally generated or base-point-
free if it has no base-points, i.e. if for any p € X exists a section s € H(X,.%)
such that the germ s, € %), generates the stalk .%}, as ¢),-module. The latter
condition is equivalent to s(p) # 0.

Remark 11.5 (Inverse image sheaf).

1. The sheaves f~' and f*: Any continuous map
f:X—=>Y
between two topological spaces induces a contravariant functor

f':Sheaf , — Sheaf .,

For a sheaf . on Y one defines the sheaf f~!.% on X as the sheafification of the
presheaf defined by the direct limit

L) = i F(V), UcCX.
(f~ 7)) operi ) (V), open

For a point x € X the stalk satisfies
(f T )= Ty
For a holomorphic map between to complex manifolds
[ X—=Y
one defines the contravariant functor inverse image
f*: Oy —mod — Ox —mod

as
[F = F @1, Ox.

2. Adjointness: Any holomorphic map f : X — Y between two complex manifolds
induces two functors between the category of module sheaves: The covariant
direct image

fx 1 Ox —mod — Oy —mod

and the contravariant inverse image
f*: Oy —mod — Ox —mod

These functors are adjoint : For any pair with an &y-module .% and an &x-module ¢
there exists a group isomorphism
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Homg, (f*F#,9) — Homg, (F, f.9)

See [18, Chap. IL.5].

Proposition 11.6 (Holomorphic maps to projective space). Consider a compact
Riemann surface X and a globally generated invertible sheaf L. After choosing a
basis

(si)i=0..n € H'(X,.2)

the map
bz : X =P p(so(p): .. isa(p)),

is well-defined and induces an isomorphism
¢ (0(1) = 2.

Proof. We set
¢:=9¢gp.

i) Definition: We consider the definition of ¢ in a suitable open neighbourhood U
of p. On U we may identify the invertible sheaf . with the structure sheaf 0.
Hence sections from H°(U, %) are holomorphic functions. Because .Z is globally
generated there is an index j € {0, ...,n} with

sj(p) #0.

Hence the point
(so(p) : ... su(p)) € P"

is well-defined and independent of the choice of the chart and the isomorphism
Z|U ~0O|U.

Apparently the map ¢ is holomorphic on U.

ii) Pullback of the twisted line bundle: For each i = 0, ..., n the sets
Xi=0 '(U)={xeX: (s), ¢ ML}

form an open covering (X;)i—o,.. » of X because £ is globally generated.
For i =0, ..., n the canonical morphisms between the rings of local sections

ﬁ(l)(Ul) — ¢* (g) (U,) = j(X,) induced by Zi‘Ui — S,‘|Xi
define a canonical sheaf morphism on P

o) — ¢ &
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By adjointness the corresponding sheaf morphism on X
¢"(0(1)) = 2,

is an isomorphism because it is an isomorphism on the stalks of the two line
bundles: If for a given i € {0,...,n}

xeX;CXandy:=¢(x) eU; CP"

then
(0*0(1))x = O(1)y Dy, Oxx = Lo, (20)y @10 (51), qed.

Remark 11.7 (Holomorphic map into projective space). For a compact Riemann
surface X and a globally generated invertible sheaf .Z on X the definition of the
map

Py X —>P"

from Proposition 11.6 depends on the choice of a basis of the finite dimensional
vector space H’(X,.Z). Following Grothendieck an intrinsic definition is obtained
by the dual construction: Let

P(H(X,2)")

be the projective space of linear functionals on the 7+ 1-dimensional vector space H’(X,.%),
i.e. the lines through the origin in the dual space H’(X,.#)". The corresponding
map is defined as

by X = PH'(X,2)), pr Ap,

with
A HY(X, L) = ZL(p) i= L, /mp Ly =~ C, s [s,].
Here the value of s(p) € C depends on the choice of the isomorphy between £ and

the structure sheaf ¢ in a neighbourhood of p, but the class of A, is independent of
this choice.

Theorem 11.8 provides a geometric criterion that the map provided by a globally
generated invertible sheaf . is a closed embedding.

Theorem 11.8 (Projective embedding induced by an invertible sheaf). Consider
a compact Riemann surface X and an invertible, globally generated sheaf £ on X.
Then the induced map

Oy : X — P

is a closed embedding iff £ satisfies both of the following properties:

1. Separating points: For any two distinct points p # q € X exists a section

s e H'(X,.2) with s(p) # 0 but s(g) =0
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or vice versa.

2. Separating tangent vectors: For all x € X the map
doy:{s€ HO(X,.,?) sy em L — mx.,%c/mi.,%c, § = [,
is surjective.
In Theorem 11.8 note the isomorphy of &-modules
m LML = (my /) B, = T @0, L

The map
doy:{s cH'X,2): s,em %) = T ®4p. %

is induced by the total differential d, of holomorphic functions: A section
sE HO(X,D%) with s, € m, %,

factorizes in a suitable neighbourhood U of x as

s=f-s1

with a holomorphic function f € €'(U) satisfying f, € m, and a holomorphic section
s1 € Z(U). Then
dy(s) =dif @51 €T, ®0, %

The map is well-defined: If also
s=g-spand ord(g; x) > ord(f; x)

then
g=h-f
with h € 0(U). Hence
dig®sy=dy(h-f)Rsy=(h-df) Ry =df Qh-s53 =dyf R

Set
yi=0¢(x)eP"
and consider analogously the map

dp(yy: {s € HOP", O(1)) : 5(y) =0} = Qpuy D, O(1),

The proof of Theorem 11.8 will employ the following commutative diagram
The left-hand side of the diagram in Figure 11.1 is induced by the pullback of
sections

o* - H'(P",0(1)) = H'(X,9*(0(1))) =H*(X,.£), s — 6 :=s00.
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do().y
{se HO(]P”’7 o)): s(y) =0} ——— T]P},,_’y ®0pn, o(1),

9" 0

dy.
(o e H' (X, 2): 0(x) =0} ———— T} ®p, L

Fig. 11.1 Separating tangent vectors

which is surjective by definition. Also the upper horizontal map
o)y {s € H'(P",0(1)): 5(y) = 0} = Tpn , @, O(1),

is surjective. The right-hand side of the diagram considers germs of rings and mod-
ules at the points x € X and y € P". It is best understood from the view point of
commmutative algebra: Consider the rings

A:= Opnyand B:= Ox »
By means of the ring morphism,
A—=B, f=foo,

the pullback of holomorphic functions, B is an A-module. In addition consider the
A-modules
Qy = Q]Ilhny and F := 0(1),

as well as the B-modules
Qp = .Q)lm and F ®4 B = 2,
The pullback of differential forms is a B-morphism
Q4 ®4B— Qp

and the composition
Q= Q44 B — Qp

is an A-morphism. Tensoring by the A-module F' gives an A-morphism
QuAF — Qp@aF = QpRp (BRaF)
which is after tensoring with the residue field k(x)
Tpny @, O(V)y = T x Doy, L

Hence the right-hand side of the diagram is induced by the base change
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A—B
and the pullback of differential forms

Q)R B — Qp.

Proof (Theorem 11.8). Proposition 11.6 implies that the map
O:=¢yp: X > P"
is well-defined and the pullback satisfies
Z=¢°(0(1)).
i) Assume ¢ to be a closed embedding: Then w.l.0.g.
¢:X —P"

is the injection. Let
n:C\ {0} = P"
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be the canonical projection. For a given point p € P" the hyperplanes H C C"*!

which contain the line
L,:= nfl(p) c !

correspond bijectively to the non-zero sections
sy € H'(P",0(1))

with
su(p) =0:

For the proof one represents the hyperplane as
H =ker A

with a non-zero linear functional

A:CHl S, X0y« Xn) > le'xj
j=0

Then the section

SH = Z/lj-zj EHO(X7$)
j=0

satisfies sy (p) = 0.

* Consider two distinct points and their homogenenous coordinates
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p=n(ug)=(z0::z20) Zq=7(up) = (wo:...:wy) €X
By assumption the two vectors
U = (20,12, tni1 = (Wo,...,w,) € C"*!
are linearly independent. Hence they extend to a basis
(i)i=0,... n
of C"*! and the hyperplane
H :=spanc (u;: i=0,...,n—1) c C"*!
contains ug but not u,,. The restriction
o :=sulX € H(X,.%)

satisfies
6(p)=0and 6(q) #0.

Therefore . separates points.

* Consider a point x € X C P*. Then in Figure 11.1 the map
¢51 : QI;’"J ®ﬁ[p>n,y ﬁ(l)y — Q)l(,X ®ﬁx.x "%C

is surjective: The map
Qi ®4B— Qp

is surjective, and the surjectivity of
A—B
implies by tensoring with €24 the surjectivity of
Q4 — Q4 R4 B.

Hence the composition
o1 0do),

is surjective. As a consequence
dyy {0 € H (X, 2): o(x) =0} = T} @0, , %

is surjective which proves that . separates tangent vectors at x € X.

ii) Assume that £ separates points and tangent vectors:
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» Separating points implies that ¢ is injective. The map is continuous and X is
compact. Hence the image
¢(X) C P

is compact and a posteriori closed.

e To show that ¢ : X — P" is an immersion we consider the diagram from
Figure 11.1. By assumption

dyy:{o € H(X,.Z): o(x) =0} = Qg ®0, L
is surjective. Hence the composition
dgo¢”
is surjective, which implies the surjectivity of
Or1: Tpny @, O(1)y = T Qi i

As a consequence the map
Qs ®4B— Qp

is surjective which proves that ¢ is an immersion at the point x € X, q.e.d.

Definition 11.9 (Very ample invertible sheaf). A globally generated invertible
sheaf .Z on a compact Riemann surface X is very ample if the induced map

Py X —>P"

is an embedding.

A globally generated invertible sheaf .Z on X has enough sections to define a
holomorphic map
Py X =P

If £ is very ample then there are enough sections that ¢ & is even an embedding.
Due to the compactness of X its image under an embedding is always closed.

Notation 11.10. For an invertible sheaf £ on a Riemann surface X and a divisor D € Div(X)

we denote by
Lp =L Ry Op

the invertible sheaf of meromorphic sections of £ which are multiples of the
divisor —D.
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Notation 11.10 has been employed already in Definition 8.3 with the
sheaf ¥ = Q.

Consider an invertible sheaf .Z on a compact Riemann surface X. Proposition 11.11
states a numerical criterion for the dimension of the vector spaces

H(X, %), D € Div(X),
which assures that the map
Pp: X =P

is well-defined and a closed embedding. This criterion is very helpful in the applica-
tions because the dimension on the vector spaces in question can often be computed
by using the theorem of Riemann-Roch in combination with Serre duality.

Proposition 11.11 (Very-ampleness criterion). Consider a compact Riemann sur-
face X. For an invertible sheaf & on X are equivalent:

o The sheaf £ is very ample.

 For the point divisors P, Q € Div(X) of two arbitrary, not necessarily distinct
points p, q € X holds

dim H(X, L (p,q)) = dim H*(X,.£) - 2.

Proof. 1) Assume the validity of the dimension formula: The formula implies for any
two point divisors P, Q € Div(X)

HO(Xag—(P-&-Q)) - HO(XW%*P) - HO(X»’%)

and each proper inclusion has codimension = 1 because it is defined by one linear
equation.

* The equation
(X, 2 p)=0X,2)-1.

states that the kernel of the evaluation
H(X,Z) = Z,/m, %, ~ C, 5+ [sp),

has codimension = 1. Hence p is not a base-point of .Z. As a consequence, .¥
is globally generated and
Pp: X =P

is well-defined.

* The equation
H(X, 2 (prg)) S H'(X, 2 p)

implies that for any pair of distinct points p, g € X there exists a section
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0 0
sEH (X, 2 p)\H (X,Z _(py0))

i.e. satisfying
s(p) =0but s(q) #0.

Hence the sheaf . separates points.

* The dimension formula shows for any point divisor P € Div(X)
HY(X,Z p) CH(X,.Z p)
has codimension = 1. Hence there exists a section
s€H(X, £ p) \H*(X,.Z 2p)
which implies the surjectivity of the composition of the canonical maps
HY(X, % p) = wx ,. %) = mx p.%p /%,

due to
dim(c(mxm/m}(’p) =1.

Therefore . separates tangent vectors.
ii) Assume £ very ample: Theorem 11.8 implies that . separates points and
tangent vectors. Separating points implies for all point divisors P # Q € Div(X)
dim H'(X,_(p1q)) = dim H'(X, &) - 2.
Separating tangent vectors implies for each point divisor P € Div(X)

dim HO(X, % »p) =dim H*(X,.£) -2, q.ed.

As a consequence of the very-ampleness criterion from Proposition 11.11 we
now prove the embedding theorem of compact Riemann surfaces. It is one of the
main results about compact Riemann surfaces.

Theorem 11.12 (Embedding theorem). Any compact Riemann surface X has a
closed embedding into a projective space P".

Proof. 1) Existence of an embedding: Let
g:=g(X)

be the genus of X. For an invertible sheaf . on X and two, not necessarily distinct
point divisors P,Q € Div(X) the Riemann-Roch theorem 10.27 states
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X(L)=1-g+c"(L)and (L (p1g)) = 1 —g+c["(L) -2
which implies
AL prg) = 2(2) 2.
Hence we prove the claim by providing an invertible sheaf . satisfying
(X, L) =h" (X, 2 (p1g) =0
or by Serre duality, Theorem 10.28,
hO(X,fv ®e 0) = hO(X,fly+Q ®e ) =0.
Proposition 8.4 states a necessary condition for the vanishing of these dimensions:
ALY @6 0) = —cM" (L) + M (@) <0

and
c‘i”t(ff,erQ Re0) = —c’i"’ &)+ c’i"t(a)) +2<0.

We will use Proposition 9.17
(@) =2(g—1).
Hence the claim reduces to the existence of an invertible sheaf .# with
—M( L) M (@) +2 <0

ie. .
2g < c"(&)

Therefore any sufficiently high multiple of a point divisor on X provides a suitable
invertible sheaf .Z.

i) Explicit construction: In the following we provide an explicit construction of .Z
depending on g:

* g =0: We choose a point divisor P € Div(X) and set
Z = ﬁp.

We have
X, Z)=1-0+1=2
hence
Oy : X — P!

is a closed embedding. Because domain and range have the same dimension the
map is an isomorphism
0y X =P
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g = 1: We choose a point divisor P € Div(X) and set

&= ﬁ3p

We have
WX, Z)=1-1+3.
Hence
Oy : X —P?

is a closed embedding.
g > 2: We choose

&L= 0%

the sheaf of sections of the tri-canonical bundle. Then
28 <6(g—1)=c"(Z)
because 6 < 4g. We have
(X, Z)=1-g+6(g—1)=5(g—1).

Hence
0o X — P& D1

is a closed embedding, q.e.d.

Remark 11.13 (Embedding theorem). Consider a compact Riemann surface X.

1

. Tri-canonical embedding: Theorem 11.12 shows that for genus g(X) > 2 the tri-

canonical bundle provides a projective embedding of X. For g = 1 the canonical
bundle is trivial, i.e. @ =~ &, hence for each power .Z of the canonical bundle the
map ¢ maps X to a point. For g = 0 no positive power of the canonical bundle
has a holomorphic section.

. Fujita conjecture: In the proof of Theorem 11.12 we showed for an invertible

sheaf ¢ on a compact Riemann surface X of genus g: The estimate
ci"(¥) > 2

is a sufficient condition for ¢ to be very ample. The Fujita conjecture prompts
to verify the following very ampleness criterion: For any n-dimensional compact
complex manifold X and an invertible sheaf % on X with ¢! () > 1

m>n+2 = Kk ®.2Z%" very ample.

The Fujita conjecture holds for Riemann surfaces X: If ¢ (#) > 1 then
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m>3=2+1 = Mix@ L") =2-(g—1)+m-c"(L) >2g+1

The Fujita conjecture also holds for compact complex surfaces. But until now
(June 2020) it is open for general compact manifolds.

3. Effective embedding: The exponent n obtained for the embeddings from Theorem 11.12
Pp: X =P

is not the smallest possible for a projective embedding of X. One can prove that
there always exist closed embeddings into P, see [18, Chap IV, Cor. 3.6].

4. Moduli of complex structures: The proof of Theorem 11.12 shows that the only
compact Riemann surface with genus g = 0 is the projective space X = P'. An
analogous statement does not hold for higher genus: The moduli space of com-
pact Riemann surfaces of genus g = 1 depends on 1 complex parameter, while the
moduli spaces of compact Riemann surfaces of genus g > 2 depends on 3g — 3
complex parameters.

11.3 Tori and elliptic curves

The present section studies in more detail the projective embedding of tori into P>
from Theorem 11.12. The section presupposes some classical results about elliptic
curves. The projective embedding bridges the theory of 1-dimensional complex tori
on the side of complex analysis with elliptic curves from algebraic and arithmetic
geometry on the other side. The relation between both view points is further ex-
plored by the investigation of modular forms, see [40] and the references contained
therein.

We recall and expand Remark 1.12.:
Remark 11.14 (Weierstrass function of a torus). Consider a torus
T=C/A.
Attached to T is its Weierstrass go-function, a meromorphic function
o€ HYT, %)

with a single pole, located at the origin 0 € T and having order = 2. Its derivative £’
is meromorphic with a single pole, located at 0 € T and having order = 3. The func-
tion & is even, its derivative £’ is odd. Both functions are related by the differential
equation of meromorphic functions
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2
P=AF -5 p—g
with the lattice constants
1
g:=060- Y —andg;:=140- ) —
0eA\{0} oemfor @

see [40].

On the torus T denote by Z € Div(T) the point divisor of the point zero 0 € T
and define the divisor

D :=3Z € Div(T) with deg D = 3.
Following the proof of Theorem 11.12 the invertible sheaf
L= ﬁl)

defines an embedding
0y T — P2

Its explicit form is obtained from the Weierstrass g-function of T according to The-
orem 11.15.

Theorem 11.15 (Projective embedding of a torus via its Weierstrass &-function).
Consider a torus
T=C/A

and its Weierstrass go-function. Set
D :=3Z e Div(T).

For the invertible sheaf
L= ﬁD

the three sections
/

so:=1,81:= 0,5 =
are a basis of H*(T, %). They define the holomorphic embedding

1: (! 0
b0 T2, pry | L) 0P PF
(0:0:1) p=0
Proof. The function is holomorphic also in a neighbourhood of O: For a chart

z:U—=V

of T around 0 we have in U \ {0}
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0r=(1:1p:p")=(:2 0:2 p)
which extends holomorphically into the singularity with value

(0:0:1), g.ed.

Theorem 11.15 provides a bridge from Riemann surfaces to algebraic curves, or
more general from complex analysis to algebraic geometry. Algebraic curves are the
zero sets of homogenous polynomials. Hence the image

¢2(T) C P

is expected to be the zero set of a well-defined homogeneous polynomial. How to
obtain this polynomial?

The affine part
92(T\{0}) CUp~C
is contained in the zero set of a polyomial in the two variables
x=@andy=p’ .
Proposition 11.16 (Weierstrass polynomial of a cubic curve).

1. The affine plane curve
Eupri={(x,y) €C*: F(x,y) =0} cC?
defined by the Weierstrass polynomial
F(x,y) :=y* — (4x® — Ax — B) € C|x,y] with constants A, B € C,
is non-singular iff F has a non-zero discriminant
Ap:=A’-27B*€C.

2. The projective closure -
E:=E.rC P?

is the projective curve
{(z0:21:22) €P?: Fom(z0,21,22) =0}
defined by the homogenized Weierstrass polyomial
Fhom(20,21,22) 1= Z% 20 — (4'Z% —A-7; -Z(z) —B-zg).

One has
E=E,;;U{O}withO=(0:0:1) € P~
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3. The point O € E is non-singular.

