
DEPARTMENT OF MATHEMATICS LIE ALGEBRAS IN
LMU MÜNCHEN MATHEMATICS AND PHYSICS
TERM 2016/17 Joachim Wehler

Problems 01

1. Consider the field K = R or K= C. Prove that the Euclidean norm

‖x‖ :=

√
n

∑
i=1
|xi|2; x = (x1, ...,xn) ∈Kn

is a norm on the vector space Kn, i.e. it satisfies

i)
‖x‖= 0 ⇐⇒ x = 0; x ∈Kn

ii)
‖λ · x‖= |λ | · ‖x‖; λ ∈K,x ∈Kn

iii)
‖x+ y‖ ≤ ‖x‖+‖y‖; x,y ∈Kn (Triangle inequality).

2. Consider the field K = R or K= C. Show that for matrices A ∈M(n×n,K) the
operator norm

‖A‖ := sup{‖Ax‖ : x ∈Kn and ‖x‖ ≤ 1}

is a norm on the vector space M(n×n,K), i.e. it satisfies

i)
‖A‖= 0 ⇐⇒ A = 0; A ∈M(n×n,K)

ii)
‖λ ·A‖= |λ | · ‖A‖; λ ∈K,A ∈M(n×n,K)

iii)
‖A+B‖ ≤ ‖A‖+‖B‖; A,B ∈M(n×n,K) (Triangle inequality).

In addition show

iv)
‖A ·B‖ ≤ ‖A‖ · ‖B‖; A,B ∈M(n×n,K)

v)
‖1‖= 1; unit matrix 1 ∈M(n×n,K).
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3. Determine the radius of convergence of the following power series:

i)
∞

∑
ν=0

1
ν!
· zν

ii)
∞

∑
ν=0

zν

iii)
∞

∑
ν=1

(−1)ν+1

ν
· zν

iv)
∞

∑
ν=0

(−1)ν

(2ν)!
· z2ν

v)
∞

∑
ν=0

ν! · zν

vi) Which functions do the power series i) - iv) represent?

4. Transform the following matrix to upper triangular form: 3 4 3
−1 0 −1
1 2 3

 ∈M(3×3,R).

————
Discussion: Tuesday, 25.10.2016, 12.15 p.m.
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5. The geometric series
∞

∑
ν=0

zν ,z ∈ C,

has radius of convergence R = 1. Hence the series

∞

∑
ν=0

Aν ∈M(n×n,C)

is well-defined for a matrix A ∈M(n×n,C) with ‖A‖< 1.

Show that the matrix 1−A ∈M(n×n,C) is invertible with

(1−A)−1 =
∞

∑
ν=0

Aν .

Hint: Imitate the proof of the analogous result for the complex series.

6. The logarithmic series

log(1+ z) =
∞

∑
ν=1

(−1)ν+1

ν
· zν ,z ∈ C,

has radius of convergence R = 1.
For a matrix A ∈M(n×n,C) with ‖A‖< 1 one defines

log(1+A) :=
∞

∑
ν=1

(−1)ν+1 · A
ν

ν
∈M(n×n,C).

Consider an open subset I ⊂ R and a differentiable function

B : I→M(n×n,C)

with ‖B(t)−1‖< 1 and [B′(t),B(t)] = 0 for all t ∈ I.

Show: For all t ∈ I the inverse B(t)−1 exists and
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d
dt

log B(t) = B(t)−1 ·B′(t) = B′(t) ·B(t)−1.

Hint: In order to compute B(t)−1 apply problem 5 with A := 1−B(t).

7. i) Consider an upper triangular matrix A ∈M(n×n,C).

Show that a series of diagonalizable matrices (Aν)ν∈N exists with

A = lim
ν→∞

Aν .

ii) Consider a matrix A ∈M(n×n,C) with ‖A‖< log 2.

Show
‖(exp A)−1‖< 1

and
log(exp A) = A.

Hint: Prove the equality in different steps. First, consider the case of a
diagonalizable matrix A. Secondly, generalize the result to an upper triangular
matrix. Eventually, consider the general case.

8. Consider the endomorphism f ∈ End(C2) defined with respect to the canonical
basis by the matrix

A =

(
1 2
0 3

)
∈M(2×2,C).

i) Show that

As :=
(

1 0
0 3

)
(semisimple)

and

An :=
(

0 2
0 0

)
(nil potent)

are not the matrices of the Jordan decomposition of f .

ii) Compute the matrices of the Jordan decomposition of f .

