Problems 01

1. Expand the function

$$
f: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}, f(z):=\frac{1}{1-z},
$$

into a power series with center $a=-1$.
Determine the radius of convergence of the resulting power series. In the complex plane scetch the domain of convergence.
2. Prove for a power series

$$
\sum_{n=0}^{\infty} c_{n} \cdot z^{n}
$$

with radius of convergence R :
i) If for suitable $r>0$ and for all but finitely many indices $n \in \mathbb{N}$

$$
\sqrt[n]{\left|c_{n}\right|}<\frac{1}{r}
$$

then $R \geq r$.
ii) If for suitable $r>0$ and for infinitely many indices $n \in \mathbb{N}$

$$
\sqrt[n]{\left|c_{n}\right|}>\frac{1}{r}
$$

then $R \leq r$.
3. For each of the two power series

$$
f(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} \text { and } g(z)=\sum_{n=0}^{\infty} z^{n!}
$$

determine:
i) The radius of convergence,
ii) All points on the boundary of the disk of convergence where the series is convergent.
4. For each of the two power series

$$
f(z)=\sum_{n=0}^{\infty} 2^{n} \cdot z^{2 n} \text { and } g(z)=\sum_{n=0}^{\infty} \cos (n) \cdot z^{n}
$$

determine the radius of convergence.
Hint for $g(z)$: For suitable $\alpha>0$ holds $|\cos (n)|>\alpha$ for infinitely many $n \in \mathbb{N}$.

Deadline: Monday, 29.4.2019, 10.15 a.m., box near room A109

Problems 02

5. Generalizing the well-known binomial coefficents $\binom{N}{n}$ one defines for arbitrary $\sigma \in \mathbb{C}$ and $n \in \mathbb{N}$

$$
\binom{\sigma}{0}:=1,\binom{\sigma}{n}:=\frac{\sigma \cdot(\sigma-1) \cdot \ldots \cdot(\sigma-n+1)}{n!}
$$

The binomial series with parameter $\sigma \in \mathbb{C}$ is the power series

$$
f_{\sigma}(z):=\sum_{n=0}^{\infty}\binom{\sigma}{n} z^{n}, z \in \mathbb{C} .
$$

Show:
i) For any $\sigma \in \mathbb{C}$ and $n \in \mathbb{N}$ holds

$$
\binom{\sigma}{n+1}=\frac{\sigma-n}{n+1} \cdot\binom{\sigma}{n}
$$

ii) If $\sigma \in \mathbb{N}$ then $f_{\sigma}(z)$ has radius of convergence $R=\infty$, and for all $z \in \mathbb{C}$

$$
f_{\sigma}(z)=(1+z)^{\sigma} \text { - give a proof, not a reference :-) }
$$

iii) If $\sigma \in \mathbb{C} \backslash \mathbb{N}$ then $f_{\sigma}(z)$ has radius of convergence $R=1$.
6. Consider two power series

$$
f_{1}(z):=\sum_{n=0}^{\infty} a_{n} \cdot z^{n}, f_{2}(z):=\sum_{n=0}^{\infty} b_{n} \cdot z^{n}
$$

and the formal sum

$$
f_{3}(z):=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) \cdot z^{n}
$$

Let $R_{i}, i=1,2,3$, be the respective radius of convergence. Show:

$$
R_{3} \geq \min \left\{R_{1}, R_{2}\right\}, \text { and } R_{3}=\min \left\{R_{1}, R_{2}\right\} \text { if } R_{1} \neq R_{2}
$$

7. Consider $a \neq b \in \mathbb{C}$ and

$$
G:=\mathbb{C} \backslash\{1 / a, 1 / b\}
$$

i) Expand the function

$$
f: G \rightarrow \mathbb{C}, f(z):=\frac{z}{(1-a z)(1-b z)},
$$

into a power series with center $=0$.
ii) Determine the radius of convergence of the power series of part i).