Proof. 1. A point (xo,y0) € C? is a singular point of E, iff it satisfies the three
equations

JdF
0=y — (4x3 — Axo — B), a—(xg,yo) =2y=0, —(x0,y0) = —12x3+A=0

oF
y " ox

Introducing the cubic poynomial
f(x) :=4x> —Ax+B € C[y]
the condition is equivalent to
f(x0) =0and f'(xo) =0.

The latter condition is equivalent to xy being a multiple zero of f, i.e. to the
vanishing of the discriminant Ay of f. One computes

Ap =A% 278,
see [23, Chap. III, Cor. 3.4].

2. The projective closure of an affine variety - taken in the Zariski topology - is
obtained by homogenizing the defining polynomials, see [18, Chap. I, Ex. 2.9].
Because E, sy is closed in the Zariski topology it is also closed in the Euclidean
topology.

3. To prove non-singularity at the point O we consider the standard coordinate
of IP? around the point O

)

¢21U2—>(C27 (20321 :ZZ)H(M,V) = (ZO Z1> )

We have

®(ENUy) ={(u,v) € C?: flu,v) =0}
with

fu,v):=u—(4-v —A-u* - v—B-u).

Then the partial derivatives are

of

d
&—(u,v) =1-(2-A-u-v—3-B-u?) and —f(u,v) =12V +A-i?
u

ov

hence
V£(0,0) = (1,0) £ 0, g.e.d.
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Fig. 11.2 Affine non-singular cubic curve E s defined by a Weierstrass polynomial

A non-singular cubic has a group structure. Figure 11.2 shows two points P, Q € E, ¢
and the geometric construction of the point P+ Q. The construction use the fact that
the line passing through P and Q intersects the cubic in a third point R and similar
the line passing through R and O.

Each complex 1-dimensional torus is biholomorphically equivalent to a torus
T=C/A
defined by a normalized lattice
A=Z-1+7Z-7

with 7 € H, the upper halfplane, see [40].



11.3 Tori and elliptic curves 255

Proposition 11.17 (Discriminant modular form). The discriminant form
A:H—C, A1) :=g3(1) —27-g3(7),

is holomorphic and has no zeros.

For the proof of Proposition 11.17 see [40, Chap. 4]. Properties like that are the first
fundamental results from the theory of modular forms, see [40].
Corollary 11.18 (Non-singular Weierstrass polynomial). For any lattice
A=Z-1+7Z -7, 1 H,
the plane affine curve
Eqfp:={(x,y) €C*: P(x,y) =0}
with Weierstrass polynomial
P(x,y) :=y> — (4> — g2 (1) -x — g3(1))
is non-singular, see Figure 11.2.

Proof. The claim follows from Proposition 11.16 and Proposition 11.17, g.e.d.

Definition 11.19 (Elliptic curve). A non-singular curve in X C P" of genus g(X) = 1
is an elliptic curve.

Corollary 11.20 (Embedding tori as plane elliptic curves). Consider a torus
T=C/A
with normalized lattice
A=Z-1+7Z 7, T € H, and lattice constants g, g3 € C.

The image of the embedding
O0p: T — P?

from Theorem 11.15 is the elliptic curve E C P? with Weierstrass polynomial
F(x,y) =y — (4 —g2-x—g3).
Proof. It remains to show the surjectivity of

0y : T —E.
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Consider a point
(x:y:1)€E.

The go-function is a non-constant meromorphic function, hence a non-constant holo-
morphic map
po: T — P

The latter is surjective due to Theorem 3.22. Hence there exists z € T with
P(z) = x.

The function @ is even, therefore also

(@(—Z) =X.
From
V=40 — g x— g3 =40() — g2 0() — g3 = 9 (2)’
follows:
¢ Either
y='(z) and ¢ (z) = (x:y:1).
e Or

y=—@'(2) =@ (-z)and ¢ (—2) = (x:y: 1), g.e.d.

Remark 11.21 (Tori, elliptic curves and GAGA).

1. Definition 11.19 introduces elliptic curves as certain 1-dimensional closed sub-
manifolds of P*. A closed submanifold of P" is by definition locally the zero
set of holomorphic functions. By a theorem of Chow it can already be de-
fined as the zero set of homogenous polynomials, hence it is a closed subset
with respect to the Zariski topology of P”, notably a non-singular algebraic
curve [15, Chap. I, Sect. 3].

2. Replacing power series by polynomials opens up a refined investigation of a
projective-algebraic curve E. We distinguish
* its field of definition k which is the smallest subfield X C C containing the
coefficients of all homogeneous polynomials from the definition of E,

¢ and for all fields
kcKcC

the set E(K) of K-valued points of E, i.e. of zeros
(zo:.izn) €P"

of the defining polynomials with all components z; € K, j=0,...,n.
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Hence a refined definition considers an elliptic curve as a pair (E /k, O) with

* anon-singular projective-algebraic curve E /k of genus g = 1 with k the field
of definition

¢ and a distinguished k-valued point O € E.

3. An elliptic curve (E/Q,O) is defined by polynomials with rational coeffi-
cients. Then the curve can even be defined by polynomials with integer co-
efficents. Reducing their coefficients modulo a prime p € Z provides a series
of curves (E,), prime defined by polynomials with coefficients from the finite
fields F,,. The investigation of this family opens up a path from algebraic ge-
ometry to arithmetic geometry.

4. The relation between algebraic geometry and complex analytic geometry (en
francais: GAGA = Géométrie Algébrique et Géométrie Analytique) is formalized
by a covariant functor

an Iﬂ(c — IMC

from the category Al of schemes of finite type over C to the category Anc of
complex spaces. The functor attaches to a scheme X from Al:, provided with the
Zariski topology, the complex space X" of the complex points of X, provided
with the Euclidean topology. One checks that an also maps morphisms f in Al
to morphisms f*" in Anc.

Of course, a complex manifold, a representative object from the category Anc,
has not necessarily the form X" for a scheme X € Al¢. The relation between
both categories is closer when one compares projective schemes and compact
complex spaces. Here the first important result is Chow’s theorem: If a complex
space Y is a closed subspace of a projective space then

Y =X

for a projective scheme X € Al. In the other direction one has the obvious result:
For any projective scheme X the complex space X% is compact.

But there are compact complex manifolds ¥ which do not have the form ¥ = X"
with a projective scheme X. Hence the question: Which additional property as-
sures that a compact manifold Y has the form ¥ = X“*? The answer is Kodaira’s
embedding theorem: One needs the existence of a positive line bundle . on Y.
Then the embedding relies on Kodaira’s vanishing theorem for the cohomology
of Z.

The study of the functor an has been initated by Serre [34] and later generalized
by Grothendieck, see also [18, Appendix B] and [28].






Chapter 12
Harmonic theory

The present chapter considers Riemann surfaces from the view point of differen-
tial geometry. Section 12.1 and 12.2 take a more general view point than nec-
essary for Riemann surfaces: We consider complex manifold of arbitrary finite
dimension n € N* and their underlying higher-dimensional smooth manifolds.

For a compact Riemann surface X both types of cohomology, the topological
cohomology groups H" (X, C) and the holomorphic cohomology groups H4(X, Q7)
are vector spaces of classes. Also the elements of the de Rahm groups RA™(X)
and the Dolbeault groups Dolb??(X) are classes. After choosing a metric on X
harmonic theory allows to single out from each class a well-defined representative
which is a harmonic differential form. As a consequence the whole cohomology
of X takes place within the vector spaces of smooth differential forms on X which
are respectively d-closed or d”-closed.

The final Chapter 12.3 returns to Riemann surfaces as a low-dimensional exam-
ple. For Riemann surfaces the de Rahm-Hodge theorem can be obtained without
the theory of elliptic differential operators. Instead one uses the finiteness theorem
from Chapter 7. By using Dolbeault’s theorem we prove in addition the de Rham-
Dolbeault-Hodge decomposition theorem, Theorem 12.41. It splits on a compact
Riemann surface the fopological cohomology as a direct sum of the holomorphic
cohomology. The latter result generalizes to compact complex Kéhler manifolds of
arbitrary dimension.

12.1 De Rham cohomology with harmonic forms

The underlying smooth structure of a Riemann surface is an oriented Riemann man-
ifold. Section 12.1 makes some first steps to investigate oriented Riemann manifolds
of arbitrary dimension by methods from differential geometry and partial differen-
tial equations. We introduce the Hodge *-operator and define the adjoint differential

259



260 12 Harmonic theory

operator of the exterior derivation. The Laplacian is an elliptic differential operator.
The main theorem on elliptic differential operators on compact oriented Riemann
manifolds implies the de Rham-Hodge decomposition theorem, see Theorem 12.12,
and its Corollary 12.13, a representation of de Rham classes by harmonic forms.

All results hold in the context of real numbers. Hence in this section, we consider
for a smooth manifold its real tangent spacec: Partial derivatives from the tangent
space multiply by real numbers, and cotangent vectors are linear functionals which
take real values.

Remark 12.1 (Fundamentals of Euclidean vector spaces). Consider a finite-dimensional
Euclidean vector space (V,(—,—)), i.e. an n-dimensional real vector space V pro-
vided with a scalar product

(—=,—):VxV =R

1. The induced map
VoV, x— A i=<x,— >,

is an isomorphism. The map becomes an isometry of Euclidean vector spaces
when providing the dual space V" with the Euclidean scalar product

< Ay Ay >1=<x,y >

2. For each 1 < k < m the exterior product AV is an Euclidean space with respect
to the induced scalar product

< XN AX YT N LAY >i= det(< Xi,Yj >)1§i,j§k eR
3. For an arbitrary basis (ay,...,a,) of V the matrix
8 = (8ij :==<ai,a;>)ij

is symmetric and positive definite. For the dual basis (a*,1,...,a",, ) of V*, the
matrix
g* = (< a*ai 7a*aj >)l]

satifies
g* _ g—l
4.1f (ey,...,ep) is an orthonormal basis of V then also the dual basis
(€], €p)

of V*  is orthonormal. Moreover, for each 1 < k < m the family
(eiy N Nej)i<iy<..<iy<m

is an orthonormal base of /\k V.
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Definition 12.2 (Volume element of an oriented Euclidean vector space). Con-
sider an m-dimensional real vector space V.

1. An orientation of V is an order function on A"V satisfying

* Each non-zero ¢ € \"V satisfies either 6 >0 or —c > 0
e Ifo>0and7t>0thenc+7>0
* Ifo>0and A €RY theni-6 >0

2. An oriented Euclidean m-dimensional vector space (V,< —,— >) has a unique
element, named its normalized volume element,

m
ne v
satisfying
p>0and 1= u|:=v<u,u>
Here the scalar product is taken from Remark 12.1, part 2. After choosing a
basis (ay,...,a,) of V with

a:=ayN...\Nay,

positive, one defines
a

po=
[lall

Proposition 12.3 (Dual pairing by the volume element). Consider an n-dimensional
oriented Euclidean vector space (V,(—,—)) with normalized volume element p € \" V.

1. The normalized volume element induces an isomorphism
m
in: \VoR, A-ue A
2. For any 1 < p < m the bilinear map

p m—p m

AVx ANV—=AV-oR, (@) idanp),

is a dual pairing in the sense of Remark 9.9.

The *-operator of an oriented Euclidean vector space (V,< —,— >) from Defi-
nition 12.4 combines the duality of the exterior algebra via the volume element and
the identification of the vector space and its dual space by the scalar product. In
general, the x-operator depends on the scalar product.
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Definition 12.4 (The x-operator for oriented Euclidean vector spaces). On an m-
dimensional oriented Euclidean vector space (V, < —, — >) with normalized volume
element

n
pe\v
the *-operator is the R-linear morphism
P m—p
* /\V — /\ Vv

defined as the composition of the two R-linear isomorphisms

p m—p \*
AV— | ANV| . .a—igo(an-),
and

m—p * m—p
(/\ V) — AV, <=, 0m_p > Qu_p.

Lemma 12.5 (Properties of the x-operator). Consider an m-dimensional oriented
Euclidean vector space (V,< —,— >) with normalized volume element

n
ne v
1. The x-operator is characterized by the property: Forallp=1,....mand o, € \*V
m
(.B) - = anspe \V
2. With respect to an arbitrary positive oriented orthonomal basis of (V,< —,— >)
(61, —eey em)
the x-operator is characterized by the formula
*: VP = VP (e A /\e,-p) =sgno-e,  N...\¢,

with
o= (l]a7lm)

the permutation of the index family (1,...,m).

3. The iteration of the x-star operator

P n—p P
AV— AV-—= AV
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satisfies
sk = (—1)Pm=P)

Proof. ad 3. Due to part 2)
*(eil A... /\ei],) i A N...N\ej,

implies
wx (e N Nej,) =€+ &€, N N6,

with the signs of permutations
&1 =8gN(I1,5slpyipsty-enyim) aNd & = SgN(Ipt1, ooy, 155 ip)

Hence
g = (—1)Pmr.g

which implies
sk = (=1)P"P)id g.ed.

Definition 12.6 (Riemann manifold). Consider a smooth manifold X with real
tangent bundle
p: TRX — X.

1. A Riemann metric on the real tangent bundle Tg X is a R-bilinear, symmetric map
to the trivial line-bundle

g= <7,7> cTrX Xx TRX — X xR
which induces on each fibre
T, = (TrX)p, p€X,

an Euclidean scalar product, i.e. one has for each point p € X an Euclidean scalar
product on the real tangent space

gp:TyxT, =R,

such that its representing symmetric matrix depends smoothly on the base
point p € X.

2. A Riemann manifold (X,g) is a smooth manifold X with a Riemann metric g
onX.

Remark 12.7 (Riemann manifold). Consider a m-dimensional Riemann manifold (X, g).
The Riemann metric is a section

g€l (X, 5006E)).
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1. Consider a smooth chart around of X
O =(x1,.c0,Xm) : U=V CR".
For each point p € U the tangent vectors

J
ox;

d

PREEEY -
» 0xp,

p

are a basis of the tangent space T, at p. Its dual basis are the differentials from
the real cotangent space
dxi,....,dxy € T,.

With respect to the chart the Riemann metric is represented as

d

)
p 8xj

)

n ) a
g(p) =Y gij(p) dxi®dx; with g;;(p) = <8x

i,j=1

If two sections &,m € I'(U,TrX) are represented as

)
1

m a m a
éii;éi'g andn:j;WaTj

then m
g&.m =Y gj-&njesk).

ij=1

The length of a tangent vector & € T, is

161 = VaE.E =,/ ¥ gi(p)-&-&.

ij=1

2. According to Remark 12.1 the Riemann structure induces scalar products on the
real cotangent bundle

p
Tg X and its exterior powers /\ RX, p=1,..,m.

A smooth manifold X of real dimension m is orientable iff it has an atlas of charts
such that the functional determinant of the transformation between any two charts
is positive. If a smooth manifold is orientable then one of the two orientations is
named the positive orientation. The manifold with the positive orientation is named
a smooth oriented manifold. A corresponding atlas defines a volume form of the
oriented manifold, i.e. a positive differential form of highest degree without zeros.
A volume form allows to integrate smooth m-forms with compact support along X.
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Definition 12.8 (Euclidean vector spaces of global differential forms using the
xoperator). Consider an oriented Riemann manifold (X, g) of real dimension m.

1. A volume form of (X,g) is the form
e F(X, &)

which evaluates at a point x € X as

nix) e AT

the normalized volume element of 7;" with respect to the orientation of 7' in-
duced from the orientation of X and normalized with respect to the metric in-
duced from g, see Definition 12.2.

2. For each p = 0,...,m one defines the R-bilinear map
(=) : L(X, &) x T(X,&2) = R with (o, B) := / <aB>-u
JX

3. For each p =0, ...,m the star-operator on the exterior powers of the cotangent
space defines a morphism of &g-module sheaves

x: & — &g T
such that for sections o, 3 € o@ﬁ’(U), U C X open,

<o,B > -ulU=anp.

Lemma 12.5 implies
(e, B) :/Xa/\*ﬁ.
For p = 0, ...m the bilinear form
(- ) (X, &) x L(X, &) - R

is a scalar product, and (It.(X, &%), (—,—)) is an Euclidean vector space.

Definition 12.9 (Formal adjoint operator and harmonic forms). Consider an
oriented m-dimensional Riemann manifold (X,g). Foreach p=1,...,m:

1. The formal adjoint of the exterior derivation
. pptl P
0:6p  — 6

is defined as
8= (1) wdx
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2. and the Laplacian
A8 — &
is defined as
A:=dPod+8od" .

The kernel of the Laplacian
Harm® (X ,R) :=ker[A : IL(X,&8) — IL(X, &8)]

is the vector space of harmonic p-forms.

Proposition 12.10 (Adjointness). Consider an oriented m-dimensional Riemann

manifold (X, g). Denote by * (“upper star”) the operation of taking the adjoint of a
linear operator on the Euclidean space

(E(X751§)7 (—,—)), p=0,...m.

Then
1. Adjoint operator:
d*=96
2. Selfadjointness:
A*=A
3. Commutator:
[A,%]=0

Proof. 1. For arbitrary
a € [L(X,6PF), BeI(X, 67T

set d = dP and compute
(de,B) :/ <do,f>-u= / doaN*f
X Jx
The Leibniz formula

dlanxB)=dan«B+(—=1)Pand(xp)

Stokes’ theorem
/ dlaAnxB)=0
X

and Lemma 12.5 imply

() = (=17 [ and(sB) = (<17 (<1 [ annd(s) =
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= (-1 [ ans((xdnp) = (<17 | < (de)B) > n =
X X
= (=1)"""(at, (+d*)(B)).-

2. The selfadjointness of the Laplacian follows from
A*=(d6+06d) = (dod) +(8o0d) = (dod") + (d*od)" =
=d”od " +d*od”™ =dé+dd=A

3. We have to show that the following square commutes

P S

E

&r ——» pm—p

A

Lemma 12.5 and part 1) imply on one hand
Ax = (d8 +8d)x = (—1)"" P g den 4 (— 1) P s g s g =
_ (_l)zn(mfp)+1+p(m7p)d*d+ (_l)m(m7p+l)+1 wd * dx

and on the other hand

*A = #(d8 +8d) = (— 1)V sdwd s +(—1)"PTH ssdwd =
(=)™ s d s d s+ (—1)"PHEDFHO=PIP g 4 g

Concerning the sign of the exponents one checks

sgn(m(m—p)+ 1+ p(m—p)) =sgn(m(p+1)+1+(m—p)p)

and
sgnim(m—p+1)+1) =sgn(mp+1), q.e.d.

Remark 12.11 (Ellipticity of the Laplace operator). Consider an m-dimensional
Riemann manifold (X, g). With respect to a smooth chart of X

X=(X1y.0,X) U=V CR"

the metric has the form

m
g=Y gijdxi®dx;eI'(U, & @ &)
i,j=1

with a matrix function
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(gij) € C(U,GL(m,R))

Then
m B (92
A=—Y gl L
.Zlg axiaxj +
i,j=
with

(gij) = g_l € F(UvGL(maR»

the inverse matrix function and L a differential operator of order < 1. The quadratic
form defined by the highest order

GRS R, E= (Enrbn) (€)= — Y g E-E;

i,j=1

is non-degenerate, i.e.
q&)=0 <+ £=0.

Hence the Laplace operator is an elliptic differential operator. Notably, when the
family (dx;)i—1,.. m is an orthonormal basis then

m 82

A=-Y ———.
ij= 8)6,’8)6]'

Theorem 12.12 relies on a deep result from the theory of partial differential equa-
tion, which will not be proved in these notes.