————
Discussion: Tuesday, 8.11.2016, 12.15 p.m.
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9. i) Show the Jacobi identity for matrices, i.e. for A,B,C ∈M(n×n,K)

[A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0.

ii) Show: The set of infinitesimal generators of all 1-parameter subgroups of the
symplectic group is closed with respect to the commutator, i.e. for
matrices X ,Y ∈ sp(m,K) holds

[X ,Y ] ∈ sp(m,K).

10. Let M := (R4,qM) denote the Minkowski space with the quadratic form of
signature (1,3)

qM : R4→ R,qM(x) := x0
2− (x1

2 + x2
2 + x3

2),x = (x0, ...,x3).

Let H := (Herm(2),qH) denote the real vector space of Hermitian matrices

Herm(2) := {X ∈M(2×2,C) : X = X∗}

equipped with the real quadratic form

qH : Herm(2)→ R,X 7→ det X ,

i.e.
qH(X) = a ·d−|b|2

for

X =

(
a b
b d

)
,a,d ∈ R,b ∈ C.

i) Set σ0 := 1 ∈ Herm(2) and denote by σ j ∈ Herm(2), j = 1,2,3, the Pauli
matrices.

Show: The family (σ j) j=0,...,3 is a basis of the vector space Herm(2).

ii) Consider the map
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β : M→ H,x = (x0, ...,x3) 7→ X :=
3

∑
j=0

x j ·σ j.

Compute the components of the matrix β (x) ∈ Herm(2) for x = (x0, ...,x3) ∈ R4.
Show: β is an isometric isomorphy, i.e. an isomorphism of vector spaces satisfying

qH(β (x)) = qM(x),x ∈ R4.

11. Use the notations introduced in Problem 10.

The Lorentz group is the matrix group of isometries of the Minkowski space M

O(1,3) := { f ∈ GL(4,R) : qM( f (x)) = qM(x) f or all x ∈ R4}

The group O(1,3) has 4 connected components. The connected component
of 1 ∈ O(1,3) is the proper orthochronous Lorentz group L↑+. The term indicates
that elements from

L↑+ = {B = (bi j)0≤i, j≤3 ∈ O(1,3) : det B = 1,b00 ≥ 1}

keep the orientation of vectors and the sign of their time component.

By means of the isometric isomorphism β we identify the group of isometries of H

O(H) := {g ∈ GL(Herm(2)) : qH(g(X)) = qH(X) f or all X ∈ Herm(2)}

with O(1,3) and denote by
L↑+(H)⊂ O(H)

the connected component of the neutral element idH ∈ O(H).

i) Show: The map
Ψ : SL(2,C)→ L↑+(H),B 7→ΨB,

with
ΨB : H→ H,X 7→ B ·X ·B∗,

is a well-defined morphism of matrix groups.
Hint: The continous image of a connected set is connected.

ii) Denote by

o(H)⊂ gl(Herm(2)) := (End(Herm(2)), [−,−])

the subalgebra of the infinitesimal generators of all 1-parameter subgroups
of O(H). And let
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ψ := Lie Ψ : sl(2,C)→ o(H)

be the tangent map of Ψ at 1 ∈ SL(2,C).

Show:
ψ(A)(X) = A ·X +X ·A∗,A ∈ sl(2,C),X ∈ Herm(2).

iii) Show: The map
ψ : sl(2,C)→ o(H)

is an isomorphism of real Lie algebras.
Hint: The family (A j) j=1,...,6 with

A j :=

{
σ j if j = 1,2,3

i ·σ j−3 if j = 4,5,6

is basis of sl(2,C) considered as real vector space. Compute explicitly the matrices
representing ψ(A j), j = 1, ...,6 and show: They form a linearly independent family
in the vector space End(Herm(2)).

12. Continue with the notations introduced in Problem 10 and 11.

i) Show
Ψ(SL(2,C))⊂ L↑+(H)

is open and closed. Conclude:

Ψ : SL(2,C)→ L↑+(H)

is surjective.
Hint: First show that Ψ(SL(2,C)) is open. Then use

L↑+(H) =
⋃

g∈L↑+(H)

g ·Ψ(SL(2,C)).

ii) Show ker Ψ = {±1} ⊂ SL(2,C).
Hint: Evaluate the condition ΨB(X) = X for suitable basis elements X ∈ Herm(2).

iii) Show:
Ψ : SL(2,C)→ L↑+(H)

is the universal covering space of the proper orthochronous Lorentz group. It is a
two-fold covering space.