Hint ad i): Represent f as

$$
\frac{f_{1}(z)}{1-a z}+\frac{f_{2}(z)}{1-b z}
$$

and expand each summand into a convergent geometric series.
8. i) Consider a convergent power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n} \cdot z^{n}, c_{n} \in \mathbb{C}
$$

Show: The coefficients of f satisfy the recursive equations

$$
c_{0}=0, c_{1}=1, c_{n+2}=\alpha c_{n+1}+\beta c_{n}, \alpha, \beta \in \mathbb{C}, n \geq 0
$$

if and only if f satisfies the equation

$$
\left(1-\alpha z-\beta z^{2}\right) \cdot f(z)=z
$$

ii) The Fibonacci numbers $c_{n} \in \mathbb{R}_{+}$are recursively defined as

$$
c_{0}=0, c_{1}=1, c_{n+2}=c_{n+1}+c_{n}, n \geq 0 .
$$

Determine the generator of the Fibonacci numbers, i.e. show:

$$
\sum_{n=0}^{\infty} c_{n} \cdot z^{n} \text { is convergent and } \sum_{n=0}^{\infty} c_{n} \cdot z^{n}=\frac{z}{1-z-z^{2}} .
$$

Derive a closed form of the Fibonacci numbers.

Department of Mathematics
Complex Analysis
LMU MÜNCHEN
SUMMER TERM 2019

Problems 03

9. i) Prove the addition theorem for $z_{1}, z_{2} \in \mathbb{C}$

$$
\exp \left(z_{1}+z_{2}\right)=\exp \left(z_{1}\right) \cdot \exp \left(z_{2}\right)
$$

ii) Derive the addition theorems for

$$
\sin (x+y) \text { and } \cos (x+y)
$$

with real arguments $x, y \in \mathbb{R}$.
10. i) Determine the radius of convergence R of the power series

$$
f(z)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \cdot z^{n}
$$

Which value is $f(1)$?
ii) Show: The series

$$
\tilde{f}(1):=1+\sum_{n=1}^{\infty}\left(\frac{1}{4 n-1}-\frac{1}{2 n}+\frac{1}{4 n+1}\right)
$$

is a convergent rearrangement of the series $f(1)$ with value

$$
\tilde{f}(1)=(3 / 2) \cdot f(1)
$$

11. Consider a convergent power series

$$
f(z)=\sum_{n=0}^{\infty} c_{n} \cdot z^{n}
$$

with $c_{0}=1$. Define recursively the sequence $\left(d_{n}\right)_{n \in \mathbb{N}}$ with

$$
d_{0}:=1, d_{1}:=c_{1}, d_{n}:=-c_{1} \cdot d_{n-1}-c_{2} \cdot d_{n-2}-\ldots-c_{n-1} \cdot d_{1}-c_{n}, n \geq 2
$$

Show:
i) If for suitable $M>0$ and for all $n \in \mathbb{N}$

$$
\left|c_{n}\right| \leq M^{n}
$$

then for all $n \in \mathbb{N}, n \geq 1$,

$$
\left|d_{n}\right| \leq(1 / 2) \cdot(2 M)^{n}
$$

ii) The series

$$
g(z):=\sum_{n=0}^{\infty} d_{n} \cdot z^{n}
$$

is convergent.
iii) For any analytic function

$$
f: U \rightarrow \mathbb{C}
$$

defined on an open set $U \subset \mathbb{C}$ and without zeros, i.e. $f(z) \neq 0$ for all $z \in U$, also the reciprocal function

$$
1 / f: U \rightarrow \mathbb{C}
$$

is analytic.
12. Denote by $\mathbb{C}\{z\}$ the set of complex convergent power series with center $=0$.

Show:
i) With respect to addition and multiplication the set $\mathbb{C}\{z\}$ is a ring with unit.
ii) The subset

$$
\mathfrak{m}:=\{f \in \mathbb{C}\{z\}: f(0)=0\} \subset \mathbb{C}\{z\}
$$

is an ideal.
iii) The ideal \mathfrak{m} is the unique maximal ideal of $\mathbb{C}\{z\}$. Determine the residue field $\mathbb{C}\{z\} / \mathfrak{m}$?

Note: An ideal I of a ring R is a subset $I \subset R$ which is closed with respect to addition and multiplication. A proper ideal $I \subsetneq R$ is maximal if there is no ideal J with

$$
I \subsetneq J \subsetneq R .
$$

Problems 04

13. Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x):=\left\{\begin{array}{cl}
x \cdot \sin (1 / x) & x \in \mathbb{R}^{*} \\
0 & x=0
\end{array}\right.
$$

i) Show: The function f is continuous.
ii) Does there exist a domain G with $\mathbb{R} \subset G \subset \mathbb{C}$ and an analytic function

$$
F: G \rightarrow \mathbb{C} \text { with } F \mid \mathbb{R}=f ?
$$

Give a justification of your answer.
14. Determine the power series expansion with center $a=0$ up to terms of order $=4$ of the following analytic functions:

$$
f_{k}: \mathbb{C} \rightarrow \mathbb{C}, f_{k}(z):=\sin ^{k}(z), k=1,2,3,4
$$

and

$$
g: \mathbb{C} \rightarrow \mathbb{C}, g(z):=\exp (\sin (z))
$$

15. Prove: Any open connected set $U \subset \mathbb{C}$ is path-connected. Hint: Any disk is path-connected. (The problem proves a claim from the lecture.)
16. Determine a domain $G \subset \mathbb{C}$, a sequence of points $\left(a_{n}\right)_{n \in \mathbb{N}}$ with $a_{n} \in G$ for all $n \in \mathbb{N}$ and

$$
\lim _{n \rightarrow \infty} a_{n} \in \partial G
$$

and an analytic function

$$
f: G \rightarrow \mathbb{C}
$$

such that: For all $n \in \mathbb{N}$ holds $f\left(a_{n}\right)=0$, but f does not vanish identically in G.

Problems 05

17. For a domain $G \subset \mathbb{C}$ prove: The ring

$$
\mathscr{A}(G):=\{f: G \rightarrow \mathbb{C} \mid f \text { analytic }\}
$$

of analytic functions on G is an integral domain, i.e. for $f, g \in \mathscr{A}(G)$

$$
f \cdot g=0 \Longrightarrow f=0 \text { or } g=0 \text { (no zero divisors). }
$$

18. i) Determine all zeros of the two analytic functions

$$
\sin , \cos : \mathbb{C} \rightarrow \mathbb{C}
$$

ii) The period set of a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is defined as the set

$$
\{\omega \in \mathbb{C}: \text { For all } z \in \mathbb{C} \text { holds } f(z+\omega)=f(z)\}
$$

Show: The period set of each of the two functions \sin and \cos is the set

$$
\{k \cdot 2 \pi: k \in \mathbb{Z}\}
$$

19. Consider $\alpha \in \mathbb{C}$ and a domain $G \subset \mathbb{C}$ where an analytic branch of the logarithm function

$$
\log : G \rightarrow \mathbb{C}
$$

exists. Define the corresponding branch of the power function z^{α} as the function

$$
f: G \rightarrow \mathbb{C}, f(z):=e^{\alpha \cdot \log (z)}
$$

Show:
i) Two branches of the power function differ by a factor $e^{k \cdot 2 \pi i \alpha}, k \in \mathbb{Z}$.
ii) Determine the principal value, i.e. the value computed by using the principal value of the logarithm, of

$$
i^{i}, i^{\pi}, i^{-1}
$$

20. For $x, y \in \mathbb{R}$ set

$$
G_{x}:=\{z \in \mathbb{C}: \operatorname{Re} z=x\} \text { and } H_{y}:=\{z \in \mathbb{C}: \operatorname{Im} z=y\}
$$

i) Prove: For each

$$
x \in[0,2 \pi] \backslash\{0, \pi / 2, \pi,(3 / 2) \pi, 2 \pi\}
$$

the set $\sin \left(G_{x}\right)$ is one branch of a hyperbola, and for each $y \in \mathbb{R}^{*}$ the set $\sin \left(H_{y}\right)$ is an ellipse.

Hint: The equation of a hyperbola/ellipse in the (u / v)-plane is

$$
\frac{u^{2}}{a^{2}} \mp \frac{v^{2}}{b^{2}}=1
$$

ii) Sketch - or visualize by a short clip - the sets

$$
\sin \left(G_{x}\right) \text { and } \sin \left(H_{y}\right)
$$

for

$$
x \in\{0, \pi / 4, \pi / 2,(3 / 4) \pi,(5 / 4) \pi,(3 / 2) \pi,(7 / 4) \pi\}
$$

and

$$
y \in\{\ln (1 / 3), 0, \ln (2)\}
$$

Deadline: Monday, 27.5.2019, 10.15 a.m., box near room A109

Problems 06

21. Compute the path integral

$$
\int_{\gamma_{j}} \frac{d z}{z}, j=1,2
$$

for the two paths connecting the points 1 and -1 in \mathbb{C}

$$
\gamma_{1}, \gamma_{2}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{1}(t):=e^{i t} \text { and } \gamma_{2}(t):=e^{-i t}
$$

22. Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x):= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

defined on the real axis. Show:
i) All derivatives $f^{(n)}(x), x \in \mathbb{R}, n \in \mathbb{N}^{*}$, exist and satisfy $f^{(n)}(0)=0$.
ii) Does f extend to a differentiable function

$$
U \rightarrow \mathbb{C}
$$

defined on a neighbourhood $U \subset \mathbb{C}$ of \mathbb{R} ? Give an argument for your answer.