Theorem 12.12 (Hodge decomposition). Consider an m-dimensional compact
oriented Riemann manifold (X, g). For each p =0, ...,m holds

dim Harm? (X, R) < oo
and orthogonal decomposition
I'(X,&2) = Harm? (X, R) Sdr(X, & & Sr(X, &0
Proof. i) Claim: Forall 0 < p <mand n € I'(X, &%)
AN =0 < dn=0eT(X,& " YandSn =0c (X, & "):
For the proof note that by definition
dn=0el(X,& Y anddn=0e(X,&07") = An=0
To prove the converse implication assume

An =0.
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Then
0= (An,n) = (dén,n)+(8dn,n) = ||6n|*+|dn|*

Hence
dn=0and 61 =0.

ii) The main theorem of elliptic operators on an m-dimensional compact Riemann
manifold X implies for each j =0,...,m

dim Harm’ (X ,R) < oo

and
I'(X,&]) =Harm! (X,R)® AL (X,&)).

For a proof of the main theorem see [43, Chap. IV, Theor. 4.12] and [2, 3.10].

iii) Claim: For arbitrary but fixed p =0, ..., m.
AL(X,E0) =dT (X, &8+ 80 (X, &8
The proof will apply the main theorem for the two cases
Jj=p—1L p+lL

By definition
AT(X,EP) Cdl (X, &0 ") + 80 (X, &8

To prove the converse inclusion
AT (X, &8N+ 80 (X, &8 Cc AD(X,&0)
Consider an arbitrary but fixed element
T=dé+6n edl (X, & Yo sr(X, &)
We apply the main theorem to I"(X, &% 71) and decompose
E= A& +& with A&y =0
and to I' (X, é’)ﬂé’H) and decompose
N=An;+nowithAny=0

Due to part i)
déo =0and 51’]0 =0

As a consequence

’L':d(Aél +§0)+5(AT[1 +10) =dAE +6An =
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=dbéd& +ddd& +066dn; +8dén; =déd& + 6dén,

Set
a:=dé +6m el(X,&8)

Then
Ao=déo+ 6do =dddé) +6ddn =1

iv) As a consequence of part i) and ii)
r'(X,&L) = Harm? (X,C) @dl (X, &) + 80 (X, &8
v) The three subspaces
Harm?(X), dT(X,&07"), 8T(X, &0 c T(X, &)
are mutual orthogonal:

¢ For each
o € Harm(X) and & = 8n € ST(X, &)

we have

(a7§) = (0‘7577) = (davn) =0

because due to part 1)
Aa=0 = da=0.

¢ For each
o € Harm”(X) and & = dn € dI'(X,&0")

we have
(a,8) = (at,dn) = (8o, 1) =0
because due to part i)
Ao=0 = 6a=0.
» For each
dn e dl(X,&07") and 8¢ € 6T (X, &2

we have

(dn,88) = (ddn,) =0, g.ed.

Corollary 12.13 (De Rham-Hodge theorem). On an m-dimensional compact ori-
ented Riemann manifold (X, g) the Laplacian induces an isomorphism

RW (X,R) ~ Harm? (X,R)

between the real de Rham group and the vector space of harmonic forms. In partic-
ular,
dim Rh? (X,R) < oo
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Proof. We have

ker: [T(X,&0) % (X, &0

Rh?(X,R) = y
im: [[(X,&0 1 S (X, &80)]

There is a well-defined canonial map
Harm?(X,R) — Rh’(X,R), n — [n]

because
AN=0 = dn =0

i) Surjectivity: Consider an arbitrary but fixed
ner(X,&F) withdn =0
We have to find a harmonic form
& € Harm? (X,R)
satisfying for a suitable o € I'(X, éoﬂg_l)
n-§=da
Theorem 12.12 provides the decomposition

n=mno+da+38p

with
ANy =0, ac F(X,éaﬂg*l), B e F(X,éié’“)-
Then
dn=0 = doép =0.

Apparently

683 =0.
As a consequence

AdB =0.
Hence

5B € Harm? (X, R) NS (X, &) = {0}

and

n=mno+daorn—mny=da.
ii) Injectivity: Assume 1 € Harm? (X ,R) with

n=déedl(X,&5")
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Because
Harm? (X,R)NdI(X,&0") = {0}

we conclude o = 0, q.e.d.

12.2 Harmonic forms on Hermitian manifolds

The present section extends the harmonic theory to Hermitian manifolds, the higher
dimensional generalization of Riemann surfaces. Any Hermitian manifold induces
in a canonical way an orientation of the underlying Riemann manifold. Thanks to
the Hermitian metric the results from the real context of Section 12.1 carry over to
the complex context.

On Hermitian manifolds we have an interplay of real and complex structures.
Therefore, one has to pay attention and to distinguish carefully whether the object
under consideration is

» areal vector space W,

* the complexification W ®g C of a real vector space W,

* acomplex vector space V,

* the underlying real vector space V;ey of a complex vector space V,

» orareal form W of acomplex vector space V, i.e. V is the complexification of W.

On a complex vector space V we consider C-linear, C-antilinear and R-linear func-
tionals with values in C.

Remark 12.14 (Real linear functionals on a complex vector space). Let V be a
complex vector space of complex dimension = n.

o C-antilinear functional: A R-linear map between complex vector spaces
f:U—-Ww
is C-antilinear if f satisfies forall A € C, u e U

FOcu) =T f(w).
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* Linear and antilinear functionals: There are two different complex vector spaces
of R-linear functionals: The dual space of C-linear functionals

A0 .= Homg(V,C),
a complex vector space, and the vector space of C-antilinear functionals
A" :=Homc(V,C) =
={¢p:V—=>C: ¢ is C—antilinear}
Also A%! is a complex vector space under the usual scalar multiplication by p € C
(Vo)) i= - 9 (),

because for g € A%, A, veC,ucV,

(V-o)A-uw)=v-¢A-u)=v-(A-¢(u) =A-(v- o)) =4 ((v-¢)(u))

*  Complex structure on the vector space of R-linear functionals: On the real vector
space of R-linear functionals

Al := Hompg (Viea, C)
the R-linear endomorphism
J:AY 5 Al ¢ J¢ with (JO)(u) := ¢ (i-u),

satisfies
J2=—id.

The endomorphism has the two complex eigenvalues i and —i with respective
eigenspaces A''? and A®!. Hence

Al = A10 g A0,

Both eigenspaces are complex vector spaces. Hence the real vector space A'
becomes a complex vector space by defining the complex scalar multiplication

i-¢:=J(9).

We have
dimc A' =2 -dime V.

The map J is named a complex structure of A'. For the complex vector space A'
the above splitting is even a splitting of complex subspaces

Al :Al,() @AO’].
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The conjugation B
A—A ¢o— 0,

is a C-antilinear isomorphism with
AL0 = A%'and A0T = A1,

o Exterior algebra: For j =0,...,2n define

j
A= N\A"

The splitting
Al S5 A0 gAY

generalizes to the exterior algebra. For j = 0,...,2n it provides a complex struc-
ture on A/.

For p,q =0, ...,n define the complex vector space
p q
AP = A A @c \A*!

Note the complex scalar multiplication on A”Y:

C x AP — AP
induced by the multiplication

i(aep)=J)ef=axJB)=(i-a)f=ax(—i-B)

Then for j =0,...,2n

Al ~ P ar

p+a=j

due to the general formula for the exterior algebra of the direct sum of two vector

spaces V and W
AVew)~A\ve \W

as a graded isomorphism.

Definition 12.15 (Unitary vector space).

1. A Hermitian form on a complex vector space V is a map
h:VxV—=C

which is C-linear in the first argument and satisfies for all u,v € V

h(u,v) = h(v,u).
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2. A unitary vector space (V,h) is a complex vector space V with a Hermitian scalar
product h, i.e. his a Hermitian form which satifies for all non-zero v € V

h(v,v) >0.

Proposition 12.16 (Hermitian scalar product and induced Euclidean scalar
product and alternate form). Consider a unitary vector space (V,h) with Her-

mitian scalar product
h:VxV —C.

Then:

e The real part
g:=Reh:ViuyXViea — R

is an Euclidean scalar product on V.
o The negative of the imaginary part
®:=—Imh:VyxXVeua—R

is an alternate, real bilinear form on V., the alternate form associated to A.

o If(¢1,...,0,) is a basis of the dual space V* and
n —
h=Y hap 09
a7ﬁ

then '
i & _
0= 2’ Zhaﬁ ¢a/\¢ﬁ
a,ﬁ

Proof. 1) Euclidean scalar product: We have

Re h(u,v) = Re h(u,v) = Re h(v,u)

and

o(u,v) := —Im h(u,v) = Im h(u,v) = Im h(v,u) = —o(v,u).

ii) Alternate form: Let (ey,...,e,) be the basis for V with (¢, ...,,) the dual basis
of V*. If we represent the Hermitian metric as

h=Y hag 9a@¢p: VRV —C
a.p

then the matrix
(hap) € M(nxn,C)



276 12 Harmonic theory
is Hermitian, i.e. for o, = 1,...,n

g = hga

Consider two elements
g =Z§a~ea7 n :Znﬁ'eﬁ ev.
a B

On one hand
h(&,m) = Zhaﬁ Ea ‘Mg
a’ﬁ

and

w(é’ﬂ) = %Z (hoc[i 'ga'ﬁﬁ _thﬁ 'ga'nﬂ)
a,p

using the formula
i
—Imz=z-2= E(zfz)

for complex numbers z € C. Because 4 is Hermitian we obtain
i I
0(Em) =3 ¥ hap- (&g —Ep e
(X7ﬁ

after changing the indices of the last summand in the bracket. On the other hand

(0 APp)(E.1) = 0a(§)Pp (M) —9a(n)Pp(E) = Eallp —Malp

As a consequence

o(&,n)= (; Zhaﬁ o /\¢ﬁ> (€,1), q.ed.
a.p

Remark 12.17 (Real structure and complexification). Consider an n-dimensional
complex vector space V.

1. Induced Euclidean vector space: Consider the real dual space dimension m = 2n
A]{Q = HomR(VrealaR)-

A Hermitian scalar product 2 on the complex vector space V induces an Eu-
clidean scalar product
g:=Reh

on the real vector space Viey: The unitary vector space (V,h) induces the Eu-
clidean vector space (Vieal, g). According to Remark 12.1 the Euclidean structure
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carries over to the dual and to the exterior algebra

. J
Ap and A == \Ag.
2. Complexification: The complex vector space from Remark 12.14
A' = Homp (Viear, C)

is the complexification
Al ~ Al ogC.

The complexification carries over to the exterior algebra: For j =0,...,2n
Al ~ Al @R C.
3. Orientation: Consider a basis
B = (e1,...,en)
of the complex vector space V. The dual basis
B = (e],...,ep) of A0 = Homc(V,C)
induces the basis

(B rear = (€1, (i-€1)",....ep, (i-€n)”) of AL = (AI’O)

real

Here
(i-ep)" € Ak

is the R-linear map

V- R withv s {1 Vo

0 VERBreaandvF#i-e
If we provide A[E with the orientation such that (%" )., is positively oriented,
then the orientation is independent from the choice of the original basis %. Hence
the complex vector space V induces a canonical orientation on the real vector
spaces Viea and Aﬁ@.

4. Normalized volume element. Consider a Hermitian scalar product /2 on V. With
respect to the positive orientation of the Euclidean vector space

(Vreah 8= Re h)

and the induced orientation of A]k there exists a unique normalized volume ele-
ment
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2n
1
Hg € /\A]R
see Definition 12.2. Due to the canonical injection
Ap = A'=AL@rC, arsa®]1,
we consider

g € AR C AT = A"

We now carry over the definition of the x-operator from the real case, see Propo-
sition 12.3 and Definition 12.4, to the complex case.

Proposition 12.18 (Dual pairing in unitary vector spaces). Consider an n-dimensional
unitary vector space (V. h), set g := Re h and recall

Al = Homg (Viear, C) and A]ﬁ = Homg (Vyear, R).
1. The normalized volume element

L EAR C AT =A™
from Remark 12.17 induces a C-linear isomorphism
iy, T A™" = Cy A pg A

2. For each 0 < p,q, < n the C-bilinear composition

AP AP 5 AT — C, (o, B) =iy, (A B),

is a dual pairing.

Definition 12.19 (The x-operator for unitary vector spaces). Consider an an n-dimensional
unitary vector space (V, h) with normalized volume element

L, € A CA™, g:=Re h.
1. For each 0 < p,g < n the x-operator
% AP — AP
is defined as the C-antilinear map which is the composition of the C-linear map
AP — (AP o N By v i (0 A By A ),

and the C-antilinear isomorphism
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(A"—PIaYE y AP P

induced from
<-, anfp 0y ﬁnfq >p anfp 29 anq

2. For each 0 < j < 2n the *-operator
w1 AJ — AP
is defined as the C-antilinear map which is the composition of the C-inear map
Al — (A7) o i (A =),
and the C-antilinear isomorphism
(A2n7j)* N A2r17j

induced from
< —,0p—j >p = Oan—j

Note. Definition 12.19 defines the *-operator with respect of the Hermitian scalar
product £ by using the normalized volume element i, derived from the Euclidean
scalar product g.

Remark 12.20 (x-operator on unitary vector spaces).

1. For each 0 < j <2n the direct sum of the *-operators from Definition 12.19, part 1)
is the *-operator of part 2)

x Al = @ AP @ API—q — A2n—]
pta=j pta=j

2. As a consequence of Lemma 12.5 and Definition 12.19:

Forall0 < p,g<nand a,fB € AP
<a,B > Hg=anxp A"

Because A]{Q is areal form of A!, i.e.
Homg (Vreal, R) @ C =~ Homg (Vreal, C),
the restriction of the C-antilinear *-operator from Definition 12.19
w1 Al 5 AT 0 < j<2n,

to the underlying real form is the R-linear *-operator
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x: Ady — AT
'R R

from Definition 12.4.

We now carry over the definition and results from Definition 12.9 to Remark 12.11
from the real context of oriented Riemann manifolds to the complex context of Her-
mitian manifolds.

Definition 12.21 (Hermitian manifold and underlying Riemann manifold). Con-
sider an n-dimensional complex manifold X.

1. Hermitian structure: We denote by

TX - X

the holomorphic tangent bundle of X. The dual bundle
T°X - X

is the holomorphic cotangent bundle and the conjugate
TX =X

is the anti-holomorphic cotangent bundle. For a complex chart of X

z:U—-VcCC"

the restriction

* TX|U is afree €(U)-module with basis the holomorphic tangent vector fields

d d
92 90

o T*X|U is a free ¢(U)-module with basis the holomorphic (1,0)-forms
dzy,...,dz,

« and T X|U is a free @(U)-module with basis the anti-holomorphic (0, 1)-forms
dzy,...,dz,

o The sheaf of smooth sections of 7*X is denoted &'°, named the sheaf of
smooth (1,0)-forms, while the sheaf of smooth sections of 7 is denoted &1,
named the sheaf of smooth (0, 1)-forms.

e A Hermitian metric
h:TX x, TX =X xC"
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on X is a section
he V(X))

with associated alternate real form
o:=—-Imhe &MNX)NEH(X).

The pair (X, /) is named a Hermitian manifold.

2. Kdihler metric: A Hermitian metric /4 is a Kdhler metric if the associated alternate
form is closed:
do =0.

Hence any Hermitian metric on a Riemann surface X is a Kéhler metric due to
the low dimension of X.

3. Riemann structure: Denote by Xsmooth the smooth manifold of dimension m = 2n
underlying the complex manifold X. Its real tangent bundle

TRXsmooth — Xsmooth

is a real, smooth vector bundle of rank = m. The Hermitian matrix % induces a
Riemann metric
g := Re h on T Xsmooth

and (Xsmooth, &) becomes a Riemann manifold.

Next we carry over the results about unitary vector spaces, the induced real vol-
ume forms, and the *x-operator to the tangent and cotangent spaces of a Hermitian
manifolds (X,h).

Remark 12.22 (Hermitian manifold and real volume form). Consider an n-dimensional
Hermitian manifold (X, /), and denote by
g:=Reh

the induced Riemann metric on the real tangent bundle.

1. Tangent and cotangent spaces: The linear theory from the first part of the section
applies to the fibres of the vector bundles from Definition 12.21 at an arbitrary
but fixed point x € X: The fibre

V.=TX,
is an n-dimensional complex vector space with underlying real vector space

Vieal = (TRXsmooth )x
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of dimension m = 2n. Using the notations introduced before we have the real
vector spaces

Ak = Homg (Vieal, R) = (T5 Xsmooth ) » A" = Homg (Viear, C)
and the complex vector spaces
A = Home(V,C) = T*X,, A% = Homc(V,C) =T "X,
and the induced complex structure on
Al =AM g A% = Al @ C.
The Hermitian metric 4 induces unitary structures on the complex vector spaces
Al A0 A0

and on their exterior powers. The Euclidean metric g induces an Euclidean struc-
ture on the real vector space
A

and on its exterior powers.

2. Orientation, volume form, x-operator: A volume form on the underlying 2n-dimensional
smooth manifold can be obtained as follows. For each complex chart

2=(21,0y2n): U=V CC"
and any holomorphic function without zeros f € &*(U) consider the n-form
oy :=f-dzyN...Ndz, € .Qn(U)

Then

oy AN®Oy = f-dzi Ao Ndzg AN(f-dzy A ... Ndzy) =
frda A Ndzg AF-dZi Ao AdZy = |fI* - dzy Ao ANdzg AdZy A .. AdZy =
= f]2- (=1 D2(dzy AdZ)) A .. A (dzn AdZ) =
= ]2 (=" D2 (24 dxy Adyr) Ao A (=20 -dxy Adyy) =
= |2 (=12 iy 2% dy Ndyy A Adxg Ady, =
= > (=1)" D224 dxy Adyy A ... Adxy Adyy

Set
oy \ Oy

(_1)n(n+1)/2 . (21)

|or] = /< Or, Or >¢.

R = n:|f|2-dx1/\dy1/\.../\dx,,/\dyn

and
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Then
R

o]
is independent from the choice of the chart and the form
Hg € F(X’éoﬂén)
defined as

HelU 2= o
’ rod

is a volume form of the underlying Riemann manifold (X, g). As a consequence
the integration of 2n-forms along X is well-defined. The volume form evaluates
for each x € X to the normalized volume element

2n
He(x) € AR = /\Ak.

3. The x-operator on sheaves of differential forms: Due to part 2) the x-operators
on the exterior algebra of the cotangent spaces of the points of X glue to a C-
antilinear operator on sheaves

w: & — &M 0< j<2n,

which is compatible with the splitting

&l — @ &£

p+q=j

4. Unitary vector space of global forms: For each 0 < p,q < n the map

(—,—) : (X, EP9) x TL(X,EP9) = C

defined as
(0,7) ::/ <O,T>p U :/ O A*T
X X
is a Hermitian scalar product. Hence (I.(X,&P4),(—,—)) is a unitary vector
space.

Definition 12.23 (Formal adjoint operators). Consider an oriented n-dimensional
Hermitian manifold (X, /).

1. We define

¢ the formal adjoint of the d-operator

§:8M 5 £Tas§:= (—1)-(xodox)
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* and the Laplace operator
0:& s &7 asA:=doS+8od.
We define
* the formal adjoint of the d"-operator
8" Pl 5 P4 g5 §" i = (—1)- (xod" 0 %)
* and the Laplace-Beltrami operator

O:&79 5 &P9350:=d" 08" +8"0d".

The following results 12.24 - 12.28 in the complex context and their proofs are
similar to the results 12.10 - 12.13 in the real context and their proofs.

Proposition 12.24 (Adjoint differential operators on (I (X,&79,(—,—))). Con-
sider an n-dimensional Hermitian manifold (X, h). Denote by * (“upper star”) the
operation of taking the adjoint of a linear operator on the unitary space

(I(X,&P9),(—,-)), p,g=0,...,m.

Then
1. Adjoint operator:
( d//)* — 6//
2. Selfadjointness:
O =0
3. Commutator:
[O,%x]=0

Definition 12.25 (Harmonic (p,q)-forms). On a compact n-dimensional Hermi-
tian manifold X the kernel of the Laplace-Beltrami operators

Harm”4(X) := ker [0 CHO(X,&049) —>HO(X,5””1)} , 0< p,g<n,

are the vector spaces of harmonic (p,q)-forms.