————
Discussion: Tuesday, 15.11.2016, 12.15 p.m.
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13. i) Compute the descending central series of the Lie algebra of upper triangular
matrices

t(2,K) =

{(
∗ ∗
0 ∗

)
∈ gl(2,K)

}
.

Consider a short exact sequence of Lie algebras

0→ L0→ L1→ L2→ 0

and show:

ii) If L1 is nilpotent then both L0 and L2 are nilpotent.

iii) L1 is not necessarily nilpotent even if both L0 and L2 are nilpotent.

14. Show for a nilpotent Lie algebra L 6= {0}:

i) Any proper subalgebra M ( L is properly contained in its normalizer, i.e.

M ( NL(M).

ii) An ideal I ⊂ L exists with codimLI := dim L−dim I = 1.

iii) The centralizer of an ideal I ⊂ L satisfies CL(I) 6= {0} .

15. Consider a nilpotent K-Lie algebra L 6= {0}.

i) Show: ad(L)( Der(L), i.e. not every derivation D of L is an inner derivation.

Hint: Set L = I⊕K · x0 for a suitable ideal I ⊂ L and a suitable element x0 ∈ L\ I.
If n ∈ N is maximal with CL(I)⊂CnL then choose z0 ∈CL(I)\Cn+1L and
define D(I) := 0 and D(x0) := z0.

ii) For L := n(3,K) determine explicitly a derivation D ∈ Der(L)\ad(L).
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16. Consider two K-Lie algebras M and I, denoting their Lie brackets by
respectively [−,−]M and [−,−]I . Assume the existence of a morphism of Lie
algebras

α : M→ Der(I).

On the K-vector space L := I⊕M define the K-bilinear map

[−,−]L : L×L→K

by
[(i1,m1),(i2,m2)]L := (α(m1)(i2)−α(m2)(i1)+ [i1, i2]I , [m1,m2]M)

for i1, i2 ∈ I and m1,m2 ∈M.

Show:

i) The semidirect sum of I and M via α

I oα M := (L, [−,−]L)

is a K-Lie algebra.

ii) One has a short exact sequence of Lie algebras

0→ I
j−→ I oα M

p−→M→ 0

with j(i) := (i,0) for all i ∈ I and p((i,m)) := m for all m ∈M.

iii) The exact sequence from part ii) is also split exact, i.e. a morphism of Lie
algebras

s : M→ I oα M

with p◦ s = idM exists.

————
Discussion: Tuesday, 22.11.2016, 12.15 p.m.
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17. Consider a Lie algebra L. Show:

i) Each member CiL, i ∈ N, of the descending central series of L and DiL, i ∈ N, of
the derived series of L is an ideal in L.

ii) For each i ∈ N one has a short exact sequence of Lie algebras

0→CiL/Ci+1L→ L/Ci+1L→ L/CiL→ 0

The exact sequence represents the middle term L/Ci+1L as a central extension -
i.e. CiL/Ci+1L⊂ Z(L/Ci+1L) - of the Abelian Lie algebra L/CiL.

18. i) Show as direct application of the definition of nilpotency: The Lie
algebra n(m,K) of strictly upper triangular matrices is nilpotent.

ii) Compute the derived algebra D1t(m,K).

iii) Show: The Lie algebra t(m,K) of upper triangular matrices is solvable.

19. Consider a Lie algebra L and and ideal I ⊂ L. Assume: The Lie algebra L/I is
nilpotent and for all x ∈ L the restricted endomorphism

ad x : I→ I

is nilpotent.

Show: The Lie algebra L is nilpotent.

20. Consider a vector space V .
On one hand, each endomorphism x ∈ gl(V ) defines the endomorphism of the
vector space End(V )

ad x : End(V )→ End(V ),y 7→ [x,y].
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On the other hand, each automorphism g ∈ GL(V ) defines the automorphism
of End(V )

Ad g : End(V )→ End(V ),y 7→ g · y ·g−1.

Denote by exp : gl(V )→ GL(V ) the exponential map.

i) Show for all x ∈ gl(V ),y ∈ End(V ) by induction on n ∈ N:

(ad x)n(y) =
n

∑
ν=0

(
n
ν

)
xν · y · (−x)n−ν ,n ∈ N.