Note. Distinguish between differentiability with respect to one real argument and differentiability with respect to one complex argument.
23. Consider a domain $G \subset \mathbb{C}$ and two differentiable functions

$$
f, g: G \rightarrow \mathbb{C}
$$

with $\operatorname{Re}(f)=\operatorname{Re}(g)$. Then

$$
\operatorname{Im}(f)-\operatorname{Im}(g)=c
$$

for a suitable constant $c \in \mathbb{R}$.
24. The oriented angle between two non-zero complex numbers $z_{1}, z_{2} \in \mathbb{C}$ is the argument of their quotient, i.e.

$$
\varangle\left(z_{1}, z_{2}\right):=\arg \frac{z_{2}}{z_{1}} \in[0,2 \pi[.
$$

Consider a holomorphic function

$$
f: U \rightarrow \mathbb{C}
$$

defined on an open set $U \subset \mathbb{C}$, with f^{\prime} having no zeros. For any $z \in U$ consider pairs of continuously differentiable paths

$$
\gamma_{j}: I \rightarrow U, j=1,2, I \subset \mathbb{R} \text { interval, }
$$

with a point $t_{0} \in I$ satisfying

$$
\gamma_{j}\left(t_{0}\right)=z \in U \text { and } \gamma_{j}^{\prime}\left(t_{0}\right) \neq 0, j=1,2
$$

Show:

$$
\left.\varangle\left(\gamma_{1}^{\prime}\left(t_{0}\right), \gamma_{2}^{\prime}\left(t_{0}\right)\right)=\varangle\left(\left(f \circ \gamma_{1}\right)^{\prime}\left(t_{0}\right),\left(f \circ \gamma_{2}\right)^{\prime}\left(t_{0}\right)\right) \text { (Locally conformal at } z\right)
$$

Hint: You may use the Wirtinger calculus.

Problems 07

25. Show for a continuous function

$$
f: U \rightarrow \mathbb{C}
$$

defined in an open neighbourhood $\bar{D}_{1}(0) \subset U$ of the closed unit circle:

$$
\overline{\int_{|\zeta|=1} f(\zeta) d \zeta}=-\int_{|\zeta|=1} \frac{\bar{f}(\zeta)}{\zeta^{2}} d \zeta
$$

26. Consider a domain $G \subset \mathbb{C}$ and a holomorphic function

$$
f: G \rightarrow \mathbb{C}
$$

Show that f is constant in each of the following cases:
i)

$$
|f|=\text { constant }
$$

ii) At a point $a \in G$ the modulus $|f|$ assumes a local minimum $|f(a)| \neq 0$, i.e. for all z in an open neighbourhood $U \subset G$ of a holds

$$
|f(z)| \geq|f(a)|
$$

iii)

$$
f^{\prime}=0
$$

27. Consider a map

$$
f: U \rightarrow \mathbb{C}, U \subset \mathbb{C} \text { open, }
$$

with partial derivatives. For the Wirtinger operators prove:

$$
\frac{\partial f}{\partial z}=\frac{\overline{\partial \bar{f}}}{\partial \bar{z}} \text { and } \frac{\partial f}{\partial \bar{z}}=\frac{\overline{\partial \bar{f}}}{\partial z}
$$

28. Consider a map

$$
f: U \rightarrow \mathbb{C}, U \subset \mathbb{C} \text { open, }
$$

which has partial derivatives. For $z=x+i y \in U$ denote by

$$
\operatorname{Jac}(f)(x, y):=\left(\begin{array}{cc}
u_{x}(x, y) & u_{y}(x, y) \\
\mathrm{v}_{x}(x, y) & \mathrm{v}_{y}(x, y)
\end{array}\right)
$$

its Jacobi matrix at $(x, y) \in \mathbb{R}^{2}$ and by

$$
T_{\mathbb{R}^{2}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

the induced \mathbb{R}-linear map.
Show: Under the identification

$$
j: \mathbb{C} \stackrel{\simeq}{\rightarrow} \mathbb{R}^{2}, z=x+i y \mapsto(x, y),
$$

the map $T_{\mathbb{R}^{2}}$ identifies with the \mathbb{R}-linear map

$$
T_{\mathbb{C}}: \mathbb{C} \rightarrow \mathbb{C}, h \mapsto f_{z}(z) \cdot h+f_{\bar{z}}(z) \cdot \bar{h},
$$

i.e. the following diagram commutes

which means

$$
j \circ T_{\mathbb{C}}=T_{\mathbb{R}^{2}} \circ j
$$

Hint: It suffices to check the last equality for the two special arguments $1, i \in \mathbb{C}$.