Remark 12.26 (Ellipticity of the Laplace-Beltrami operator). The Laplace-Beltrami
operator [] on a compact Hermitian manifold is an elliptic operator.
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Theorem 12.27 (Hodge decomposition). Consider an n-dimensional compact
Hermitian manifold (X ,g). For 0 < p,q < n holds

dim Harm"4(X) < eo

and the orthogonal decomposition

L 1" —1 L " +1
(X, &679) = Harm?4(X) ®d"T(X,6747 1) & §"T (X, &67114),

Corollary 12.28 (Dolbeault-Hodge theorem). On an n-dimensional compact Her-
mitian manifold (X ,h) the Laplace-Beltrami operator induces for all 0 < p,q,<n
an isomorphism

Dolb?4(X) ~ Harm"4(X)

between the Dolbeault cohomology group and the vector space of harmonic forms.

In particular
dim DolbP9(X) < eo.

Remark 12.29 (Pure Hodge structure). On a compact complex manifold X one has
the de Rham-Hodge isomorphism

RW"(X) = Harm™(X),

see Corollary 12.13. If X has in addition a Kéhler metric and one bases the harmonic
theory on that Kédhler metric then

A=2-0

which implies
Harm™(X) = EB Harm?(X)
ptgq=m

In particular, for each pair (p,q) the vector space Harm?*4(X) is a subspace
Harm”*(X) C Harm™(X).
One shows, [39, Prop. 6.11]: For each m € N the de Rham group splits as

RI"(X)= & H"(X)
prg=m

with
divr . loeéPi(X)anddo =0} B
HP(X) = Era(X)Nimld : Em1(X) = Em(X)] C RA"(X)

the subspace of de Rahm classes represented by closed (p,g)-forms. For each (p, q)
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HP4(X) ~ Harm"4(X)

Here the right-hand side depends on the choice of a Kéhler metric. While the left-
hand side is independent from any metric. It depends only on the complex structure
of X. The following diagram with horizontal injections commutes

RI™(X) —— Harm™(X)

| |

HPA(X) - ==> HarmP4(X)
For each m € N the pair
(" (X, Z), (HP(X)) s o) satistying HP4(X) = HI7(X)

is an example of an integral Hodge structure of weight m.

12.3 The example of Riemann surfaces

The holomorphic tangent bundle of a Riemann surface X is a complex line bundle.
The complex structure on X induces an orientation and a conformal structure on X.
They define a x-operator on X. Hence the harmonic theory for smooth Riemann
manifolds and complex Hermitian manifolds from Sections 12.1 and 12.2 applies to
Riemann surfaces. Due to the low dimension of X one gets the following benefits:

* When specializing Theorem 12.12 to the case of real dimension m = 2 and Theo-
rem 12.27 to the case of complex dimension n = 1 then the Hodge decomposition
can be verified by hand - modulo the finitenes theorem. One does not need to in-
voke the theory of elliptic differential operators.

* On a compact Riemann surface the Laplace operator and the Laplace-Beltrami
operator are proportional, see Theorem 12.32. This result can also be checked by
explicit computation.

Remark 12.30 (x-operator and conformal structure).

1. Hodge x-operator defined by a conformal structure: Consider an n-dimensional
oriented unitary vector space (V, /). The Hodge x-operator on the exterior algebra

* APT — AP
defined in Definition 12.19 is characterized by the equation

AN =<0, B >p U
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with the normalized volume element

2n
He € /\A]%ii

depending on the Euclidean scalar product
g:=Reh.

If Ay and Ay are two Hermitian forms on V which are conformally equivalent, i.e.
hy=2A-h

with a positive real number A € R*, then they define the same x-operator:

dxNdy dxNdy 1

lJr == = :—.IJ
# o lldxndylly,  A-fldxAdylly AT

implies

1
<SP >y Mgy =A< OB Shy e Hyy =< OB > hy

The computation shows that the *-operator does not depend on the Hermitian
metric &, but only on the conformal equivalence class of /.

2. Conformal structure of a Riemann surface: Consider a Riemann surface X. For
each point p € X one chooses a complex chart around p

z=x+i-y:U =V, CC.

One chooses an arbitrary Hermitian metric on the complex tangent space T,X
and extends it to a Hermitian metric on

ALO @AOJ — Al :HomR((T;(X)reala(C)

such that
A0 1 A% and < dz,dz >=< dz,dz >
From .
dxNdy = édz/\dz
one obtains the normalized volume element

dxNdy . dzNdz
= =1- —
ldxAdyllg, — lldzAdz]n,

Mg,

With respect to a second chart
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w:Uy—V,

one obtains the Hermitian scalar product with matrix with respect to (dw,dw)

Hence both Hermitian metrics on the complex cotangent space are conformally
equivalent. Due to part 1) they define the same %-operator on the exterior algebra
of A'.

3. Explicit formulas: According to part 1) and 2) the *-operator is a C-antilinear
map, characterized by the equation

ON*B =<0, > Uy

The *-operator only depends on the conformally equivalence class of a metric.
Hence for a given complex chart

z:U—-VvVCcC

we may choose that Hermitian metric of the 1-dimensional tangent space at a
point p € U, which is defined as

2 0\ _,
979z)

We extend this Hermitian metric to the 2-dimensional complex vector space A'
to the metric s, which is defined by the unit matrix

H:=1¢eGL(2,C)
with respect to the complex basis (dz,dz) of A'. Then
|dzAdZ||,* = ||dz A dz|y* = det H =1
and
Ug =i-dzNdZ

* Type (0) = (0,0):
#:AY=C — A%, x1 = Uy,

because
Loxl =<1,1>p -t =1-pe = U

Asa consequence

*f=f-U
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* Types (1,0) and (0,1):
w1 AY 5 AV wdz:=i-dz, and % : A% — A0 xdz = —i-dz,
because
dzANxdz =<dz,dz>p -Pg =1-i-dzNd7=1i-dzNdZ
which implies
*¥dz=1-dz
and similarly
dZN\*dZ =<dZ,dZ >, Pg = 1- g = i-dzNdZ

which implies

*d7 = —i-dz.

As a consequence
x: Al 5 Al

satisfies for @y (x) + @y (x) € A0 @ A% = A!
(@1 (x) + @ (x)) = i (@) (x) — @2(x)).
« Type (2) = (1,1):
x: A2 = AL, *lg =1,
because
Mg - *lg =< g, g >p Mg = 1+ g = Hg.

As a consequence

*(f : .ug) =f
4. The x-operator as a sheaf morphism: For p =0, 1,2 the x-operators on the cotan-
gent spaces glue to C-antilinear *-operators of sheaves

¥ &P — &P

Due to part 2) the x-operator is independent from the choice of a Hermitian met-
ricon X.

The formulas of Lemma 12.31 will be used in Theorem 12.32 to compute several
adjoint operators.

Lemma 12.31 (Relating the x-operator and the exterior derivations 4’ and d").
On a Riemann surface hold:

1. Formulas for the d-operator:

i)
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(dox)(m+m)=i-dN, —i-d"Nyand (dox)(f pg) =d f
ii)
(xod)f=i-(d" f—d f)and (xod)(udz+v dz) =i-(dv— dn)
2. Formulas for the d”-operator:
! (d"ox)(vdz)=i-dvdzAdZand (d"ox)(f-ug) =d" f
ii)
(xod)f=i-d" fand (xod")f = —i-d' [, (xod")(udz) = (—i)-Ju

Recall from Definition 12.23 the formal adjoint operators as well as the Laplace
operators and the Laplace-Beltrami operators on a Hermitian manifold. On a com-
pact Riemann surface X the Laplace operators, depending on the smooth structure,
and the Laplace-Beltrami operators, depending on the complex structure, are pro-
portional. That’s a fundamental result. It does not generalize without additional as-
sumptions to higher dimensional compact complex manifolds.

Theorem 12.32 (Relating the Laplace and Laplace-Beltrami operators). On a
compact Riemann surface X the Laplace and Laplace-Beltrami operators satisfy: If

n=m+mel(X,0)orx,em")

then
An=2-Om+2-Op eNX, ) ol (X,6%),

i.e. the following diagram commutes

HO(x,&h) A HO(X, &)
2020
HO(X, %) @ HO(X,&10) =5 HO(X, £ o HO(X,610)

Analogously for smooth functions and smooth 2-forms:
A=2-0:HX,6) - H*(X,&) and A =2-0: H*(X, &%) — H(X,£?).

The content of Theorem 12.32 is often expressed in an informal way as the pro-
portionality
A=2-0.
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Proof. Those explicit computations in the following, which refer to the choice of
a complex chart z, assume w.l.0.g. that the x-operator is determined by the Hermi-
tian metric with (dz,dz) as orthonormal basis of the smooth cotangent space, see
Remark 12.30, part 2) and 3).

i) Computation of A: By definition, the Laplace operator
A=8o0d+dod:H'X,&') — HO(X,&)

is the sum of the two compositions at the left-hand side and the right-hand side in
the diagram below:

HO(X,&h) HO(X,&?)
1) A o

HY(X,&)

HO(X, &)

By definition
Sod: &' — &'
is the composition
6od=(—1)-(xodoxod)=(—1)-(xod)o(x0d)

Successive application of the two formulas Lemma 12.31, part 1.ii):

(xod)(udz+vdz) =i-(dV— Jn)

and
(xod)o(xod)(udz+v dz) = (xod)(i- (0V—u)) =
i-d"((=i)-(dv—0u)) —d'((—i)- (v —0u)) =
=0d(dv—0u) dz—9d(dv—du) dz
hence

(§od)(udz+vdz) =09(du—0dv) dz+d(dv — du) dz
Analogously, we decompose
dod=(—1)-(dox)o(dox)
Successive application of the two formulas Lemma 12.31, part 1.i):

(do8)(udz+vdz) =—03(du+dv) dz—d(du+dv) dz

Hence
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Aludz+vdz)=—-2-9dudz—2-9dv dz

ii) Computation of U: Each of the two Laplace-Beltrami operators is the
composition in the corresponding diagram below:

"

HO(X, &%) HO(X,&19) HO(X,&7)
5" O O 5"
HY(X,&) d’ H(x,&00) H(x,&10)
By definition

d”OS” — (_l)(d//o*)o(d/lo*)
Successive application of the two formulas of Lemma 12.31, part 2.i):
(d"08")(vdz) = (—1)-(d"o%)(i-d v dzNd7)

and
(d"08")(vdz) = (~1)- (d"0%)(3 ¥~ ptg) =

=—d"9v=—0d9dvdz

Analogously one computes the composition
§"0d" = (1) (xod")o(x0d")
Successive application of the two formulas of Lemma 12.31, part 2.ii):
(8" 0d")(udz) = (—1)(x0d")((x0d")(udz)) =
= (=1)*(—i-du) = (=1)(—i)-i-d'du=
= —ddudz

iii) Comparing A and [J: Comparing the results from part i) and part ii) shows
O(udz+vdz) = —3du—dav
and finishes the proof of the theorem for 1-forms.
iv) Functions and 2-forms: On one hand, by definition
A=8o0d:H'(X,&) = H'(X,&)

Successive application of the two formulas of Lemma 12.31, part 1.ii):
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§od=(=1)(xod)o(xod)(f) = (=1)-((xod)(i-(d" f~d' f)) =
=(=1)-(x0d)(i-d fdz—i-df dz) = —(ddf +dIf) =
=—2-90f

On the other hand, by definition
O=68"0d":H'(X,6') > H(X,6'0)

Successive application of the two formulas of Lemma 12.31, part 2.ii):
(6"0d")(f) = (=1)o(x0d")o (xo0d")(f) =
=(=1o(x0d")(—i-d f)=(—1)o(x0d")(=i-df) dz =
=—daf

As a consequence,
A=2-0:HX,&) = H'(X,&)

Analogously one proves

A=2-0:H(X,£%) = H'(X,£%), g.ed.

Remark 12.33 (Wirtinger operators, Laplace operator and harmonic functions).
Consider a Riemann surface X. The Wirtinger operators from Definition 4.4 with
respect to a chart

z=x+iy: U=V

- 1 (9% 97
‘90‘94'<axz+ayz>
- 1 (9% 9?7

Here the term in brackets is the well-known Laplace operator from real analysis.
Hence

satisfy

Hence

Harm®(X) :=ker[A : H'(X,&) = H*(X,&)]

is the vector space of complex-valued harmonic functions on X.

Definition 12.34 (Harmonic forms). Consider a Riemann surface X. The elements
of
Harm™(X) := ker[A : H'(X, &™) — HO(X,6™)], 0 <m < 2,



294 12 Harmonic theory
are named harmonic m-forms. The elements of
Harm”(X) := ker[0: HY(X,&P9) — HO(X,&P9)], 0< p,qg <1,

are named harmonic (p,q)-forms.

On a Riemann surface the equation from Theorem 12.32
A=2-0

relates the Laplace-operator induced by d and the Laplace-Beltrami operator in-
duced by d”. As a consequence the decomposition of differential forms induces a
decomposition of harmonic forms.

Proposition 12.35 (Decomposition of harmonic forms). On a compact Riemann
surface X holds for m = 0, 1,2 the decomposition

Harm™(X) = EB Harm"4(X)
pt+q=m

Proof. The canonical map

Harm™(X) — @ HarmP4(X), n — Z nP,
p+q=m pt+g=m

which splits m-forms into their (p,q) components is well-defined: If n € H(X, &™)
satisfies
An =0

then due to Theoem 12.32
On =0.

As a consequence any 174 € HO(X,&P9) satisfies
OnP4 =0.

Apparently the map is injective. To prove the surjectivity note that any ¢ is also
an m-form and again due to Theoem 12.32

an7q — 0 - Anp'q = O, q.e.d.

Lemma 12.36 (Different characterizations of harmonic forms). On a Riemann
surface X the following properties of a 1-form 1 € H*(X, &) are equivalent:

1. The form n is harmonic.
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2. The form N satisfies
dn=0¢cH"(X,£%) and 51 =0€ H*(X,&)

3. The form n satisfies

dn=0e H(X,&%) and d(+n) =0 € H*(X,&?)
4. The form n satisfies

dn=0cH'X,&" )Y andd"'n =0 H'(X,&MY)
5. The form n splits as

n=m-+mwithm € HX,Q") and n, € H'(X, Q")
6. For each point x € X exists the germ of a harmonic function
fr €6

with
dfx =T € gxl

Proof. 1) <= 2) Analogous to the proof of Theorem 12.12. Assume 1 to har-
monic. Then

0=(An,n)=((8od+dod)n,n)=((60d)n,n)+((dod)n,n) =
= (dn,dn)+(8n,8n) =|ldn|*+ |60

Hence
dn=0and 61 =0.

The opposite implication follows directly from the representation of A.

2) <= 3) Note that
0= (—1)*xodox

and that * is a C-antilinear isomorphism.
3) < 4) Assume dn =d(xn) = 0. Split

n=m-+mn

with
m € HO(X, &) and n, € HO(X,&10).
Then
dn=dmandd'n=d"m
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On one hand
dn=d"ni+d'n,=0

and on the other hand
d(xn) =d(i(M, —My)) =i-(dN; —dn,) =i-(d'N, —d"N,) =0

or
d/ﬁl - d”ﬁz =0

Conjugation of the last equation gives
d'm—dnm=0

Summing up: . , / /
dnm=dn=0=dmnp=dn

The proof of the opposite direction is obvious.
4) <= 5) Referring to the splitting
n=m+mn
from part 4) we have
d'M=0 < d'n=0 < n el (X,Q"

and
dN=0<+=dm=0<+=dn,=d"7,=0 <

= M, c H'(X,Q') = mH' (X, Q)

2) < 6) The exactness of the De Rahm sequence, see Theorem 5.6, implies the
exactness of the sheaf sequence

Assume
dny=0and 61, =0

Because 2) <= 1) we know
Anx =0

The vanishing
an,=0

implies the existence of a germ
fr € & with d f, =1,

And
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0=8n = (Sod)fo=Af

implies that f, is the germ of a harmonic function. For the opposite direction
assume

Nx = dfs
with f, the germ of a harmonic function. In particular

dny=(ded)fi =0

Moreover

0=Af=(60d)fe=06(dfy) =M.

Hence
dny=0and 61, =0

Proposition 12.37 (Subspaces of H'!(X,&)). On a compact Riemann surface X
hold the following formulas for subspaces of H*(X,&1):

" JHOX, &) @ d"HO(X, &) = dHO(X, &) & SHO(X, £2)
dH(X,8)=8"H(X,&?)
Proof. The proof makes use of some explicit formulas from Lemma 12.31.
1. For the proof consider an element
df+d'gedH(X,&)®d"H(X,&)
A formula from Lemma 12.31, part 1.ii) implies
df ++dg=d'f+d"f+i(d"g—d §) =
=d'(f—ig)+d"(f+i-3) edH'(X,&)dd"H' (X, &)

Hence
dH°(X,&) @ +dH (X, &) c dH(X,&) 9 d"HO (X, &)

Following the last computation in the opposite direction shows
dH'(X,6)®d"H(X,&) Cc dHY(X,&) @ +dH (X, &).
Therefore
d'H'(X,&)®d"H(X,&) = dH (X, &) ® «dH° (X, &)

Because
x:HY(X,8%) = H'(X,&)
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is a C-antilinear isomorphism we obtain
xdH° (X, &) = %d«H*(X,£%) = (—1) xd x H*(X, &%) = SH(X,67)

and
dH(X,&)ed"H(X,&) =dH(X,&) @ SH' (X, &£?).

2. For f e H'(X,&)
id'f=8"(f i)
because a formula from Lemma 12.31, part 2ii) implies

8"(f g) = (=1) (xod" 0 x)(f - hg) = (—1)- (x0d")(f) =

= (=1)-(=i)-d'f=i-df, qed.

Proposition 12.38 (Unitary vector spaces of global differential forms). induced
from the x-operator Consider a compact Riemann surface X.

1. Hermitian scalar product: For each 0 < p,q,< 1 the map
(—,—):H(X, 679 x HO(X,£P9) - C

defined as
(0,7) ::/0'/\*17
X

is a Hermitian scalar product. Hence (H°(X,&P4),(—,—)) is a unitary vector
space. Each unitary vector space

(HO(X7£m)v (_7 _))v m=0,1,2,
is the orthogonal direct sum

1
HX.EM =@, HX,E)

2. Orthogonality relations: For each 0 < p,q < 1 the subspaces of H*(X,&P4)
Harm™, d"HO(X,&P97 1Y), 8"HO (X, &P
are pairwise orthogonal. For each m = 0,1,2, the subspaces of H™ (X, &)
Harm™(X), dH°(X, &™), SHO(X, &™)

are pairwise orthogonal.
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Note. In Proposition 12.38 the form
ocAxtel(X,6?)

is independent from the choice of any Hermitian metric 2 on X. For a given Hermi-
tian metric / it satisfies
ON*T =< 0,T > -l

with
g:=Reh.

Theorem 12.39 (Hodge decomposition of 1-forms). On a compact Riemann sur-
face X the unitary vector space H°(X,&") splits as orthogonal direct sum
0 1 vy & 770 L0 2
H'(X,&")=Harm (X)®dH"(X,&)®0H"(X,&87)

The vector space of harmonic 1 has finite dimension

dim Harm'(X) =2-dim H*(X,Q").
Proof. 1) Finite dimension: Lemma 12.36 implies

Harm'(X) = H'(X, Q" o HO(X, ")
Apparently

dim H'(X, Q") = dim HO(X, ")

Hence
dim Harm"(X) =2 -dim H°(X, Q") < e

due to the Finiteness Theorem 7.16.

ii) Splitting (0, 1)-forms: We claim
HO(X,6%) = d"HO(X,6) HO(X, Q).
Dolbeault’s Theorem 6.15
HO(X, &%)
im[HO(X, &) L HO(X, £01)]

H(X,Q") =

implies the dimension formula

HO(X,&%1)

. 0/v =1 . 0 1 ;
dim H'(X, Q') = dim H'(X, Q )=dlmm

Hence
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dim H'(X, Q")
is the codimension of the subspace
d"H°(X,&) c HO(x, &%)
The orthogonality relations from Proposition 12.38 imply
d"HO(X,&)NH (X, @) = {0}

which finishes the proof of the claim.

iii) Splitting 1-forms: We claim
H(X, &) = Harm' (X)od' H (X, &) ©d"H (X, &)
Part ii) implies by conjugation
HO(X, 80 =d'H' (X, &) o HO(X, Q).