Hint:
( n

ν−1

)
+
(n

ν

)
=
(n+1

ν

)
.

ii) Why does the series
∞

∑
ν=0

1
ν!
(ad x)ν(y)

converge for all x ∈ gl(V ),y ∈ End(V )? State an argument.

iii) Show for all x ∈ gl(V ),y ∈ End(V ):

(Ad(exp x))(y) = ead x(y) :=
∞

∑
n=0

1
n!
(ad x)n(y).

————
Discussion: Tuesday, 29.11.2016, 12.15 p.m.
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21. Consider a nilpotent Lie algebra L.

Show: The Killing form κ of L is identically zero.

Hint: Apply the main theorem from the oral lecture about nilpotent Lie algebras.

22. Consider the Lie algebra L := sl(2,K).

i) Compute the matrix

m(κ) = (κ(vi,v j)1≤i, j≤3) ∈M(3×3,K)

of the Killing form κ of L with respect to the basis of L

B = (v1,v2,v3) := (h := E11−E22,x := E12,y := E21).

ii) Determine the rank of m(κ).

23. Consider a Lie algebra (L, [−,−]) with C2L = 0.

Show: The map

∗ : L×L→ L,(x,y) 7→ x+ y+
1
2
· [x,y],

defines a group (L,∗).

24. Denote by L := heis1 the Heisenberg algebra of 1-dimensional quantum
mechanics.

i) Show C2L = 0.

ii) Consider exercise 20. For x,y ∈ L, t ∈ R, show:
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x · ety = ety · e−t·ad(y)(x) = ety · (x− t[y,x]) = ety · (x+ t[x,y]).

iii) For arbitrary but fixed x,y ∈ L consider the differentiable function

A : R→ GL(3,R), t 7→ etx · ety · e−
t2
2 [x,y].

Apply the product rule to decompose

Ȧ(t) =
dA(t)

dt
= A1(t)+A2(t)+A3(t).

For A1(t) = etx · x · ety · e− t2
2 [x,y] show:

A1(t) = etx · ety · e−
t2
2 [x,y] · (x+ t[x,y])

and
Ȧ(t) = A(t) · (x+ y).

iv) For arbitrary but fixed x,y ∈ L consider the differentiable function

B : R→ GL(3,R), t 7→ etx+ty.

Show
A(0) = B(0) and Ḃ(t) = B(t) · (x+ y) for all t ∈ R

and conclude
A(t) = B(t) for all t ∈ R.

Hint: Two solutions of the ordinary linear differential equation

Ḟ(x,y, t) = F(x,y, t) · (x+ y)

are equal if they have the same initial value.

v) Show: The exponential map of the Heisenberg algebra heis1 of 1-dimensional
quantum mechanics

heis1→ GL(3,R),x 7→ ex,

satisfies for all x,y ∈ heis1 the functional equation

ex · ey = ex∗y.

————
Discussion: Tuesday, 6.12.2016, 12.15 p.m.
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25. Consider a K-Lie algebra L and an ideal I ⊂ L.

Show: The Killing form of I
κI : I× I→K

is the restriction of the Killing form of L to I× I.

26. Consider a complex semisimple Lie algebra L, its Lie algebra D := Der(L) of
derivations and the subalgebra

M := ad(L)⊂ D.

i) For x ∈ L and δ ∈ D show

[δ ,ad x] = ad(δ (x)).

and conclude
M ⊂ D

is an ideal.

ii) Denote by κD the Killing form of D and by

M⊥ := {x ∈ D : κD(x,M) = 0}

the orthogonal space of M with respect to κD. Note

dim M⊥ ≥ dim D−dim M.

Show:
M∩M⊥ = {0}.

Conclude:
[M,M⊥] = {0} and D = M⊕M⊥.

Hint: Reduce the first claim concerning M∩M⊥ to a statement involving the
Killing form κM of M ' L.
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iii) Consider a derivation δ ∈M⊥. Show: For all x ∈ L

δ (x) = 0.

Conclude: The adjoint map
ad : L→ Der(L)

is surjective, i.e. any derivation of L is an inner derivation.

27. Consider the Lie algebra L := sl(m,K).

Show: Z(L) = {0}.