Problems 08

29. Determine all entire functions f with $f \circ f=f$.
30. Consider a map

$$
f: U \rightarrow \mathbb{C}, U \subset \mathbb{C} \text { open, }
$$

with continuous partial derivatives. Assume: For any $z \in U$

$$
\operatorname{det}(\operatorname{Jac}(f)(z)) \neq 0
$$

and for any pair of paths $\gamma_{j}, j=1,2$, with the properties from Exercise 24 holds

$$
\varangle\left(\gamma_{1}^{\prime}\left(t_{0}\right), \gamma_{2}^{\prime}\left(t_{0}\right)\right)=\varangle\left(\left(f \circ \gamma_{1}\right)^{\prime}\left(t_{0}\right),\left(f \circ \gamma_{2}\right)^{\prime}\left(t_{0}\right)\right)(\text { Locally conformal at } z)
$$

Show: The function f is holomorphic and f^{\prime} has no zeros.
Hint: Consider the family of paths

$$
\gamma_{s}: I \rightarrow \mathbb{C}, \gamma_{s}(t):=z_{0}+e^{i s} \cdot t, s \in[0,2 \pi],
$$

and the pairs $\left(\gamma_{s}, \gamma_{0}\right)$,
31. Consider the function

$$
f: \mathbb{C} \backslash\{1,2\} \rightarrow \mathbb{C}, f(z):=\frac{1}{(z-1) \cdot(z-2)}
$$

Determine the Laurent series of f with center $=0$ in each of the following domains $G_{j}, j=1,2,3$:
i) $G_{1}:=\{z \in \mathbb{C}:|z|<1\}$
ii) $G_{2}:=\{z \in \mathbb{C}: 1<|z|<2\}$
iii) $G_{3}:=\{z \in \mathbb{C}: 2<|z|\}$.
32. Show: A non-constant entire function

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

has dense image, i.e. $f(\mathbb{C}) \subset \mathbb{C}$ is a dense subset.

Deadline: Monday, 17.6.2019, 10.15 a.m., box near room A109

Department of Mathematics

Problems 09

33. Consider an entire function

$$
f: \mathbb{C} \rightarrow \mathbb{C} \text { with } \lim _{|z| \rightarrow \infty}|f(z)|=\infty
$$

Show: The function f is a polynomial.
34. Consider a holomorphic function

$$
f: D_{r}(0) \rightarrow \mathbb{C}
$$

with a radius $r>0$. Denote by

$$
f(z)=\sum_{n=0}^{\infty} c_{n} \cdot z^{n}
$$

the Taylor series of f with center $=0$. Assume the existence of a constant $M>0$ such that for all $z \in D_{r}(0)$

$$
|f(z)| \leq M
$$

Show: If for an index $n \in \mathbb{N}$

$$
\left|c_{n}\right|=\frac{M}{r^{n}}
$$

then for all $z \in D_{r}(0)$

$$
f(z)=c_{n} \cdot z^{n}
$$

Hint. For $0<\rho<r$ prove the integral representation

$$
\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi}\left|f\left(\rho \cdot e^{i \phi}\right)\right|^{2} d \phi=\sum_{m=0}^{\infty}\left|c_{m}\right|^{2} \cdot \rho^{2 m}
$$

35. For a holomorphic function

$$
f: U \rightarrow \mathbb{C}, U \subset \mathbb{C} \text { open }
$$

define

$$
M_{f}(r):=\sup \{|f(z)|: z \in U \text { and }|z|=r\} .
$$

i) Consider an entire function

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

and assume the existence of a radius $r_{0}>0$ such that for all $r \geq r_{0}$

$$
M_{f}(r) \leq \sqrt{r} \cdot \ln r .
$$

Show: The function f is constant.
ii) Consider a holomorphic function

$$
D_{\rho}^{*}(0) \rightarrow \mathbb{C}
$$

with a radius $\rho>0$. Assume for all $0<r<\rho$

$$
M_{f}(r) \leq \frac{|\ln r|}{\sqrt{r}}
$$

Show: The function f has a removable singularity at $0 \in \mathbb{C}$.
36. Consider a periodic entire function