Because
éol — gl,()@g(),l

we obtain
H(X, 6" =d'HO X, &) @ d"HO X, &) o HOX, @ Y o H (X, Q) =
=d'H'(X,6)®d"H°(X,&) ® Harm' (X)
which finishes the proof of the claim.

The results from part 1) - iii), from Proposition 12.37 and the orthogonality results
from Proposition 12.38 show

0 1 Ly & 7770 L o0 2
H°(X,&)=Harm (X)®dH" (X,8)® 0H" (X,67), q.ed.

Theorem 12.40 (De Rham-Hodge theorem). On a compact Riemann surface X
holds
H'(X,C) ~Rh'(X) ~ Harm'(X).

Proof. 1) Splitting the subspace of d-closed 1-forms: We claim
ker[H(X, &) % HO(X,6%)] = dH (X, &) & Harm" (X)
The inclusion

dH(X, &) ® Harm" (X) C ker[H'(X, &) % HO (X, 62)]
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holds because
dod=0and ker A C kerd,

see Lemma 12.36. For the opposite inclusion we have to show, according to
Theorem 12.39,

ker[HO(X,&") % HO(X,82)] L SHO(X,&2)

Consider
neH(X,&") withdn =0and & € H(X,&7)

Then
(n,68) = (dn,&) =0,

which proves the opposite inclusion and finishes the proof of the claim.

ii) Applying the de Rham theorem: The de Rahm Theorem 6.15 states
ker[HO(X,&Y) % HO(X, £2
imHY(X,&) = H (X,&1))
Appying the result from Part i) implies

dH°(X,&) ® Harm' (X)
im[HO(X,&) % H'(X, )]

H'(X,C) ~Rh'(X) = =Harm'(X), q.ed.

Proposition 12.35 and Theorem 12.41 together provide the Hodge decomposition
on a compact Riemann surface. The Hodge decomposition makes manifest the close
relation between the topology and the complex structure of a compact Riemann
surface.

Theorem 12.41 (De Rham-Dolbeault-Hodge decomposition of cohomology).
For a compact Riemann surface X holds

H'(X.C)= P HYX,Q")
ptq=1

with
Harm™' ~ H'(X,0) and Harm'® = H*(X, Q")

Proof. 1) Splitting 1-forms: Theorem 12.39 proves the decomposition of 1-forms
H(X, "o H(X,6'0) = HO(X,&") = Harm' (X) ®dH°(X, &) & HO (X, £7)
The decomposition splits further as

H(X, N o HO (X, 610 = Harm™ @ Harm'? @ 8"HO (X, &%) @ d"H (X, &)
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because
Harm'(X) = Harm®™' (X) & Harm"°(X)

due to Proposition 12.35 and Proposition 12.37.
Separating (0, 1)-forms and (1,0)-forms shows
HY(X, &%) = Harm™ @ d"H (X, &)

and
HO(X, 610 = Harm'"' @ 8"HO (X, £?)

i1) Harmonic forms and Dolbeault’s theorem:

* (0,1)-forms: Dolbeault’s Theorem 6.15 shows

HO(X,&%1)

Y :Harmo’l(X)
imlHY(X,&) — HOY(X,&01)]

H'(X,0) ~

* (0, 1)-forms: Dolbeault’s Theorem 6.15 and Lemma 12.36 show
Harm'? = ker[0: HO(X, &%) — HO(X,£10)] =
=ker[d” - H'(X,&'0) = HO(X,£7)]

and
HO(X, Q') ~ ker[H(X, &) L5 HO(X, %)) = Harm"(X).

The decomposition from part i)
Harm!(X) = Harm®' (X) ® Harm"°(X)

and Theorem 12.40 finish the proof, q.e.d.

Remark 12.42 (Hodge decomposition and Serre duality). Consider a compact Rie-
mann surface X.

1. Theorem 12.39 implies
dim H'(X,C) =2-dim H*(X, Q")
and Theorem 12.41 implies
H'(X,C)~H(X, QYo H'(X,0).
Therefore one obtains the dimension formula from Serre duality

dim H*(X, Q") =dim H' (X, 0).
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2. The Dolbeault-Hodge decomposition holds on any compact Kéhler-manifold, but
not on any compact complex manifold of dimension > 2. Each Hermitian metric
on the Riemann surface X is a Kdhler metric by trivial reason due to the low
dimension of X.

3. The Hodge decomposition in the form
H'(X,C) ~H'X,Q" Yo HO (X, @)

can also be obtained without any harmonic theory. The following proof is due to
Grauert-Remmert [14, Kap. VII, § 7, Abschn. 8]. It relies on Serre duality.

1) Holomorphic resolution of the sheaf C: Starting point is the short exact sheaf
sequence

0sCcso 0 5o

and its complex conjugate
J— d/ 71
0-C—=0—-02 =0
The first exact sheaf sequence provides the long exact sequence
HO(X,C) —» H(X,0) - H'(X,2") % H'(X,C) » H' (X, 0) -

H'(X,QY % HX(X,C) - H2(X, 0)

Here the injection
H(X,C) = H(X, 0)

is an isomorphism because both cohomology groups are isomorphic to C. Due
to the low dimension
H*(X,0)=0.

Corollary 9.15, a consequence of Serre duality, implies
H'(x,Q" ~C.

Becausse X is an oriented 2-dimensional smooth manifold
H*(X,C) ~C.

Therefore
§:H'(X, Q') = H*(X,C)

is an isomorphism. The long exact sequence reduces to the exact sequence

0—H'X, Q") S H'(X,C) - H'(X,0) =0
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Lemma 10.12. Analogously, the second short exact sheaf sequence provides the
exact sequence

05 H(X, Q) S H'(X.C) = H'(X, &) =0
ii) No real classes in im 6: We claim
im §NH'(X,R) =0
Here the injection R — C induces the injection
H'(X,R) — H'(X,C).
For the proof consider a form @ € H°(X, Q') with
5(w) e H'(X,R)
The connecting morphism J is defined as follows: There exists an open covering
U = (U a)iel
of X with all intersections
Ugp :=UaNUp, a,B €1,
connected, see Lemma 10.12, such that for each o €
w|U o= d”f o

with a cochain
(fou) €C(%,0)

On the connected intersections Uy holds

d(fa —f[i) :d”(fa —fﬁ) =0

hence fo — fp is constant and takes real values. As a consequence the holomor-
phic functions

8o = exp(2mi- fo)

satisfy on the intersections Ugyg

|8a/8pl = lexp(2mi- (fo— fp))| =1

or
[gal = lgpl-

The real-valued continuous function
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181 = (Igal) € Z2°(% Cr) = H' (X, Cr)

assumes its maximum at a point p € X due to the compactness of X. Let & € I be
an index with p € Uy. By the maximum principle the holomorphic function gy
and a posteriori also f are constant, whichs implies ®|Uy, = 0. The identity
theorem concludes @ = 0.

iii) Decomposing H' (X, C): We claim
im8Nim & =0¢e H'(X,C)

Complex conjugation defines an involution
c:H'(X,C)— H'(X,C)
with fixed space the vector space of real cohomology classes H'! (X, R). Apparently ¢
fixes -
imdNim§.
Hence
im 8 Nim § C H'(X,R), notably im § Nim § C im §NH'(X,R) = {0}

due to part ii). Apparently

dim H(X, Q") = dim H'(X, Q")
and by Serre duality

dim H*(X,Q") = dim H' (X, 0)
Part ii) and the short exact sequence from part i)

0—H'X, Q") S H'(X,C) - H'(X,0) =0

imply _
dim im 8 +dim im § = dim H' (X ,C)

As a consequence
H'(X,C)=8(2")25(Q'), g.ed.

4. The Hodge decomposition on a Riemann surface is a first example of a Hodge
structure. The characteristic of a Hodge structure is the interplay between a
lattice A ~ Z", an arithmetic object, and a complex n-dimensional vector space

VA :=AQzC

equipped with a complex conjugation V — V.
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Definition 12.43 (Betti numbers and Hodge numbers). On a compact Riemann
surface X the following complex vector spaces are finite-dimensional. Their dimen-
sions are:

» Topology: Betti numbers in cohomology
b" :=dim H"(X,C)
* Holomorphic structure: Hodge numbers
P4 = dim H1(X,QP).

On a compact Riemann surface X

h().() — bO =1
hOl = g(X) | hO = g(X)
Wl =bp? =1

and
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Open Riemann Surfaces
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The term open Riemann surface is a synonym for non-compact Riemann surface.
In particular, each domain
GcC

is an open Riemann surface. Hence the theory of open Riemann surfaces generalizes
complex analysis in the affine space C.






Chapter 13
Distributions

The concept of a distribution on an open set
XCcC~R?

generalizes the concept of a function defined on X. Distributions are sometimes
named generalized functions on X. The domain of a distribution is not the set X, but
a certain set of functions on X. More precisely, distributions are linear functionals
on the vector space of fest functions defined on X.

Distributions generalize the concept of functions with regard to the following as-
pect: Any locally integrable function on X defines a distribution by integrating test
functions. These distributions are named regular. A pleasant property of distribu-
tions is their differentiability: Each distribution has partial derivatives of arbitrary
order. They are again distributions. IN addition, distributions commute with differ-
entiation and with integration of test functions depending on parameters.

13.1 Definitions and elementary properties

We introduce the topological vetor spaces of test functions and distributions on open
subsets of the plane C. For a point z € C we denote by z = x + iy its representation
with real part x and imaginary part y.

Definition 13.1 (The topological vector space of test functions and distribu-
tions). Consider an open set X C C.

1. The vector space of test functions on X is the complex vector space of smooth
functions on X with compact support

2(X):={¢ € &X) : supp ¢ compact}

311
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We provide 2(X) with the structure of a topological vector space as follows:
A sequence (@y)yen of test functions from Z(X) is convergent towards a
function ¢ € Z(X) if the following two properties are satisfied:

* There exists a compact K C X such forall v e N
supp ¢y C K
» For each multi-index i = (i1,i) € N? holds
: iv i
Jg{}oD oy =D'¢

with respect to uniform convergence on K. Here the differential operator is
defined for i = (iy,ir) € N? as

) ai1+i2
i._
T 9xi1dyn

with respect to the coordinates (x,y) € X.

2. The dual vector space
P'(X):={T: 2(X) — C: T is C-linear and continuous}

is the vector space of distributions on U.

Remark 13.2 (Test functions and distributions). Consider an open set X C C and the
topological vector space Z(X) of test functions.

1. The topological vector space Z(X) is complete. In general, it is not a Fréchet
space; see [31, Theor. 6.5].

2. For a linear map T : 2(X) — C the following properties are equivalent:

i) The map T is continuous

ii) For every compact subset K C X exist an integer N € N, bounding the order
of the derivatives, and a constant M > 0, bounding the norm on K, which
satisfy: For all ¢ € Z(X) with supp ¢ C K

T(¢) <M -sup{|D'¢(x)|: |i| <N andx € K}

see [31, Theor. 6.6].
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Recall: A Lebesgue measurable function
f:X—=C

is locally integrable if for each compact set K C X

J[ V@) dudy < e

Any locally integrable function on X can be considered the kernel of an integral
operator on Z(X). The integral operator is a distribution. This construction allows
to consider any locally integrable functions as a distribution.

Proposition 13.3 (Regular distributions). If L;,.(X) denotes the vector space of
locally integrable functions on the open set X C C, then the linear map
reg: Lioe(X) = 7'(X), f - regy.

with

regr: 2(X) = C, ¢ — regr¢] := //qu) dxdy,
is well-defined and injective. The distributions from
im [reg : Li,c(X) — 2'(X)]
are named regular distributions.

Proof. Consider a test function ¢ € 2(X) and a compact set K C X with supp ¢ C K.
Then

res ()] < ol [ 1] dvdy <
Consider a convergent sequence (@ )yen of test functions with
¢ = limy_seo Py
If K C X is a compact set such that forall v e N
supp ¢y C K

then

reasfo—oul| = | [[L£- (0~ 00 x| <10 ~ovl- [ 11 sy

According to Remark 13.2 the linear map regy is continuous, hence a distribution,
q.e.d.
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Definition 13.4 (Differentiation of distributions). Consider an open set X C C.
For a distribution 7 € 2'(X) the partial derivative of T of order i = (iy,iy) € N? is
defined as the distribution

D'T:2(X)—C, ¢ — DT[9] := (-1 T[D'g).

In Definition 13.4 continuity of D'T follows from the fact that convergence
in 2(X) implies by definition the uniform convergence of all derivatives on a fixed
compact set. Hence D'T is a distribution.

Definition 13.4 is motivated by the following formula: Consider a smooth func-
tion f € &(X), a test function ¢ € Z(X) and a multi-index i € N?. Then

//)I(Dif.(pdxdy:(_1)\i\//)(f,Di¢ dxdy, ic.

regpifl9] = (1) regs[D'9].

The formula follows by partial integration because the boundary terms vanish due
to the compact support of ¢@.

Lemma 13.5 (Interchanging distribution and differentiation of test functions
depending on a parameter). Consider an open subset X C C, a compact set K C X
and an open interval I C R. Let

¢:XxI—=C, (z,t) = ¢(z,1),

be a smooth function with
supp ¢ CK x 1.

Then for any distribution T € 2'(X) and any given parametert € I

9 (—
T [‘f’gﬁ] = S TLo(—0)

Proof. [8, Lemma 24.5]

In Lemma 13.5 and in the following the notation 7 requests to evaluate the dis-
tribution 7" with respect to the first variable z of the test function ¢.

Lemma 13.6 (Interchanging distribution and integration of test functions de-
pending on a parameter). Consider open sets X, Y C C with compact subsets K C X, L CY,
and a smooth function

0:XxY—=C, (z,8)— ¢0(z,0),
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with

supp ¢ C K x L.
Then for any distribution T € 2'(X)

| f[ o8 azan| = [[ Tio(-. 0 dgan. ¢ =g+

Proof. [8, Lemma 24.6]

13.2 Weyl’s Lemma about harmonic distributions

Proposition 13.7 (Solving the inhomogeneous Laplace equation). Consider a
disk
X:={z€C: |z] <R}, 0 <R < oo,

For any f € &(X) exists a function y € &(X) with
Ay =f.
Proof. The Dolbeault Lemma, Theorem 5.2, provides functions
v € &(X) with dy; = f and y, € &(X) with dy, = ¥,

Hence the function
-
V= 2

satisfies

Ay =499y =99 W, = IV, :5(51,,) — v = £, ged.

We show that any real-valued harmonic function is the real part of a holomorphic
function. Then we derive the mean value formula for harmonic functions from the
Cauchy integral theorem.

Theorem 13.8 (The mean value property of harmonic functions). Consider an
open set U C C. Any harmonic function u € &(U) satisfies the mean value property,
i.e. forall z € U and y C U a positively oriented circle with radius r around z holds
the mean value formula

1

27 .
= %/0 u(z+ret®) de

u(z)
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Proof. 1) Extension to a holomorphic function: W.1.o.g. we assume z = 0. We choose
a disk
X:={zeC: |zl <R}, 0<R,

with ¥ C X C U and consider the 1-form
O :=uy dx —u, dy € &(X)
Because u is harmonic the form @ satisfies
dw = —uy, dx Ndy —uy, dx Ndy = —AudxNdy =0

The vanishing
H'(X,C)=0

provides by Dolbault’s Lemma, Theorem 5.2, a function v € & (X) with
dv=w

i.e.
Vi = uy and vy = —uy

The function
fi=u+ti-ve&X)

satisfies the Cauchy-Riemann differential equations. Hence f is holomorphic
feoX)

ii) Cauchy integral formula: The holomorphic function f € &'(X) satisfies Cauchy’s
integral formula:

1 rf9)
= — _— d
16 = 5 [ 724
Introducing polar coordinates

C=z+r-e®anddl =i-re® do

shows
1 2= )
f(z):27r A flz+r-€%) deo
or
1 2 0 1 2 o
u(z)—|—i-v(z)zﬁ-/0 u(z+r-e )d@—!—i-ﬁ-/o v(z+r-€v)de,

in particular the mean value formula

71
2

2r .
u(z) / u(z+r-€%)de, q.ed.
0
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Smoothing converts a continuous function f to a smooth function smg/(f).
Hereby one replaces the value of f at each point z by the mean value of f in a
disk-neighbourhood of z. The scaling factor € > 0 gives the diameter of the disk
which is employed for averaging. Smoothing is compatible with derivation, i.e. for
a smooth function f taking the derivative commutes with smoothing. Smoothing
a harmonic function reproduces the function because harmonic functions have the
mean-value property a-priori, see Theorem 13.8.

Definition 13.9 (Smoothing continuous functions).

1. A smoothing function is a function
p€2(C)
with the following properties:
1) Normalized support:
suppp C{zeC:z| <1}
ii) Rotational symmetry: For all z € C holds
p(z) =p(lz])

iii) Unit volume:

//Cp(x—i—i-y) dxdy =1

2. Any smoothing function p defines for each open set U C C and for each € >0 a
corresponding smoothing map

sme 1 €(U) — EUT)

defined as
sme()(@) 1= [[ pelz=8)-£(¢) dan, ¢ =E+i-m.

Here
Ut :={ze€U: Be(z) CU}

pe(z) == ép <z>

Note that sm,(f) is indeed smooth because derivation with respect to z and inte-
gration with respect to { commute. Apparently, near the boundary dU one cannot
define the smoothing function sm, (f) by the formula above.

is the g-shrinking of U and
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Lemma 13.10 (Smoothing and differentiation). Consider an open setU C C, a
smooth function f € &(U) and € > 0.

1. In U€ for all o € N?
D% (smef) = sme(D* f)

2. For harmonic h € &(U)
sme(h) = h|U®

Proof. 1. For z € U® we obtain by translation of the integration variable { =& +i-n
(1)) = [[ pelc=8)- 1@y agan = [ pe(©) s+ € dan
Hence
e )-D% dédn =
“(me/)©) = [[,_ pel€)-D(e+) dgan
- / [ pec=0)-D%4(8) dn = (sme D) (2

2. According to Theorem 13.8 the harmonic function / satisfies the mean-value
property: For all r € [0, ¢[

1 27

L i0
7)o h(z+re'”) do

h(z) =

Asa consequence

sme (h //g\ Hate)dodn = //O<r<8 pe(r)-h(z+re®) r-drd6 =
<€ =

0<6<2rm

(/ Pe(r rdr) 27 - h(z // pe(E+i-n)dEdn-h(z) =h(z), q.ed.

Theorem 13.11 (Weyl’s Lemma on the regularity of harmonic distributions).
On an open set U C C each harmonic distribution T € 9'(U), i.e. satisfying

AT =0,
is regular: There exists a harmonic function h € &(U) with
regy =T,

i.e. for all test functions ¢ € P(U)

/ / h(z)- 0 (2) dxdy.
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Proof. 1) Definition of the kernel h: We choose a smoothing function p € 2(C)
according to Definition 13.9. For each arbitrary but fixed z € U? the smooth function
of the variable {

De(z) = C, {—= pe(z—0),

has compact support in U and therefore extends by zero to a test function from 2(C).
Applying the distribution T and varying z € U? defines a smooth function of the
variable z

h:U® = C, h(z) := Ty[pe(E —2)].