Hint: For j 6= k set h jk := E j j−Ekk ∈ L. Assume

X = ∑
r,s

xrs ·Ers ∈ Z(L).

From 0 = [h jk,X ] derive
X ∈ d(m,K)

using the linear independency of the family (Ers). Then
prove Z(L)∩d(m,K) = {0}.

28. Consider the Lie algebra L := sl(m,C).

i) Show:
rad(L) = {0}.

Hint: According to Lie’s theorem assume rad(L) isomorphic to a subalgebra

B⊂ (t(m,C)∩ sl(m,C)).

Prove X ∈ B ⇐⇒ X> ∈ B and conclude

B⊂ (d(m,C)∩ sl(m,C)).

Conclude rad(L)⊂ Z(L).

ii) Show: L is semisimple.

————
Discussion: Tuesday, 13.12.2016, 12.15 p.m.
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25 . Extend a base of the vector subspace I ⊂ L to a base of L. For x ∈ I the
corresponding matrix representations of

ad x : L→ I and ad(x)|I : I→ I

satisfies
tr(ad x) = tr(ad(x)|I).

As a consequence, for x,y ∈ I

κ(x,y) = tr(ad(x)ad(y)) = tr((ad(x)ad(y)|I) = κI(x,y).

26 . i) For x,y ∈ L,y ∈ D:

[δ ,ad x](y) = δ (ad(x)(y))− (ad x)(δ (y)) = δ ([x,y])− [x,δ y] =

[δ (x),y]+ [x,δ y]− [x,δ y] = [δ (x),y] = ad(δ (x))(y).

As a consequence [D,M]⊂M.

ii) To obtain the estimation

dim M⊥ ≥ dim D−dim M

note: In

M⊥ := {x ∈ D : κD(x,M) = 0}=
⋂

m∈M

ker[κD(−,m) : D→ C]

for each m ∈M the linear functional

κD(−,m) : D→ C

reduces the dimension by at most one.

The orthogonal space M⊥ of the ideal M ⊂ D is an ideal of D. Because L is
semisimple, its Killing form and also the Killing form κM is nondegenerate. Due to
the previous exercise κM is the restriction of κD. For x ∈M∩M⊥ we have
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κD(x,M) = 0 due to x ∈M⊥

and
κD(x,M) = κM(x,M) due to x ∈M.

Therefore
κM(x,M) = 0

which implies x = 0 by nondegenerateness of κM and proves

M∩M⊥ = {0}.

Because M ⊂ D and M⊥ ⊂ D are ideals

[M,M⊥]⊂M∩M⊥ ⊂ {0}.

Hence
D = M⊕M⊥

as a vector space due to the dimension formula

dim D≥ dim (M+M⊥) = dim M+dim M⊥−dim(M∩M⊥)≥

≥ dim M+(dim D−dim M) = dim D

and as a direct sum of Lie algebras due to [M,M⊥] = {0}.

iii) According to part ii) any derivation δ ∈ D decomposes as

δ = δ1 +δ2 with δ1 ∈M,δ2 ∈M⊥.

Consider a derivation δ ∈M⊥. For all x ∈ L due to part i)

ad(δ (x)) = [δ ,ad x] ∈ [δ ,M]⊂ [M⊥,M] = {0}.

Therefore ad(δ (x)) = 0. Injectivity of ad implies

δ (x) = 0.

As a consequence M⊥ = {0} and D = M = ad(L).

27 . i) Assume X = (xrs) ∈ Z(L). Set

X = ∑
r,s

Xrs with Xrs := xrs ·Ers.

For arbitrary but fixed j < k

0 = [h jk,X ] = [E j j−Ekk,∑
r,s

Xrs] = ∑
r,s
[E j j,Xrs]−∑

r,s
[Ekk,Xrs] =
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= ∑
r,s

δ jr · xrs ·E js−∑
r,s

δ js · xrs ·Er j−∑
r,s

δkr · xrs ·Eks +∑
r,s

δks · xrs ·Erk =

= ∑
s

x js ·E js−∑
r

xr j ·Er j−∑
s

xks ·Eks +∑
r

xrk ·Erk = S1−S2−S3 +S4.

We compute each summand separately:

S1 = X j j +X jk + ∑
s 6= j,k

X js

S2 = X j j +Xk j + ∑
s 6= j,k

Xs j

S3 = Xkk +Xk j + ∑
s 6= j,k

Xks

S4 = X jk +Xkk + ∑
s 6= j,k

Xsk

We obtain

0 = S1−S2−S3 +S4 = 2X jk−2Xk j + ∑
s6= j,k

(X js−Xs j−Xks +Xsk).