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

satisfying for all $z \in \mathbb{C}$

$$
f(z+1)=f(z)
$$

i) Show: For all $z \in \mathbb{C}$

$$
f(z)=g\left(e^{2 \pi i \cdot z}\right)
$$

with a holomorphic function

$$
g: \mathbb{C}^{*} \rightarrow \mathbb{C}
$$

satisfying

$$
g(w)=\sum_{n=-\infty}^{\infty}\left(\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} g\left(e^{i \phi}\right) \cdot e^{-i n \cdot \phi} d \phi\right) \cdot w^{n}
$$

ii) Conclude: For all $z \in \mathbb{C}$ holds the Fourier expansion

$$
f(z)=\sum_{n=-\infty}^{\infty}\left(\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} f\left(\frac{\phi}{2 \pi}\right) \cdot e^{-i n \phi} d \phi\right) \cdot e^{2 \pi i n \cdot z}
$$

Hint. Find g as commutative completion of the following diagram

Deadline: Monday, 24.6.2019, 10.15 a.m., box near room A109

Problems 10

37. For the Bernoulli numbers $\left(B_{n}\right)_{n \in \mathbb{N}}$ prove the recursion formula: If $N \in \mathbb{N}^{*}$ then

$$
\sum_{n=0}^{N}\binom{N+1}{n} \cdot B_{n}=0
$$

38. i) Prove the formula

$$
\tan z=\cot z-2 \cdot \cot 2 z
$$

ii) Prove the Taylor expansion with center $a=0$

$$
\tan z=\sum_{k=1}^{\infty}(-1)^{k-1} \cdot \frac{2^{2 k} \cdot\left(2^{2 k}-1\right) \cdot B_{2 k}}{(2 k)!} \cdot z^{2 k-1}
$$

and determine the radius of convergence.
39. i) For $2>|z|$ and $n \in \mathbb{N}, n \geq 2$, show

$$
\frac{1}{z-n}+\frac{1}{z+n}=-2 \cdot \sum_{k=1}^{\infty} \frac{z^{2 k-1}}{n^{2 k}}
$$

ii) For $|z|>1$ show

$$
\frac{1}{z-1}+\frac{1}{z+1}=2 \cdot \sum_{k=1}^{\infty} \frac{1}{z^{2 k-1}}
$$

iii) For z in the open annulus

$$
A:=\{z \in \mathbb{C}: 1<|z|<2\}
$$

prove the Laurent expansion with center $=0$

$$
\pi \cdot \cot (\pi z)=\frac{1}{z}+2 \cdot \sum_{k=1}^{\infty}\left(\frac{1}{z}\right)^{2 k-1}-2 \cdot \sum_{k=1}^{\infty}\left(\sum_{n=2}^{\infty} \frac{1}{n^{2 k}}\right) \cdot z^{2 k-1}
$$

40. i) Show

$$
\frac{1}{\sin (\pi z)}=\frac{1}{2} \cdot\left(\cot \left(\frac{\pi z}{2}\right)+\tan \left(\frac{\pi z}{2}\right)\right)
$$

ii) Show

$$
\frac{1}{\sin (\pi z)}=\frac{1}{2} \cdot\left(\cot \left(\frac{\pi z}{2}\right)+\cot \left(\frac{\pi \cdot(1-z)}{2}\right)\right)
$$

iii) Determine the pole set, the pole orders and the principal parts of

$$
\frac{\pi}{\sin (\pi z)}
$$

considered as a meromorphic function in \mathbb{C}. Conclude from part i) and ii)

$$
\frac{\pi}{\sin (\pi z)}=\frac{1}{z}+2 z \cdot \sum_{n=1}^{\infty} \frac{(-1)^{n}}{z^{2}-n^{2}}
$$

Problems 11

41. Consider the Weierstrass elementary factor E_{p} of order $p \in \mathbb{N}^{*}$.
i) Show: The Taylor series of E_{p} with center $=0$ has the form

$$
E_{p}(z)=1-\sum_{n=p+1}^{\infty} a_{n} \cdot z^{n}
$$

with non-negative real coefficients $a_{n}, n \geq p+1$.
Hint: You may compare coefficients of two suitable representations of the derivative $E_{p}^{\prime}(z)$.
ii) Conclude from part i): For $|z| \leq 1$ holds the estimate

$$
\left|E_{p}(z)-1\right| \leq|z|^{p+1}
$$

Hint: Use $E_{p}(1)=0$.
42. Which well-known function equals the canonical product

$$
\prod_{\substack{n \in \mathbb{Z} \\ n \neq 0}} E_{1}\left(\frac{z}{n}\right)
$$

43. A divisor on a non-empty set $U \subset \mathbb{C}$ is a map

$$
D: U \rightarrow \mathbb{Z}
$$

with support

$$
\operatorname{supp} D:=\{z \in U: D(z) \neq 0\}
$$

a discrete set, closed in U. A divisor D is non-negative, denoted $D \geq 0$, if $D(z) \geq 0$ for all $z \in U$. A non-negative divisor is positive, denoted $D>0$, if $D(z)>0$ for at least one $z \in U$.