Here the notation 7y means to consider the subsequent test function as a function of
the variable {. The function /4 is harmonic because by assumption

Ach=ATg[pe(¢—2)] =0
ii) The value of T on the smoothing of test functions: For a given test function f € 2(C)

with supp f C U® consider the smooting sme (f) as a test function of the variable &,
depending on the paramater z,

sme(£)(0) 1= [[pe(§=2)-£(@) dxdy = [[ pe(§—2)- (2) dxdy

Interchanging the distribution with respect to the variable ¢ and the integration with
respect to the parameter z according to Lemma 13.6 gives

Tlsme ()] =T [ J[pett =21 dxdy} -

= [ Telpet¢ ~ 2 5(@) dady = [ ne)-(e) iy
Hence the value of T on the smoothing of a test function smg(f) can be obtained

from integration with the kernel 4.

iil) Regularity with respect to the kernel h: We claim that for any f € 2(C)

711 = [ ) £(@) dady:

Proposition 13.7 solves the inhomogenenous Laplace equation and provides a
smooth function ¥ € &(C) satisfying

Ay =f.
On the complement C\ supp f the function y is harmonic, hence satisfies

v = sme(V),

see Lemma 13.10. Therefore
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¢ =y —sme(y)

has compact support in U. Lemma 13.10, part 2, implies

AP =A(y —sme(y)) = Ay —sme(Ay) = f—sme(f)

The assumption AT = 0 and Lemma 13.5 imply

0=AT[¢] = T[A9] = T[f] = T[sme(f)]

hence

1) = Tlme(H] = [ )£ dudy, g.ea

A corollary of Weyl’s Lemma states that holomorphic distributions are regular
with holomorphic kernel.

Corollary 13.12 (Regularity of holomorphic distributions). On an open subset U C C
each distribution

T € 2'(U) with 8T—0
wi FEi
is regular, i.e. there exists a holomorphic function f € O(U) with

regr =T

i.e. for all test function ¢ € D(U)

716)= [ £2)-6(2) dxay.
Proof. The assumption

d
EE

AT—48 aT—()
=451 5 =

Theorem 13.11 provides a harmonic function & € &(U) with

T=0

implies

regp=T.
Then
aT—O — J h=0
7 7

which shows that 4 is even holomorphic, g.e.d.
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Remark 13.13 (Regularity theorems for solutions of elliptic differential operators).
Theorem 13.11 and Corollary 13.12 are examples for the regularity of distributions
which satisfy a differential equation with an elliptic operator. The regularity general-
izes to arbitrary solution of elliptic differential operators, see [43, Chap. IV, Theor. 4.9].






Chapter 14
Runge approximation

Runge approximation is the decisive means to prove that an open Riemann surface X
is a Stein manifold. The present chapter investigates the method of Runge approxi-
mation. As application it proves the vanishing

H'(X,0)=0

Chapter 15 will give the definition of Stein manifolds and complete the proof that X
is a Stein manifold.

The principle of approximation is to construct a global solution of a problem

* by finding first local solutions and
* then constructing a global solution bottom-up by extending the modified local
solutions.

In general, during the extension step one has to modify the local solutions in order to
obtain a convergent global solution. Runge approximation refers to the second step:
It determines the domains of the local solution, the Runge domains, which allow to
approximate the solution by a solution on a larger domain.

Typical runge domains in the plane X = C are disks: A holomorphic function f

on a disk expands into a Taylor series. Its Taylor polynomials are defined on all of X.
They approximate f on any compact subset of the disk with arbitrary precision.

14.1 Prerequisites from functional analysis

Consider a Riemann surface X. We generalize the Fréchet topology on the vector
space of holomorphic functions &'(X) from Proposition 7.3 to a Fréchet topology
on the vector space & (X) of smooth functions.

323
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Definition 14.1 (Fréchet space of smooth functions). Consider a Riemann surface X
and choose a sequence sequence (K;);cn of compact sets, each K;, i € N, contained
in a coordinate neighbourhood, and

X:Uk
ieN

For each i € Nand v := (v|,v2) € N? introduce the countable many semi-norms
on X

Piv:EX) =Ry, piv(f) :=sup {ID"f(x)|: x € K;}
Taking the finite intersections of the sets
V(i,vie) ={feéWU): piv(f)<e},ieN,veN, €>0,

as neighbourhoods of zero defines a topology on & (X). The topology is independent
of the choice of the compact sets and the choice of the charts. It is named the topol-
ogy of compact convergence of smooth functions and their derivatives. The vector
space & (X) becomes a complete topological vector space, hence a Fréchet space.

Note. The canonical injection

is an injection of Fréchet spaces. Because Weierstrass’ theorem implies that a com-
pact convergent sequence of holomorphic functions has also all derivatives compact
convergent.

The injection of the subspace of test functions from Definition 13.1
2(X) — &(X)

is not continuous, because the topology on Z(X) is coarser than the subspace topol-
ogy from &(X): Convergence of a sequence in Z(X) requires a compact subset
which contains the support of all functions from the sequence.

Lemma 14.2 (Continuous linear functionals on & (X) have compact support).
Consider a Riemann surface X. Any continuous linear functional

T:£X)—C
has compact support, i.e. there exists a compact subset K C X with
T(f)=0

forall f € &U) with supp f C X\ K.
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Proof. By continunity of T there exists an € > 0 and neighbourhood of zero V;
in &(X) with

FeVe=V{y,vi;e)N..NV(jnvie) = |T(f)| <1
Consider the compact set
K= Kfl U...UKJ'H cX.

For f € &(X) with

supp f CX\K
and arbitrary o > 0 we have
T (- f)] =0
hence
feVeand a-|T(f)] = |T(af)] < 1
or

TN <1/e.

Because o > 0 is arbitrary we obtain

T(f)=0, g.ed.

Remark 14.3 (Hahn-Banach theorem).

1. Consider a complex Fréchet space V and a subspace V) C V. Then any continuous
linear functional
A Vo — C

extends to a continuous linear functional
A:V —=C.
For a proof see [31, Theor. 3.6].
2. Consider a complex Fréchet space V and two subspaces
VoCViCV.
Then Vj is dense in Vj if any continuous linear functional
A:V—=C,

which vanishes on Vj also vanishes on V.

Proposition 14.4 is an application of Weyl’s Lemma for distribution-valued solu-
tions of the homogenuous d-equation.
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Proposition 14.4 (Integral representation with holomorphic kernel). Consider a
Riemann surface X and an open subset Y C X with a continuous linear functional

S:H'(X,6%) = C

satisfying
S(d"g)=0

for all
g € &(X) with supp g CCY.

Then there exists a holomorphic form & € Q' (Y) satisfying for all ® € H°(X, &%)

with supp @ CCY
S(w) = // CA®
z

Proof. 1) Construction of local forms oy: Consider a chart of X
z: U=V

with U C Y. Any test function ¢ € Z(U) defines a global (0, 1)-form ¢ € HO(X, &%)
by
- ¢-dz xecU
x) 1=
o) {0 xeX\U

and a distribution

Su: 2(U) = C, Syl¢] == 5(9).
By assumption for all g € Z(U)
Suldg] =0

Corollary 13.12 implies the existence of a unique holomorphic function h € &'(U)
satisfying for all ¢ € 2(U)

Sﬂ@i/&M@ﬁdUﬁz

Define
oy :=hdze Q' (U)

Then for all @ € &'9(X) with supp ® CC U

S[w]://UGU/\a)

ii) Gluing the local forms oy : One checks that the construction from part i) is inde-
pendent from the choice of the chart. The local forms glue to a global form

ccH (Y, Q")
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with ¢|U = oy . For each @ € £%!(X) with compact support contained in a chart of

Y we obtain
Slo] = // oA®
Jy

Any form @ € &%!(Y) with supp @ CC Y decomposes by using a partition of unity
into a sum
D=0 +..+0,

satisfying for j =1,...,n
wj € 50’1(Y)

and supp o; a relatively compact subset of the domain of a chart, hence

Slaj] ://YGNDJ-

Asa consequence

Slo] = Zn:lS[a)j] = anl//;c/\wj://y <6/\ile> ://Yo/\a), g-ed.

J

14.2 Runge sets

Consider a Riemann surface X and a subset Y C X. Informally speaking:

Taking the Runge hull of Y means fo plug the relatively compact holes of Y. It is
helpful to conceive the other components of X \ Y as the unbounded components of
the complement of Y.

For an open Riemann surface X the main property of a Runge domain Y, i.e. of a
domain without relatively compact holes, is Theorem 14.14: Each holomorphic
function on Y has a compact approximation by global holomorphic functions on X.

Definition 14.5 (Runge hull and Runge set). Consider a Riemann surface X and
asubsetY C X.

1. The Runge hull hx (Y) of Y with respect to X is the union of ¥ with all relatively
compact connected components of X \ Y.

2. A Runge set Y C X is closed with respect to taking the Runge hull, i.e. it satisfies

Y = hx(Y).
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Recall from Definition 4.18 that the term relatively compact refers to the closure
taken with respect to X if not stated otherwise.

Example 14.6 (Runge hull).
Consider the open annulus
Y:={zeC: 1<]z| <2}

Then
he(Y)={zeC: |z| <2}

while
he+(Y) =Y.

The hole of Y with respect to X = C* is not relatively compact, while the hole of Y
with respect to X = C is relatively compact, even compact.

Lemma 14.7 (Runge hull). Consider a Riemann surface X and a subsetY C X.
1. For closed Y also hx (Y) is closed.

2. For compact Y also hx(Y) is compact.

3. For a compact subset K| C X and a compact Runge set K C X with

K CK
exists an open Runge set Y C X with
Ky CY CK.
4. Each connected component of an open Runge set is a Runge domain.
Proof. 1. See [8, Satz 23.5].

2. See [8, Satz 23.5].

3. We shrink the compact Runge set K to a Runge domain Y: We choose for each
point x € dK a chart of X around x defined on an open set U (x) C X with

Ux)NK; =0

Within each U (x) we choose a compact disk D(x) with center x. By compactness
of K finitely many disks
D(x1),...,D(xy)

provide a covering of dK. Set
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D :=D(x;)U...UD(x,)

a connected set. Define

Y :=K\D

Then Y C X is open and

KiCYCK

In order to prove that Y is a Runge domain, let Cy be a given component of X \ Y.
We employ the equation

X\Y = (X\K)UD

Either
CyNnD 75 0.
Then Cy U D is connected and
CyUDCX\Y,
hence
D CCy

There exists a component Cg of
X\KCX\Y

with
Cx N D # 0 and a posteriori Ck NCy # 0

Because Cy is a component of X \ Y then

Cy C C](
Or
CynD =0.
Then
Cy C (X\K)
which implies
Cy C Cg

for a component Cx of X \ K.

In any case exists a component Cx of X \ K with

CyCC](

By assumption Ck is not relatively compact. As a consequence Cy is not rela-
tively compact.

. See [8, Satz 23.8], gq.e.d.
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Lemma 14.8 (Exhaustion by relatively compact domains). Any open Riemann
surface has an exhaustion by relatively compact domains.

Proof. Choose an arbitrary point £ € X and an exhaustion (¥;);cny of X by open
subsets satisfying
Y, CCYi, i€ N.

For each i € N denote by ¥; the connected component of ¥; which contains the
point £. The sequence (?i)ieN is also an exhaustion of X: A given point x € X can
be joined to £ by a path ¥ in X. The image of 7y is compact, hence contained in ¥; for
suitable i € N and therefore also contained in ¥;, q.e.d.

Proposition 14.9 (Existence of a Runge exhaustion). Any open Riemann surface X
has a Runge exhaustion, i.e. an exhaustion (Y;);en by relatively compact Runge do-
mains
Y, CcC Y1, i €N, satisfying X = U Y;
ieN
Proof. 1t suffices to show that any compact set K C X has a relatively compact
Runge domain Y CC X
KcyccXx

Lemma 14.8 provides a connected compact set K; with K C Kj. Then choose a
compact set K, with

K| CK;.

Lemma 14.7, part 3) applied to the pair (K|, hx (K>)) provides a runge domain ¥; C X
satisfying
KiyCY C hx(Kz)

Let Y be the connected component of ¥; which contains K;. Due to Lemma 14.7,
part 4) also Y is a Runge domain, q.e.d.

14.3 Approximation of holomorphic functions

The current section shows the usefullness of Runge domains for the approximative
extension of holomorphic functions to larger domains.

Lemma 14.10 (Existence of non-constant holomorphic function). On an open
Riemann surface X for any relatively compact, open subset

YccX
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exists a holomorphic function
feHy,0)

which is non-constant on each connected component of Y.

Proof. Lemma 14.8 provides an exhaustion (Y;);cn of X by relatively compact do-
mains. Because Y C X is compact, but X is not compact, we have

YCx

Due to the compactenss of ¥ the exhaustion from part i) satisfies for suitable iy € N

YCY,=7Y
The domain ¥ satisfies
YCCcYcCccX.
The proper inclusion
Ycvy
implies the existence of a point
act\Yy

Proposition 7.18 provides a meromorphic function F € .# (¥) with a single pole at
the point a. The restriction
fi=F|Y

satisfies the claim, g.e.d.

For a Riemann surface X Dolbeault’s Theorem 6.15 states
HO(X, &%)
im[HO(X, &) L HO(X, £01)]

Corollary 14.12 is a first step to conclude for an open Riemann surface X

H'(X,0)=

H'(X,0)=0.

The proof of Corollary 14.12 relies on the finiteness results for the holomorphic
obstructions after restriction along relatively compact pairs, see Chapter 7. The final
result will be proved in Theorem 14.16.

Proposition 14.11 (Killing holomorphic obstructions by restriction). Consider
an open Riemann surface X and two open subsets

YccY' cX.
Then the restriction of cohomoloy classes vanishes, i.e.

imH'(Y',0) = H'(Y,0)] = 0.
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Proof. Because Y CC Y’ we find an open set ¥ with
YccYccY
The restriction factors
H'(Y',0) - H'(Y,0) = H'(Y,0)

Hence we may assume Y’ CC X.

1) Finite dimension of the space of obstructions: Proposition 7.15 implies for the
relatively-compact pair Y CC Y’ that the restriction has finite dimension

n:=dimimH'(Y',0) — H'(Y,0)] <

The assumption that X is an open Riemann surface is not needed for this first result.
Choose classes
& e H(Y',0)

such that their restrictions to ¥ form a basis of the n-dimensional complex vector
space
Vi=im[H (Y, 0)— H\(Y,0))

ii) Existence of a non-constant holomorphic function on Y': Because X is an open
Riemann surface Lemma 14.10 applies and provides a holomorphic function

feH(Y',0)

which is not constant on any connected component of Y’. Because the complex
vector space H' (Y’, ) is also a module over the ring H’(Y’, ©) the elements

f' gl)"'af' én
belong to H' (Y, ©) and their restrictians to ¥ can be represented as
n
&= Z cvu-Su, v=1,..,n,
u=l1
with a matrix
C:=(cuv) EM(nxn,C)
The holomorphic function
F:=det(f-1-C)e H(Y',0)
does not vanish identically on any connected component of Y’: Otherwise the equal-
ity
det(f-1-C)=0

would represent f on that component as zero of a polynomial from C[T], in partic-
ular f would be constant on that component.
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The above system of linear equations in the vector space H' (Y, 0) reads
(f1-C)-(81,rs &) =0

Cramer’s rule for solving a system of linear equations shows for v = 1,...,n and the
“unknown” &,
det (f-1-C)-&, =0,

h (F &)Y =0.

iii) Killing all obstructions by restriction: We represent a given class { € H'(Y', 0)
by a cocyle
(fi) ez (%,0)

such that each element U; of the open covering % = (U;);c of Y’ contains at most
one zero of F. Hence for i # j the restriction

F‘(UiﬂUj) S ﬁ*(UiﬂUj)
has no zeros. As a consequence, the holomorphic function

4

8ij - F

defines a cocycle
(i) €Z' (% ,0)

with class
§:=(gi)))eH (Y, 0).
Then
C=[(fi)) =F-leij)) =F-&E eH'(Y',0)

Due to part ii) the restriction satisfies

Cly =(F-E|r=0cH(Y,0), qed.

Corollary 14.12 (Existence of primitives on relatively compact open subsets).
Consider an open Riemann surface X and two open subsets

YccY' cX.
Then for any @ € H(Y', &%) exists a function f € HO(Y, &) with
d"f = olY.
Proof. By Dolbeault’s Theorem 5.4 for each x € X the sequence on stalks

0—>ﬁx—>&d—ﬂ>£x°='—>0
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is exact. For a suitable open covering % = (U;),.; of Y’ there exists a cochain
(£) eC(%, &)

satisfying for eachi € I
d//ﬁ = (1)|Ui

One obtains a cocycle
E=(fij:=fi—f) ez (%,0)

Proposition 14.11 implies for the restriction

E)Y]=0€eH'(Y,0)
Hence there exists a cochain

(g) €C(% nY,0)
satisfying for all i, j € 1

fi—fi=gj—giorfi—gi=/[fi—gj
As a consequence
fi=(fi—g)€Z"(%nY,&) =H(Y,8)

By construction
d"f = wlY, g.ed.

Theorem 14.14 proves the fundamental property of a Runge domain ¥ C X in
an open Riemann surface X: Any holomorphic function f € &(Y) can be approx-
imated by a holomorphic function F € ¢ (X) with arbitrary precision on a given
compact subset K C Y. Informally: Holomorphic functions on a Runge domain of
an open Riemann surface can be approximated by global holomorphic functions
with arbitrary precision on a given compact subset.

Complex analysis in the plane X = C proves this theorem for disks ¥ C X by
using the Taylor polynomials of f € &/(Y) of sufficiently high order as global func-
tions. The proof of Theorem 14.14 has to show that the role of the Taylor poly-
nomials can be taken over by other global holomorphic functions. The proof will
show the existence of such global holomorphic functions, but it will not provide an
explicit construction.

Theorem 14.13 contains the main approximation result. Then Theorem 14.14 has
only to extend the result by the standard method of a suitable exhaustion to a global
approximation.
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Theorem 14.13 (Holomorphic approximation on Runge domains). Consider an
open Riemann surface X and a relatively compact Runge domain Y CC X. Then for
any open subset

Ycy' ccx

the restriction of Fréchet spaces
r:0Y')— oY)
has dense image.

Proof. 1) The claim from the view point of functional analysis: The proof follows
from the Hahn-Banach theorem. We apply Remark 14.3, part 2): Consider a contin-
uous linear functional

T:0(Y)—C

with
T|r(O(Y") =0.
Then we have to show
T =0.

The subsequent part of the proof has to verify a property of holomorphic functions
on
Y ccXx

from a result about holomorphic functions on the subset
ycy'

To achieve this task one has to extend holomorphic functions on Y to suitable
objects on Y’. In general, holomorphic functions do not extend holomorphically
from Y to Y’. Therefore we consider holomorphic functions on Y as the primitives
of smooth (0, 1)-forms and extend in a smooth way the coefficients of the forms.
Part ii) translates the claim from part i) to a statement about smooth (0, 1)-forms

o=d"gecH'(X,&%)

and a claim about the vanishing of S(®) € C for a suitable linear functional S which
derives from 7. According to part iii) the functional S will turn out as an integral
operator with kernel a holomorphic 1-form

ccQ'(x).

Part iv) will derive from the Runge property of ¥ and the identity theorem of holo-
morphic functions that ¢ has compact support. Part v) finally concludes 7' = 0.

i) Introducing the linear functional S: We define a linear functional
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S:H(X,6%) - C

as follows: For a given @ € H’(X, &%) Corollary 14.12 provides a
function f € HO(Y', &) satisfying

d"f = oY’

Then define
S(w) :=T(f[Y)

The definition is independent from the choice of f: If also g € H(Y', &) with

d"(g) = |’
then
d”(fi g) = Oa
hence
f-geH(Y',0)
and

T((f—g)lY)=0.