Therefore Xrs = 0 for all (r,s) /∈ {( j, j),(k,k)}. Varying the pairs i < k implies

Z(L)⊂ d(m,K).

ii) For
X = ∑

j
X j j ∈ Z(L)

choose arbitrary but fixed r 6= s. Then

0 = [Ers,X ] = ∑
j
[Ers,X j j] = ∑

j
(x j j ·Ers ·E j j− x j j ·E j j ·Ers) =

= ∑
j
(δ js · x j j ·Er j)−∑

j
(δ jr · x j j ·E js) = xss ·Ers− xrr ·Ers = (xss− xrr) ·Ers.

Therefore x j j = const. independent from j = 1, ...,m. And tr X = 0 implies X = 0.

28 . Consider the Lie algebra L = sl(m,C) and denote by R := rad(L) its radical.

i) By definition L⊂ gl(m,C). Solvability of R⊂ gl(m,C) implies via Lie’s theorem

R⊂ (t(m,C)∩ sl(m,C)).

Also the algebra R> of transposed matrices is solvable. Hence R> = R which
implies

R⊂ d(m,C)∩L,
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all matrices from the radical are diagonal and have zero trace.

ii) Because R⊂ L is an ideal we have [L,R]⊂ R.
Consider an arbitrary X ∈ R. Then X is a diagonal matrix according to part i)

X = ∑
j

x j j ·E j j.

For arbitrary but fixed r 6= s

[X ,Ers] = ∑
j

x j j · [E j j,Ers] = ∑
j

x j j ·δ jr ·E js−∑
j

x j j ·δ js ·Er j = xrr ·Ers− xssErs =

= (xrr− xss) ·Ers ∈ R⊂ d(m,C)

which implies [X ,Ers] = 0. For a diagonal matrix

Y = ∑
k

ykk ·Ekk ∈ L

apparently
[X ,Y ] = 0.

As a consequence R⊂ Z(L), which due to part i) implies

R = 0.

ii) Now R = rad(L) = 0 implies L = sl(m,C) semisimple.
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29. Consider a complex Lie algebra L.

Show: If L is semisimple and solvable then L = {0}.

30. Consider a short exact sequence

0→ L0→ L1→ L2→ 0

of complex Lie algebras.

Show: Semisimplicity of L1 implies semisimplicity of L2.

31. Consider a finite-dimensional vector space V and an
endomorphism f ∈ End(V ) which splits V as a direct sum of eigenspaces

V =
⊕

λ

Vλ ( f ).

Let W ⊂V be an f -stable subspace, i.e. f (W )⊂W .

i) Show: If an element
w = v1 + ...vk ∈W

decomposes as the sum of eigenvectors of f with corresponding, pairwise distinct
eigenvalues (λi)i=1,...,k, then vi ∈W for all i = 1, ...,k.

Hint: Induction on k. For the induction step consider f (w)−λ1 ·w.

ii) Show:
W =

⊕
λ

(W ∩Vλ ( f )).

iii) Show: The assumption f (W )⊂W is necessary for the conclusion of part ii).
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32. Consider a complex simple Lie algebra L and two symmetric, nondegenerate
bilinear forms

γ,δ : L×L→ C,

which are “associative” in the sense

γ([x,y],z) = γ(x, [y,z]) and δ ([x,y],z) = δ (x, [y,z]),x,y,z,∈ L.

Show: A constant µ ∈ C∗ exists such that

γ = µ ·δ : L×L→ C.

Hint: For x,y ∈ L\{0} use the linear maps

L→ L∗,x 7→ γ(x,−), and L→ L∗,y 7→ δ (−,y),

to define an endomorphism f : L→ L,x 7→ y. Relate the behaviour of f to the
adjoint representation.

————
Discussion: Tuesday, 20.12.2016, 12.15 p.m.

21



DEPARTMENT OF MATHEMATICS LIE ALGEBRAS IN
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33. Consider a K-Lie algebra L and two finite dimensional L-modules V and W .
Consider the induced L-modules V ∗, V ∗⊗W and HomK(V,W ).