Any meromorphic function $f \in \mathscr{M}(U)$ defines on U the divisor

$$
(f):=D
$$

named a principal divisor (= Hauptdivisor), with

$$
D: U \rightarrow \mathbb{Z}, D(a):=\operatorname{ord}(f ; a) .
$$

Show: i) Any divisor D on U decomposes as

$$
D=D_{1}-D_{2}
$$

with two divisors on U

$$
D_{1}, D_{2} \geq 0 \text { and supp } D_{1} \cap \text { supp } D_{2}=\emptyset .
$$

ii) Any divisor D on \mathbb{C} is a principal divisor, i.e. the divisor of a meromorphic function on \mathbb{C}.
44. Consider the Γ-function

$$
\Gamma: R H(0) \rightarrow \mathbb{C} .
$$

i) Show: For any $z \in R H(0)$ and any $n \in \mathbb{N}$ holds

$$
\Gamma(z)=\frac{\Gamma(z+n)}{z(z+1) \cdot \ldots \cdot(z+n-1)}
$$

ii) Conclude: The Γ-function extends uniquely to a meromorphic function on \mathbb{C}, also named Γ.
iii) Show: The meromorphic Γ-function on \mathbb{C} has the pole set

$$
P=\{-n: n \in \mathbb{N}\} .
$$

Each pole has order $=1$. The principal parts are

$$
H_{-n}(z)=\frac{(-1)^{n}}{n!} \cdot \frac{1}{z+n}, n \in \mathbb{N} .
$$

Problems 12

45. Show: The compact set

$$
A:=\bar{D}_{1}(0) \subset \mathbb{C} \simeq \mathbb{R}^{2}
$$

has a smooth boundary ∂A.
46. i) Consider two functions f, g which are holomorphic in an open neighbourhood of a point $a \in \mathbb{C}$ and assume

$$
\operatorname{ord}(g ; a)=1
$$

Show:

$$
\operatorname{res}\left(\frac{f}{g} ; a\right)=\frac{f(a)}{g^{\prime}(a)}
$$

ii) Show

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\frac{\pi}{\sqrt{2}}
$$

47. i) Using Fubini's theorem and polar coordinates compute

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x \cdot \int_{-\infty}^{\infty} e^{-y^{2}} d y
$$

and derive

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}
$$

ii) Show

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\sqrt{\frac{\pi}{8}}
$$

Hint: Integrate $e^{-z^{2}}$ along the closed path from Figure 0.1, and relate the result to

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Fig. 0.1 Closed path of integration
48. Derive the product representation of the Γ-function

$$
\Gamma(z)=\frac{e^{-C \cdot z}}{z} \cdot \prod_{n=1}^{\infty} \frac{e^{z / n}}{1+(z / n)}
$$

with the Euler-Mascheroni constant

$$
C:=\lim _{N \rightarrow \infty}\left[\left(\sum_{n=1}^{N} \frac{1}{n}\right)-\ln N\right]
$$

along the following steps:
i) Prove: The function

$$
\gamma(z):=\frac{e^{-C \cdot z}}{z} \cdot \prod_{n=1}^{\infty} \frac{e^{z / n}}{1+(z / n)}
$$

is meromorphic on \mathbb{C} with the same pole set as Γ. It satisfies

$$
\gamma(z)=\lim _{N \rightarrow \infty} \frac{N^{z} \cdot N!}{z \cdot(z+1) \cdot \ldots \cdot(z+N)}
$$

ii) Derive a functional equation for γ, and conclude that γ has the same principal parts as Γ.
iii)(*) Consider the entire functions $g:=\Gamma-\gamma$ and

$$
S: \mathbb{C} \rightarrow \mathbb{C}, S(z):=g(z) \cdot g(1-z)
$$

Show that g is bounded in the strip

$$
B_{1,2}:=\{z \in \mathbb{C}: 1 \leq \operatorname{Re} z \leq 2\}
$$

and conclude it's boundedness in the strip

$$
B_{0,1}:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}
$$

Show for all $z \in \mathbb{C}$

$$
S(z+1)=-S(z)
$$

and conclude that S is bounded in the strips $B_{0,1}, B_{1,2}$, and even in \mathbb{C}.
iv) Conclude $S=0$ and $g=0$.