To show that S is continuous we consider the vector space
Vi={(o,f) e (X, ) x H'(X,&) : d"f = 0|V}
The continuity of d” implies that the pairs of (0, 1)-forms and their primitives on ¥
VcHY X, %) xH'(X,&)

form a closed subspace of a Fréchet space, hence a Fréchet space itself. The
following diagram commutes

ropry
V ——— HY(Y,&)

pri T

HO(Xx, &%) C

The continuity of T, r and pr, and the openness of the surjective linear map pry,
see Remark 7.11, imply that S is continuous.

iii) Integral representation of S with holomorphic kernel: Due to Lemma 14.2 the
functional T has compact support, i.e. there exists a compact subset K C Y with

T(f)=0
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for all
feHY,&) with supp f C Y \ K.

By the same Lemma also the functional S has compact support, i.e. there exists a
compact set L C X with
S(w)=0

for all
o e H(X,&%") with supp @ C X\ L.

As a consequence for all g € &(X) with supp g CC X\ K

Therefore Proposition 14.4 implies the existence of a holomorphic form
ccQ'(X\K)

satisfying for all @ € &%!(X) with supp @ CC X\ K

S(w) ://X\Ko/\co

iv) Vanishing of the kernel due to the Runge condition: By definition of the Runge
hull each component Cx of
X\ hx(K)

is not relatively compact. Hence Ck is not contained in K UL, i.e. Ck intersects
X\ (KUL)

See Figure 15.2: The unbounded component Ck intersects X \ (K UL) because it is
not contained in the compact set L. While the dashed relatively compact component
of X \ K is contained in L

Fig. 14.1 Compact K with dashed relatively compact component of X \ K
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According to the identity theorem

o|X\(KUL)=0 = o|Cx =0.
As a consequence
o](X\ i (K)) = 0.
We obtain for all @ € H(X,&%!) with supp @ CC X \ hx(K)
S(w)=0

v) Extending functions from O (Y) to &(X) keeping the value of T: Consider a holo-
morphic function f € &(Y). The compact subset K C Y from part iii), which con-
tains the support of f, has a Runge hull

hx(K) Chx(Y) =Y.

Hence the restriction f|K has a smooth extension g € & (X): In a neighbourhood U
of K
glU = f|U and supp g CC Y.

As a consequence
T(f)=T(glY)
and g|U is holomorphic, hence
d"(glu)=0

or
supp § C X \ hx(K)

which implies due to part iii)
S(d"(glU)) =0
The commutative diagram from part ii) implies for all f € HO(Y, ©)

T(f)=0, qg.ed.

Theorem 14.14 (Runge approximation). On an open Riemann surface X for any
Runge domain'Y C X the restriction map between Fréchet spaces

0X)—=O0(Y), fr[IY,
has dense image.

Proof. One has to show: For given holomorphic function f € £/(Y), compact K C Y
and € > 0 there exists a holomorphic function F € 0(X) satisfying
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IF—fllx <.
i) Existence of a Runge exhaustion: We find an open subset ¥ C X satisfying
KcYccrycx
The restriction f|K factorizes via the restriction
r:0X)— o)

Therefore we may assume
Y=YccX.

Proposition 14.9 provides a Runge exhaustion (Y;);cn of X with Yo =Y.

ii) Successive approximation along the Runge exhaustion: Theorem 14.13 provides
a holomorphic function f; € &(Y;) with

1
Hﬁ—ﬂh<§re

and by induction on n > 1 a family of holomorphic functions f, € &(Y,), n > 2,
satisfying

1
/o= fa-1lly, , < o€

For arbitrary, but fixed n € N the sequence (fy)y>, is uniformly convergent on .
As a consequence we obtain a global holomorphic function

feH(X,0)

satisfying
lim (fy|Y,) = f|Ya
V—oo

By construction

> 1
IF =k < ¥ 55 e=e, ged.
n=1

Example 14.15 (Counter example). The pair
(X,Y):=(C,C")

shows: In Theorem 14.14 the absence of relatively compact connected components
of the complement X \ Y is necessary. Here

X\Y = {0}

is compact and the holomorphic function
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fle)=-€0(Y)
has no compact approximation by holomorphic functions on X: Assume

f= 1i_r>n Jn(2), fu € O(X) (Compact convergence),
n—roo

then Cauchy’s integral theorem for integration along the positively oriented unit
circle y implies

d
27— /iz lim [ fu(z) dz =0,
JY Y

4 n—reo,

a contradiction. Hence f has no Runge approximation. Indeed, according to Exam-
ple 14.6 the domain C* is not a Runge domain in C.

Theorem 14.16 (The vanishing theorem on open Riemann surfaces). On an
open Riemann surface X any (0, 1)-form o € H*(X, &%) has a primitive f € H*(X,&),
i.e. satisfying

d'f=aw.
As a consequence

H'(X,0)=0.

Proof. i) The form @ € H%(X,&%!) has on any relatively compact open
subset Y CC X a primitive

g€ H(Y,&) satisfying d"g = o|Y
due to Corollary 14.12.

ii) Proposition 14.9 provides an exhaustion (¥;);cn of X by relatively compact
Runge domains
Y; CC Y1, i€N, with X = | ¥
ieN

By induction on n € N we construct a sequence of functions f, € &(Y;) satisfying
&"fy = olt, and [ fy ~ fill, | < 5,

Induction start: Choose fy € & (Yp) according to Corollary 14.12.

Induction step n +— n+ 1: Corollary 14.12 provides a function g, € & (Y1)

satisfying
d”gnJrl = w|Yn+l

The restriction to Y,, satisfies
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d”(gnﬂ ¥ —fu) =0
which implies the holomorphy

gn+l|Yn —ME ﬁ(Yn)

The approximation Theorem 14.14 provides a holomorphic function

with
1
||(gn+1 _fn) _h”Yn—l < ﬁ
Set
Jor1:=gnr1—h€ g(Y,hL])
Then

1
d”an :d”gnH = 0|Y,41 and || 11 _fn”Y,H = |[(gn+1—h) _fn”Y,H < on
One checks as ususal the existence of a limit function
f=1lim f, € &X)
n—yoo

satisfying
d'f=aw.
iii) By Dolbeault’s theorem 6.15

HO(X,éoO'l)

im[HO(X, &) L HO(X, £0.1)]

H'(X,0) ~

which proves
H'(X,0)=0, q.ed.

Remark 14.17 (Leray covering). Consider an arbitrary Riemann surface X. The Van-
ishing Theorem 14.16 is a far reaching generalization of Theorem 6.16 from a disk
in the plane to arbitrary open subsets of X. Theorem 14.16 implies: Any open cov-
ering of X is a Leray covering for the structure sheaf &. With respect to a given
invertible sheaf . on X an open covering % = (U;);e is a Leray covering if for
eachiel

< |U i~ 7 |U i






Chapter 15
Stein manifolds

15.1 Mittag-Leffler problem and Weierstrass problem

The Mittag-Leffler problem and the Weierstrass problem are the two main existence
problems from complex analysis for domains in C. We show that both problems are
solvable on any open Riemann surface, in particular on any domain G C C. While
the solution of the Mittag-Leffler problem follows directly from the vanishing the-
orem, Theorem 14.16, the solution of the Weierstrass problems requires additional
approximation results. We derive these results from a theorem from functional anal-
ysis about compact operators.

We prove the following theorems for open Riemann surfaces:

¢ Solution of the Mittag-Leffler problem, Theorem 15.3,
* solution of the Weierstrass problem, Theorem 15.7 and

Definition 9.4 introduced the concept of a Mittag-Leffler distribution of mero-
morphic differential forms. Analogously we now define the concept of a Mittag-
Leffler distribution of meromorphic functions. It formalizes the Mittag-Leffler prob-
lem on a Riemann surface X: To find a global meromorphic function on X with given
principal parts.

Definition 15.1 (Mittag-Leffler distribution of functions). Consider a Riemann
surface X and an open covering % = (U;);e; of X.

1. A Mittag-Leffler distribution of meromophic functions with respect to % is a
cochain of meromorphic functions

(f)iet €COU . M)
with holomorphic coboundary

Sfez (w,0),

343
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ie. foralliel
fj*f,‘E ﬁ(UiﬂUj).

2. A solution of the Mittag-Leffler distribution
f=ecu. )

is a meromorphic function

Fe#(X)

with holomorphic
F—(f)eC(%,0),

foralliel
F|U;— fi € O(U;).

A solution of the Mittag-Leffler distribution
(f)ec(w,.«)

from Definition 15.1 glues all local meromorphic functions
fie#U), i€l

to a global meromorphic function F. With respect to any chart of X the function F
has the same principal part as the local meromorphic functions f;, i € I. The “glue”
are the local holomorphic functions F|U; — fi, i € 1.

Lemma 15.2 (Solvability of Mittag-Leffler distributions). Consider a Riemann
surface X. A Mittag-Leffler distribution of meromorphic functions with respect to an
open covering % = (U;)ic1 of X

f=(fhec (@ . #)
is solvable iff its class vanishes
8f]=0€ H'(X,0).
Proof. Apparently
fi—fE€EB(%.0) < 3 () eC(%,0): fi—fi=g;—&
i) The existence of (g;) implies
fi—g&=1Ffi—gj

hence the family

(fi—g&i) €Z(U . M)
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defines a global meromorphic function F = (f; — g;) € .# (X) with
FlUi—fi=—g € O0(U)).
ii) The existence of F € .# (X) with
F|Ui— fi=:—gi € O()U;

implies 1
fi—gi=fi—gjor(fi—fi=g;—8&)EB(%,0), qed.

Theorem 15.3 (Solution of the Mittag-Leffler problem). On an open Riemann
surface X any Mittag-Leffler distribution of meromorphic functions is solvable.

Proof. The Vanishing Theorem 14.16 shows H' (X, 0) =0, q.e.d.

The Weierstrass problem on a Riemann surface X asks for a global meromorphic
function f € .#*(X) with a prescribed divisor D € Div(X). Theorem 15.7 solves the
Weierstrass problem. The proof goes along the classical lines for Runge approxima-
tion in C, see [30, Kap. 12, § 2, Abschn. 3]. It applies the method of moving poles
of a divisor to infinity (deutsch: “Polverschiebung”), see [8, § 26]. We start with the
concept of a weak solution: It solves D by a smooth but not necessarily meromorphic
function.

Definition 15.4 (Weak solution of a divisor). Consider a Riemann surface X and a
divisor D € Div(X). Set

Xp:={xeX: D(x) >0}.

A weak solution of D is a smooth function f € & (X)) satisfying: For each point p € X
exists a chart
z2: U=V

of X around p and a smooth function y € &(U) with y(p) # 0 such that on U NXp

f=w-Z k:=D(p).

Hence a weak solution of a divisor D is a smooth function f, which is defined out-
side those points where the divisor prescribes a pole, and locally satisfies the divisor.
A weak solution f is a solution of the Weierstrass problem if the restriction f|Xp is
holomorphic.

Lemma 15.5 (Weak solution of a degree zero divisor). Consider a Riemann sur-
face X, a path
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y:10,1] =X
and a neighbourhood U of ([0, 1]) which is relatively compact X. Set

a:=y(0)andb:=y(1).
Then the difference of point divisors
D :=B—A € Divy(X)

has a weak solution f with f|(X\U) = 1.

(/ /’—* b g (4)

=y (o)
e

Fig. 15.1 Difference of two point divisors

Proof. 1) ¥ contained in a coordinate neighbourhood: Assume that X has a chart

z:U — D
with ([0, 1]) C U. We identify U with the unit disk D;. To motivate the following

construction note that the meromorphic function on D

z—>b
D -
1\{b}—><C7zn—>Z7a

solves the divisor D on Dj. We modify the meromorphic function to a weak solution
which has constant value = 1 near the boundary dD and therefore extends to X \ {a}:
The function

b
log —
—a
has a well-defined branch in the annulus
{zeDy: r<]zl <1}

because the additive constants of the logarithm of numerator and denominator can-
cel. We choose an intermediate radius
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r<r <1
and a smooth function y € &(U) with
y|D; =1 and y|(D1\D,) =0.

Then the smooth function f € &(U \ {a}) with

z—b
exp | v-log a r <l

z—b
— |zl <r
Z—a

for=

extends by 1 to a weak solution of D with
Jol(X\Uo) =1.
ii) General case: Consider a finite partition of [0, 1]
O=n<n<..<t,=1

and charts of X
3 Uj — Dy

such that forall j=1,...,n
Y(ltj-1,1]) C Uj.
For each j = 1,...,n part i) provides a weak solution f; of the degree zero divisor
Dj = Bj —Aj, aj = ’}/(l‘j,])7 bj = ’}/(tj)

with
FilX\Uj) = 1.
In the product

f = Hff S éa(XD)
j=1

the singularity of f;,| and the zero of f; at the point ¥(¢;), j =1,...,n— 1, cancel.
As a consequence, f € &(Xp) is a weak solution of D which satisfies

fIX\U)=1,U := U, g.ed.
j=1

Proposition 15.6 (Construction of a weak solution for a general divisor). On an
open Riemann surface X any divisor D € Div(X) has a weak solution.
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Proof. Let (Y;);cn be a Runge exhaustion of X, see Proposition 14.9.

£o=A

Fig. 15.2 Moving the pole to infinity

1) Moving the pole of a degree zero divisor to infinity: Consider an arbitrary but
fixed index j € N and a point

ap € X \Yj, in particular ap € X \ Y;

Because
Y; =hx(Y;)

is a Runge domain, the point ag € X \ ¥; belongs to an unbounded connected
component Cy; of X \ ;. The unbound component Cy; is not contained in the
compact set ¥ ;1. Hence exists a point

a1 € (Cy; \Yj41) C (X \Yj41), in particular a; € X \ ¥4

We choose a path 7 in Cy; from a; to ag. Consider the corresponding point
divisors A1, Ag € Div(X). Lemma 15.5 provides a weak solution f of the degree
zero divisor

Ag—A; € Div(X)
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with
f()|Yj =1.
Iterating the construction provides

* asequence of points (ay)yen With
ay S X \Yj+V

» acorresponding sequence of paths ¥, from ay; to ay
* and a sequence of weak solutions f, of the degree zero divisors

Ay —Ayy € Div(X)

satisfying
5 v|Yj+v =1
For given n € N the finite product

Jor oo S

is a weak solution of the degree zero divisor Ag —A,+1 € Div(X). The infinite prod-

uct of smooth functions
n
lim
lim (H fv)
v=0

converges towards a smooth function f: For a given point x € X holds for allmost
allveN

hence for allmost all v € N
fr(x)=1.

The function f is a weak solution of the point divisor Ag satisfying
flry =1

ii) Constructing a weak solution: According to the exhaustion of X by Runge
domains we split the given divisor D into into its successive building
blocks Dy € Div(X), v €N,

D(x) xe€Yy\Ty_
Dy (x) :=
0 x¢Yv\7v_1

Here Y_; := 0. Then

D= i D,.
v=0
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Each divisor Dy, v € N, has finite support. Hence it is a finite sum of divisors
B—A € Div(X) which are the difference of two point divisors. Part i) provides a
weak solution f, of D, satisfying

fv|Yv71 =1

The smooth function -
f= H Jv
v=0

is a weak solution of D, g.e.d.

Theorem 15.7 (Solution of the Weierstrass problem). On an open Riemann sur-
face X any divisor D € Div(X) is a principal divisor, i.e. D is the divisor of a mero-
morphic function f € #*(X).

Proof. With respect to a suitable open covering % = (U;);es with simply connected
open sets the divisor D is defined by a cochain

(f)eC(w,.4)
satisfying forall i € 1
div f; = D|U;.
Foreachi,jel
fi

—e 0" (UnNU;

i) Existence of a weak solution: Proposition 15.6 provides a weak solution y € & (Xp)
of D. It satisfies for each i € 1

v|Ui =i f;
with a suitable smooth function
yi€ & (Ui)
which can be assumed as
y; = ¥ with ¢; € £(U))

because U; is simply connected.

ii) Modifying the weak solution to a solution: For each i, j € I on U; N U;
fi_¥i_
i Wi

The holomorphic functions

eli~0 ¢ ﬁ*(UiﬂUj)
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$ij:=9;— ¢ € OU;NU;)

define a cocycle
(#i)) € 2 (% ,0).

The Vanishing Theorem 14.16 provides a cochain
(8) e C(%,0)
satisfying
8j—8i=0ij=0;—¢
Hence we obtain for i, j € I

e8i8i :Q ie. fi-e%i=fj-e
J

These local function glue to a global meromorphic function f € .#(X) satisfying
foralliel

F1U; = fi- e

and
div f|U; = div f; = D|U;, q.e.d.

Proposition 15.8 (Meromorphic functions as quotient of holomorphic func-
tions). On an open Riemann surface X the field .# (X) of meromorphic functions is
the quotient field of the ring O (X) of holomorphic function, i.e. any meromorphic
function f € #(X) has the form

-
with two holomorphic functions g, h € €0(X), h# 0.
Proof. If f ¢ €(X) consider the pole divisor

D € Div(X) of f.
Theorem 15.7 provides a holomorphic function i € & with

divh=—D.

The product is holomorphic

g:=h-fe0(X),

which proves the claim, g.e.d.
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15.2 Triviality of holomorphic line bundles

The present section proves that any line bundle on an open Riemann surface X is
holomorphically trivial. The proof relies on the vanishing H'(X, &) = 0. In ad-
dition, the proof makes some preparations and uses further input from functional
analysis. We present that input in some detail because it became a standard method
in complex analysis of several complex variables. Remark 15.17 shows a second
proof which replaces the result from functional analysis by a different argument
from algebraic topology in the specific situation.

Lemma 15.9 (Extending cohomology classes to relatively-compact subsets). Con-
sider a Riemann surface X and a holomorphic line bundle .£ on X. Then for any
relatively compact subset

YccX

and any open subset Yo C Y the restriction map
H'\(Y, %)= H' (Y,2)

is surjective.

Proof. We choose a finite index set I = {1,...,r} and an open covering % = (U;)er
of Y by open sets U; C X, i € I, satistying for each i € /

$|Ui >~ ﬁlUi
Foreachk=0,...,r set

Yy :=YU U U;
=1k

Then
Y=y,

We show for each arbitrary but fixed k € I the surjectivity of the restriction
H' (Y, L) = H' (Y1, 2) :
The trick of the proof is to consider the two coverings

YV = Vi:=UNYe_1)i=1,.r of Yi_y

and
7// = (Vi/)t*l,...,r of Yka
with
V! = Vi i#k
! Uk i=k

For all i # j € I the two coverings have the same intersections
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vinvi=v,ny;
because also for i =k and j # k
ViNVi=UNV; = (UNYie1) NV = Vi NV
Both coverings are Leray coverings for .Z due to Remark 14.17. Therefore
AVARAEVAIC A
implies the surjectivity of

H' (Y, L) =H'(V',2) - H\(V, %) =H'(Y,_1,.2), q.ed.

In Chapter 7 we proved that the cohomology of the structure sheaf & becomes
finite-dimensional under restriction to a relatively compact subset. The cochain
groups under consideration were infinite-dimensional complex vector spaces in gen-
eral. Therefore we had to provide them with the structure of topological vector
spaces. Chapter 7 identified suitable Hilbert spaces of holomorphic functions and
cochains. A main input from functional analysis was the existence of orthogonal
complements of closed subspaces of Hilbert spaces. Remark 10.21 states that the
proof generalizes to holomorphic line bundles .Z.

The present section gives another proof for the finiteness result by using a
deep theorem about compact operators between Fréchet spaces. We topologize the
cochain groups of .Z by a Fréchet topology which generalizes the topology of com-
pact convergence of holomorphic functions. The existence of complementary vector
spaces does no longer hold true in the category of Fréchet spaces. Instead we have to
apply a stronger result from functional analysis: Schwartz’ theorem on compact op-
erators. This result turns out important also for many finiteness results in the theory
of several complex variables. Remark 15.10 gives a short introduction.