Show: The canonical isomorphism of K-vector spaces

V ∗⊗W → HomK(V,W ),λ ⊗w 7→ fλ ,w,

with
fλ ,w(v) := λ (v) ·w,v ∈V,

is a morphism of L-modules.

34. Consider an Abelian Lie algebra L.

Show: The Lie algebra of derivations of L equals the Lie algebra of linear
endomorphisms of the vector space of L, i.e.

Der(L) = gl(L).

35. Consider a Lie algebra S and a vector space V , considered as an Abelian Lie
algebra. According to Excercise 34 any representation

ρ : S→ gl(V )

satisfies ρ(S)⊂ Der(V ). Therefore the semidirect product

V oρ S

is a well-defined Lie algebra, fitting into the exact sequence of Lie algebras

0→V →V oρ S→ S→ 0.

Assume S semisimple and ρ : S→V nonzero and irreducible. Show
for L :=V oρ S:

i) Derived algebra: L = [L,L]
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Hint: Consider S⊂ L as subalgebra and V ⊂ L as ideal with L = S+V .
Verify ρ(S)(V ) = [S,V ]L. Conclude V = [S,V ]L and [S,S]L = S. Show L⊂ [L,L].

ii) Center: Z(L) = {0}

iii) No direct product: There do not exist Lie algebras L1 semisimple and L2
solvable with L' L1×L2. In particular, L is not semisimple.

36. Consider a complex semisimple Lie algebra L. Using Weyl’s theorem on
complete reducibility give a direct proof for

ad(L) = Der(L),

cf. Exercise 26.

Hint: Check that any derivation δ ∈ Der(L) defines an L-module structure on the
vector space C⊕L according to

x.(a,y) := (0,a ·δ (x)+ [x,y]L),x,y ∈ L,a ∈ C.

————
Discussion: Tuesday, 10.1.2017, 12.15 p.m.
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37. Consider the semisimple Lie algebra M := sl(3,C) and its subalgebra

L := spanC < h := E11−E22,x := E12,y := E21 >' sl(2,C).

The restriction of the adjoint representation ad : M→ gl(M) to the subalgebra L
defines an L-module structure

L×M→M,(x,m) 7→ x.m := ad(x)(m).

i) Compute the vector space dimension of M and of the direct sum of
irreducible sl(2,C)-modules:

V :=V (0)⊕V (1)⊕V (1)⊕V (2).

ii) Show: Both sl(2,C)-modules M and V are isomorphic.

iii) Specify a primitive element e and the derived family (ei :=
1
i!
· (yi.e))i∈N for

each irreducible summand of M.

38. The vector space C[u,v] of complex polynomials in two variables has a basis of
monomials (uµ · vν)µ,ν∈N. A homogeneous polynomial of degree n ∈ N is an
element

P(u,v) = ∑
µ+ν=n

aµν ·uµ · vn−µ ∈ C[u,v],aµν ∈ C.

Denote by
Poln ⊂ C[u,v]

the subspace of homogeneous polynomials of degree n.

i) For n ∈ N determine the vector space dimension dim Poln.

ii) Set L := sl(2,C). The tautological L-module V (1)' C2 has the L-operation

L×C2→ C2,(z,w) 7→ z.w := z(w).
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Identify the elements of the canonical basis of C2 with the variables u and v(
1
0

)
' u and

(
0
1

)
' v.

Show: The vector space Poln,n ∈ N, is an irreducible L-module of highest weight n
with respect to the L-operation

L×Poln→ Poln,(z,P(u,v)) 7→ z.P(u,v) := (z.u)
∂P(u,v)

∂u
+(z.v)

∂P(u,v)
∂v

.

Determine a primitive element e ∈ Poln.

39. Set L := sl(2,C).

i) Consider the two irreducible L-modules V (3) and V (7).

Show: The tensor product
V :=V (7)⊗V (3)

decomposes as the direct sum of irreducible L-modules

V 'V (10)⊕V (8)⊕V (6)⊕V (4).

Hint: Consider primitive elements e ∈V (7) and f ∈V (3). Use their derived
families (ei)i=0,...,7 and ( f j) j=0,...,3 to obtain bases of the tensor product V .
Determine primitive elements for each of the supposed summands.

ii) Make a conjecture for the general case: How does the tensor product

V (n)⊗V (m),n≥ m,

decompose as a sum of irreducible L-modules?

40. Set L = sl(3,C).

i) Consider the subalgebra of traceless diagonal matrices

H := d(3,C)∩L.