Deadline: Monday, 15.7.2019, 10.15 a.m., box near room A109

Problems 13

49. Determine the number of zeros of the two polynomials
i) $p(z):=z^{8}-3 \cdot z^{2}+1$ for $|z|>1$
ii) $q(z):=3 \cdot z^{4}-7 \cdot z+2$ for $1<|z|<3 / 2$.
50. Prove: All domains $G \subset \mathbb{C}$, which are star-like with respect to a point $a \in G$, are simply connected.
51. Consider a domain $G \subset \mathbb{C}$ and a fixed point $z_{0} \in G$.
i) Consider a holomorphic function

$$
f: G \rightarrow \mathbb{C}
$$

satisfying: For each continuously differentiable path γ in G with $\gamma(0)=z_{0}$ holds

$$
\int_{\gamma} f(\zeta) d \zeta=0
$$

Show $f=0$.
ii) On the set of all closed paths γ in G with $\gamma(0)=\gamma(1)=z_{0}$ the property being homotopic as closed path in G defines an equivalence relation. Let $\pi_{1}\left(G, z_{0}\right)$ be the set of all equivalence classes $[\gamma]$.

Show: For all holomorphic functions $f \in \mathscr{O}(G)$ the map

$$
T_{f}: \pi_{1}\left(G, z_{0}\right) \rightarrow \mathbb{C}, T_{f}([\gamma]):=\int_{\gamma} f(z) d z
$$

is well-defined.
iii) For $G:=\mathbb{C}^{*}$ and $z_{0}:=1$ the winding number defines the bijective map

$$
\pi_{1}\left(G, z_{0}\right)=\left\{[\gamma]: \gamma(t)=e^{n \cdot 2 \pi i \cdot t}, t \in[0,1], n \in \mathbb{Z}\right\} \simeq \mathbb{Z}
$$

Prove

$$
\mathbb{C}=\bigcup_{f \in \mathscr{O}(G)} T_{f}\left(\pi_{1}\left(G ; z_{0}\right)\right)
$$

and determine the set

$$
\left\{f \in \mathscr{O}(G): T_{f}=0\right\}
$$

52. Prove Morera's Theorem: Consider a domain

$$
G \subset \mathbb{C} \simeq \mathbb{R}^{2}
$$

and a continuous function

$$
f: G \rightarrow \mathbb{C}
$$

If for all rectangles $R \subset G$ parallel to the coordinate axes of \mathbb{R}^{2}

$$
\int_{\partial R} f(z) d z=0
$$

then f is holomorphic.

Hint: Reduce the statement to an open disk $G=D_{r}(0)$ and define

$$
F(z):=\int_{\gamma} f(\zeta) d \zeta
$$

by integrating from 0 to z along two adjacent boundary lines of a suitable rectangle. Show: The function F has continuous partial derivatives satisfying the Cauchy-Riemann differential equations, and $F^{\prime}=f$.

Problems 14 (for repetition)

53. Let f, g be entire functions such that for all $z \in \mathbb{C}$

$$
|f(z)| \leq|g(z)|
$$

Show: There exists $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1$ such that for all $z \in \mathbb{C}$

$$
f(z)=\lambda \cdot g(z)
$$

54. Show: A non-constant entire function

$$
f: \mathbb{C} \rightarrow \mathbb{C}
$$

has dense image, i.e. $f(\mathbb{C}) \subset \mathbb{C}$ is a dense subset.
55. For each pair of mathematical domains

- (Analysis, Algebra) and
- (Analysis, Topology)
state a result from the lecture Complex Analysis, which combines concepts or results from both domains of the given pair.

Justify your answer by writing down one or two arguments.
56. Examine whether the function

$$
f(z):=\frac{1}{\cos (1 / z)}
$$

has an isolated singularity at $a=0$. If yes, determine the type of singularity and the residue of f at a.
57. Consider the function

$$
f(z):=\frac{1}{\cosh z-\cos z}
$$

i) Determine the type of the singularity of f at $a=0$.
ii) For the Laurent series

$$
f(z)=\sum_{n=-\infty}^{\infty} c_{n} \cdot z^{n}
$$

determine all coefficients c_{n} with $n \leq 2$.

No submission!