Remark 15.10 (Fréchet topology of compact convergence for holomorphic sec-
tions).

1. Fréchet topology: Consider a Riemann surface X and an invertible sheaf .Z. We
choose a countable covering
% = Ui)ier

of X by open sets such that each U;, i € I, has the following properties:

e There exists a chart of X
z:U—=V,CcC

¢ There exists a trivialization of the invertible sheaf

$|U,'2 ﬁ‘Ui
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For each i € I the topology of compact convergence on the vector space &(V;)
provides the vector space £ (U;) with a Fréchet topology. For each g € N the
product topology for the countable family of Fréchet spaces

is a Fréchet space. The linear coboundary operator
8:CUU, L) — CtT N w, 2)
is continuous. Hence the closed subspace of cocycles
29U, L) C U, L)
is a Fréchet space.

2. Laurent Schwartz’ theorem about compact linear maps: Let V, W be complex
Fréchet spaces. A linear map
O:V-W

is compact (before: completely continuous) if a suitable neighbourhood of zero Vo C V
is mapped to a relatively compact subset

o(Vo) CCW.

Schwartz’ theorem states: If
fiV—-w

is a linear continuous surjective map and
g: VoW
a linear compact map then
im[f—g:V—-oW|CW
is a closed subspace with
codimim|[f—g:V — W] <oo

For a proof see [32, Cor. de Theor. 2]. Note that any compact linear map is con-
tinuous. Schwartz theorem can be rephrased: The image of any compact pertur-
bation of a surjective linear continuous map between Fréchet spaces has finite
codimension.

Proposition 15.11 (Finiteness of the cohomology on relatively compact subsets).
Consider a Riemann surface X and a holomorphic line bundle £ on X. Then for
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any open, relatively compact subset
YccX

holds
dim H' (Y, £) < e

Proof. We choose a relatively compact subset
YccY' ccX.
There exist a finite index set I = {1,...,r} and open coverings
¥ = (V;)ies of Y and % = (U;)jes of Y’
which satisfy for eachi € 1
V; cC U; and Z|U; ~ O|U;.
i) Restriction as a compact linear map: The restriction
p:ZNU, L) =7V, L)

is a compact linear map: For the proof one applies Montel’s theorem to the restric-
tions
oU)— OV;), i€l

Hence also the linear map
§:CV L)< ZN U, L) =2/ (V.Z), (n,8) = p(8),

is compact.

ii) Leray coverings with respect to .Z: The coverings ¥ and %/ are Leray
coverings for .Z due to Remark 14.17. Therefore Lemma 15.9 shows the
surjectivity of the restriction

Hl(%7$) ZH](Y/,X) —>HI(Y,$) :Hl(7/7$)a [‘ﬂ = [P(é)]
As a consequence the linear map
[ LYxZN U L) = 2NV, L), (n,6) = dn+p(§),
is surjective.

iii) Finite codimension due to Schwartz’ theorem: Schwartz’ theorem, see
Remark 15.10, implies: The image of the operator
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f—8:C°V, LYxZNU . L)~ 2"V, L), (n,E) — §n,
has finite codimension and a posteriori also the image of the coboundary map
§5:C°v, &)= 27NV, L)
As a consequence

AVEES
im[s: 0V, Z) = 2\ (V, 2)]

H' (Y, 2)=H'(V,%) =

has finite dimension, q.e.d.

Proposition 15.12 is a further example of the principle that finiteness of the holo-
morphic cohomology implies the existenc of a meromorphic object with suitable
properties. Here the finiteness of the cohomology with values in a line bundles im-
plies the existence of a non-zero meromorphic section. For a similar example recall
Proposition 7.18.

Proposition 15.12 (Triviality of holomorphic line bundles on relative compact
subsets). Consider an open Riemann surface X and an open, relatively compact
subset

Y CcCcX.

Then for any line bundle
p:L—=>Y

the invertible sheaf £ on 'Y is isomorphic to the structure sheaf
L~ Oy
Proof. 1) Existence of a non-zero meromorphic section: Proposition 15.11 implies
dim H'\(Y,.Z) =1k <

Hence the present step is completely analoguous to the proof of Proposition 7.18
about the existence on non-constant meromorphic functions: Choose a point p € Y
and consider a chart of Y around p

z: Uy — Dg(0)
such that
Z\Uy ~ O|Uy.
Setting
U1 =Y \ U()

defines an open covering
% = (U, Un)
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of Y. Due to Lemma 6.4 the canonical map
H' (%, %) - H\(Y, %)

is injective. On
UyNnU, = Ug

the holomorphic functions
1/zje 0*(Uy), j=1,....k+1,
define under the isomorphism
Z|Uy =~ O|Uy, in particular.Z|Uy ~ O|Uy,

the k4 1 cocycles
ez, %)

Their classes in H' (% ,.%) are linearly dependent: There exist complex numbers
ClyesCry1 € C,
not all zero, and a cochain
N = (s0,51) € CO(%,.2L)

such that
k+1

Y ¢j-g=46n
j=1
As a consequence on Ujj holds

k+1
ZCj~Cj=S1—S0€$(UoﬂU1>
=1

The cocycle
k+1
si=so+ Y. cj 851 | €U, M6 L)=HY, M @0 L)
j=1
is a meromorphic section in .Z with a single pole at p € Y.

ii) Existence of a holomorphic section without zeros: Part 1) provides a non-zero
meromorphic section

seH' (Y, . Ml @5 2).

The Weierstrass Theorem 15.7 provides a meromorphic function f € .#*(Y) with
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div f =—divs

We obtain a holomorphic section
f-seH'(Y,2)

without zeros. By multiplication it defines an isomorphism

Oy = 2L, g (f-5) g qed.

Theorem 15.13 (Holomorphic line bundles on open Riemann surfaces are triv-
ial). If X is an open Riemann surface then

H'(X,0")=0

The proof makes a Runge approximation to modify the trivialization from Proposi-
tion 15.12, obtained on relatively compact domains, to a global trivialization.

Proof. Consider the invertible sheaf .Z of a given line bundles on X. We choose
a Runge exhaustion (Y )yen of X, see Proposition 14.9. Proposition 15.12 implies
that each restriction .Z|Y,, v € N, is isomorphic to the structure sheaf. Hence for
any v € N sections of .Z|Y, are holomorphic functions. Theorem 14.13 allows to
approximate each section of . on Y, by a section on Y, with arbitrary precision
on Y, _1. We assume Yy # @ and choose a point p € ¥ and a section

s0 € Z(Yo)
with so(p) # 0. Runge approximation provides a sequence of sections
sy € Z(Yy), veN,
such that for each arbitrary but fixed vp € N the sequence

(Svo+v)yen

is compact convergent on Yy, . The limit

s:= lim sy € Z(X)
V—ro0
is holomorphic and non-zero. Theorem 15.7 provides a meromorphic function f € .Z*(X)
with
div f=—divs

Then
f-se H'(X,.Z)

is a holomorphic section without zeros and defines by multiplication a sheaf iso-
morphism
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O0~%, qed.

Corollary 15.14 (Second Betti number of an open Riemann surface). For an

open Riemann surface X
H*(X,Z)=0

and H(X) is torsion free.
Proof. i) Vanishing of H*(X,7): The vanishing
H'(X,0")=0
and the exponential sequence
0=5Z—0%50"=0
provide the following exact cohomology sequence
0=H'(X,0") = H*(X,Z) - H*(X,0) =0.

i) Hy(X) torsion free: The universal coefficient theorem compares homology and
cohomology by the split exact sequence

0 — Exty(H,—1(X),Z) — HP(X,Z) — Homz(H,(X),Z) — 0
Hence the vanishing H?(X,Z) = 0 from part i) implies
Ext}(H{(X),Z) =0

Assume for an indirect argument the existence of a torsion element

0+# a € H(X) with n- oc = 0 for a suitable n > 2
The Z-linear morphism

Jj:Z/nZ — H|(X), 1l = a,
is injective. The long exact Ext;-sequence has the segment
Ext}(H{(X),Z) — Exty(Z/nZ,7) ~ Z/nZ — Ext (coker j,Z) =0

Here the last group vanishes because both arguments are Abelian groups, see [42, Lemma 3.3.1].
As a consequence, the first morphism is surjective, hence

Ext}(H\(X),Z) #0,

a contradiction. As a consequence H; (X) does not have any torsion elements, g.e.d.



360 15 Stein manifolds
Corollary 15.15 is a companion to Proposition 10.26.
Corollary 15.15 (Vanishing of H' (X,.#*)). On an open Riemann surface X
H (X, . #*)=0
Proof. The divisisor sequence provides the exact sequence

0=H'(X,0") - H' (X, #*) - H'(X,2) =0, q.ed.

Proposition 15.16 (De Rham group with holomorphic forms). Consider an open
Riemann surface X. Then the holomorphic de Rham sequence

05C—-0%0 >0
is an exact sequence of sheaves and the holomorphic de Rham group

_ Q'(X)
~imld: 0(X) = Q1(X)]

Rhl(X):
and
H'(X,C) ~ RhL(X).

Proof. Exactness of the de Rahm sequence with holomorphic forms follows simi-
larly to the proof of Theorem 5.6. For any open subset U C X the line bundle Q'|U
is holomorphically trivial according to Theorem 15.13. Hence any open covering
of X is a Leray covering for Q. Leray’s theorem 6.8 implies

H'(X,C) =RhL(X), g.ed.

Remark 15.17 (Algebraic Topology and the vanishing H' (X, 0*) = 0).

1. CW-complex: Any non-compact, smooth n-dimensional manifold X has the ho-
motopy type of an (n — 1)-dimensional CW-complex K (X ), see Whitehead’s the-
orem [45, Lem. 2.1] and also [26, Theor. 0.1]. As a consequence

H,(X)=0and H,_(X) is free,
because
Ho1(K(X)) = Zno1 (K(X)) = ker [Com1(K(X)) 2 Cua(K(X))]

and because a subgroup of a free Z-module is free itself. The universal coefficient
theorem compares homology and cohomology by the split exact sequence
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0 — Exty(H,—1(X),Z) — HP(X,Z) — Homz(H,(X),Z) — 0
see [20, Sect. 3.1]. For p = n the theorem implies
H"(X,Z) = Ext},(H,_1(X),Z) ® Homz(H,(X),Z) = 0

2. Application to open Riemann surfaces: Let X be an open Riemann surface. Due

to the previous part
H*(X,Z)=0

The exponential sequence on X implies the exact sequence
0=H'(X,0) - H'\(X,0") - 0=H*(X,7)

and therefore
H'(X,0")=0

The divisor sequence implies the exact sequence
HY(X, . #*) = H*(X,2) - 0=H'(X,0")
and therefore the surjectivity of the first morphism: Each divisor on X is a prin-
cipal divisor.
As a consequence, Theorem 15.13 and a posteriori also Theorem 15.7,
Corollary 15.14 and Corollary 15.15 follow from the vanishing
H'(X,0)=0,

see Theorem 14.16, by purely topological arguments.

15.3 Open Riemann surfaces and Stein manifolds

Stein manifolds have been introduced in [38]. They arise from the study of domains
of holomorphy in complex affine spaces C”".

For n =1 any domain G C C is a domain of holomorphy: There exists a holo-
morphic function f € €(G) such that for any given point p € dG of the boundary
S does not extend to a holomorphic function in any open neighbourhoood of p. The
result does not carry over to higher dimensions n > 2. The punctured space

X :=C2\ {0}
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is no domain of holomorphy: Any holomorphic function on X extends holomor-
phically to C2. Stein identifies in [38, p. 212] three properties of a complex man-
ifold which characterize domains of holomorphy G C C". He calls these three
properties R-convexity.

Stein’s three conditions on the existence of global holomorphic functions with
distinguished properties have been been made the requirement for a Stein manifold,
see [29, Chap. 3.6]:

Definition 15.18 (Stein manifold). A Stein manifold X is a paracompact, complex
manifold with the following three properties:

1. Holomorphically separable: For any two points x; # x, on X exists a holomor-
phic function f € €(X) with

fla) # f(x2)

2. Holomorphically regular: For any point x € X the cotangent space 7,X is
spanned by the differentials of the functions fe &'(X).

3. Holomorphically convex: For any discrete sequence (xy)yen of pairwise distinct
points xy € X exists a holomorphic function f € &'(X) with

lim | /()| = e.

V—oo

Remark 15.19 (Stein domains). Any domain G C C" has a countable topology.

1. Apparently any domain
Gcc

satisfies conditions 1) and 2) of Definition 15.18. Condition 3) is equivalent to G
being a domain of holomorphy. The original definition of holomorphic convex-
ity refers to a different concept, namely to the holomorphically convex hull of
relatively compact sets K C G, see [13, Kap. II, Satz 6.2] and [10].

2. For any domain G C C the validity of condition 3) follows from the Weierstrass
product theorem for G, see Theorem 15.20. As a consequence, any domain G C C
is a Stein manifold.

We now show more generally that any open Riemann surface is a Stein manifold.

Theorem 15.20 (Holomorphic functions attaining prescribed values). Ler X be

an open Riemann surface. For any sequence (ay)ycn of pairwise distinct points ay € X, v € N,
without accumulation point and for any sequence (cy)yen of complex numbers ex-

ists a holomorphic function

feoX) with f(ay) =cy forall v e N.
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The particular case that all prescribed values ¢y are zero, i.e. that one prescribes a
sequence of zeros, is the exactly the content of the Weierstrass problem. The general
case prescribes arbitrary values cy. It can be reduced to the Mittag-Leffler problem
when encoding the values as the residues of locally defined meromorphic functions
with poles of first order at the points of the sequence. The solution of the Mittag-
Leffler problem then provides a global meromorphic function. The proof of The-
orem 15.20 combines a solution of the Weierstrass problem with a solution of the
Mittag-Leffler problem.

Proof. 1) Particular case ¢, = 0: Consider the divisor

D:= Z Ay € Div(X), Ay € Div(X) point divisor of ay € X.
veN

Theorem 15.7 provides a holomorphic function z € &'(X) with
divh=D.
ii) Encoding the values cy as “residues”: Because
supp D C X
is closed, the open sets
U;:= (X \supp D)U{a;}, i € N,

form a covering
U = (Ui)ien

of X. The cochain
ci
<gi = h) eCu,.)

is a Mittag-Leffler distribution of meromorphic functions with respect to %/ because

fori=# j
UinU;Nsupp D=0.

Theorem 15.3 provides a solution
g€ M(X)
of the Mittag-Leffler distribution, i.e. satisfying for all i € N
g§—8&€OU).

The function

fi=g he H#(X)

satisfies on U;
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f=gh=gih+(g—g) h=ci+(g—gi)h

Because
g—g € O0(U;) and h(a;) =0.

the function f is even holomorphic

feoXx).

Apparently, it satisfies for all i € N

flai)=ci, g.ed.

Theorem 15.21 (Open Riemann surfaces are Stein manifolds). Any open Rie-
mann surface is a Stein manifold.

Proof. A countable Hausdorff space is paracompact, and for a Riemann surface
countability follows from the other properties of the definition, see Proposition 4.19
and Remark 4.20.

The conditions 1) and 3) from Definition 15.18 follow from Theorem 15.20, and
condition 2) follows from Theorem 15.7, g.e.d.

Corollary 15.22 (Leray covering with two elements). Any Riemann surface X
has an open covering % = (Uy,U)) with two subsets U; C X, j = 0,1, which are
Stein manifolds.

Proof. The claim is obvious if X is an open Riemann surface. If X is compact then
choose an arbitrary point p € X and an arbitrary open neighbourhood Uj of p in X.
Set

U1 =X\ {p}.
Theorem 15.21 implies that %/ is a covering by Stein manifolds, q.e.d.

Hence for any invertible sheaf on a Riemann surface one always has a Leray cov-
ering with only two open sets, see Remark 14.17, Theorem 15.13 and Corollary 15.22.

Remark 15.23 (Stein manifolds).

1. In the years after introducing the concept of a Stein manifold X the original def-
inition has been modified and replaced by equivalent conditions about coherent
sheaves on X. The definition has also been translated to an equivalent charac-
terization of the algebra of holomorphic functions on X. The latter shows the
analogy to Grothendieck’s definition of affine spaces as the spectrum of com-
mutative rings. In addition the concept of being Stein has been generalized to
complex spaces.
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The following properties of a complex manifold X are equivalent:

e Stein manifold: The manifold X is a Stein manifold.

e Exactness of the functor I': For any short exact sequence of coherent &-module
sheaves
0 F - F—->F"=0

the induced sequence of global sections is exact
0TI X, 7)—=TX,7)=>TX,7") =0
e Vanishing theorem: For any coherent ideal sheaf .# C &
H'(X,.7)=
o Spectrum of I' (X, 0'): The canonical evaluation map
X = Spec I'(X,0), x — A with 4,(f) := f(x),
is a homeomorphism.

Coherent &-module sheaves on a complex manifold X generalize the sheaf of
holomorphic sections of line bundles or complex vector bundles: An &-module
sheaf .F is coherent if it satisfies both of the following conditions:

i) % is finite: Each x € X has a neighbourhood U and finitely many sections

fl,...,fk S ﬁ(U)

whose germs at each y € U generate the stalk .%, as &)-module

ii) F has finite relation sheaves: For each open Y C X and for each finite set

fiys fr € ﬁ(Y)

the sheaf of relations

Z(f1,---fr)

on Y is finite. The sheaf of relations is defined as

=~

A(fr,--LOV) = {(B1,..00) € OV Z “(fj1V) =0}, V C ¥ open.

The most prominent example of a coherent sheaf is the structure sheaf &, the
most prominent counter example is the sheaf .# of meromorphic functions.

Thering I' (X, ©), provided with the Fréchet topology, is a topological C-algebra.
Its spectrum
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SpecI'(X,0)

is the set of all continuous C-algebra morphisms
rx,o)—cC.

The set Spec I'(X,0) becomes a topological space when provided with the
coarsest topology such that for each f € I' (X, €') the complex valued function

f:Spec(X,0) = C, x+ f(x),
is continuous, see [1, Anhang zu Kap. VI, Satz 7].
2. Main results: The two main theorems on a Stein manifold X deal with the coho-
mology of coherent &-module sheaves .% on X:
* Theorem A: For each x € X the stalk .#, is globally generated, i.e. the germs

at x of all sections f € .7 (X) generate the stalk .%, as €,-module.

* Theorem B: For each g > 1
HI(X,#)=0.

These theorems allow to solve the Cousin-I problem and the Cousin-II prob-
lem, which are analogous to the Mittag-Leffler problem and the Weierstrass
problem of the 1-dimensional case.

3. Holomorphic line bundles: The exponential sequence on a Stein manifold X pro-
vides the following exact sequence

0=H'(X,0) = H'(X,0") < H*(X,Z) - H*(X,0) =0

Hence the group of holomorphic line bundles equals via the Chern morphism the
group H?(X,Z) which is a topological invariant. On a Stein manifold it reduces
to a topological question whether a given holomorphic line bundle is holomor-
phically trivial.

For a Stein manifold X with dim X > 2 in general H>(X,Z) # 0, e.g.
H>(C* x C*,Z) ~ H*(S' x §',7Z) = Z.
4. Embedding theorem: Any n-dimensional Stein manifold X has a closed embed-
ding
fiX -
In particular, any open Riemann surface embeds as a closed submanifold into C3.
Because a closed submanifold of a Stein manifold is a Stein manifold itself,

the embedding theorem is an equivalence: A manifold is a Stein manifold iff it
embedds as a closed submanifold into an affine space C*.
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5. Homology: The result about the homology of an open Riemann surface from
Remark 15.17 generalizes to an n-dimensional Stein manifold X:

H,(X) is free and Hy(X) = 0 for ¢ > n.

For these and further, even stronger results on Stein manifolds see [17], [7], [14],
[22, Part Three], [9] and [1, Anhang Kapitel VI].
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