Prove that H ⊂ L is a maximal toral subalgebra.

ii) Consider the basis of H

(h1 := E11−E22,h2 := E22−E33)
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Compute the Cartan decomposition of L with respect to H, i.e. determine a basis of
each root space Lα of L and determine for the corresponding root α ∈Φ the values
α(h1) and α(h2).

iii) Which linear relations exist between the roots from Φ?

iv) Show: There exist three roots αi ∈Φ , i = 1,2,3, with elements

hi ∈ H,xi ∈ Lαi ,yi ∈ L−αi

such that
Li := spanC < hi,xi,yi >' sl(2,C)

and
L = H⊕

⊕
i=1,2,3

(Lαi ⊕L−αi).

————
Discussion: Tuesday, 17.1.2017, 12.15 p.m.
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41. A Cartan subalgebra H of a Lie algebra L is a nilpotent subalgebra H ⊂ L equal
to its normalizer, i.e. H = NL(H).

Show: Any maximal toral subalgebra of a complex semisimiple Lie algebra L is a
Cartan subalgebra of L.

Hint: Use the Cartan decomposition of L.

42. Consider a root system Φ of a real finite-dimensional vector space V .

Show: For any root α ∈Φ the required symmetry σα of V with vector α satisfying

σα(Φ)⊂Φ

is uniquely determined.

Hint: Assume the existence of σ1 and σ2. Consider u := σ2 ◦σ1. On one hand,
prove u(x)≡ x mod R ·α and conclude: All eigenvalues of u are = 1. On the other
hand: Show the existence of an exponent n ∈ N with un = id. From both results
derive u = id.

43. Consider the Lie algebra L = sl(3,C) and the maximal toral subalgebra

H := d(3,C)∩L.

i) For the root set Φ of (L,H) verify the axioms (R1)-(R4) of a root system of the
vector space V := R2.

ii) Determine a base ∆ = {α,β} of Φ . To which type of the classification (see
Lemma 7.7 of the lecture) does Φ belong?

iii) Show: The Weyl group W of Φ is isomorphic to the symmetric group Sym3.

Hint: Both groups are generated by two elements. Determine the relations.
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44. Consider the following definitions relating real and complex structures:

• Elements of a complex vector space V can be considered elements of a real
vector space VR by restricting the scalars from C to R. Similarly, if L is a
complex Lie algebra then by restricting scalars from C to R the Lie algebra L
can be considered a real Lie algebra LR.

• If M is a real Lie algebra then the complexification of M is the complex Lie
algebra C⊗R M with Lie bracket

[z1⊗m1,z2⊗m2] := (z1 · z2)⊗ [m1,m2],z1,z2 ∈ C,m1,m2 ∈M.

• A real form of a complex Lie algebra L is a real subalgebra M ⊂ LR such that
the complex linear map

j : C⊗R M→ L,1⊗m 7→ m, i⊗m 7→ i ·m,

is an isomorphism of complex Lie algebras.

i) Show: The Lie algebra su(n) is a real form of the Lie algebra algebra sl(n,C).

Hint: The decomposition

z = x+ i · y =
z+ z

2
+ i ·

z− z
2i

of complex numbers induces a similar decomposition of elements from sl(n,C)
and an inverse of the map j

sl(n,C)→ C⊗R su(n).

ii) Let M be a real Lie algebra and L := MC its complexification. Consider a
complex vector space V .
Show: Any real representation of M on the real vector space VR has a unique
extension to a complex representation of L on the complex vector space V , i.e. for
the real-linear M-module structure µR : M×VR→VR exists a unique complex
linear L-module structure

µC : L×V →V

such that for all m ∈M,x ∈ R,v ∈V

µC( j(x⊗m),v) = µR(x ·m,v).

Hint: The definition of µC reduces to the definition of µC( j(i⊗m),v).

————
Discussion: Tuesday, 24.1.2017, 12.15 p.m.
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LMU MÜNCHEN MATHEMATICS AND PHYSICS
TERM 2016/17 Joachim Wehler

Problems 12

45. Consider a root system Φ of a vector space V .

Show that any base ∆ = {α1, ...,αr} of Φ can be obtained by a linear functional,
i.e.

i) A linear functional t ∈V ∗ exists such that

∆ ⊂Φ
+
t := {α ∈Φ : t(α)> 0}.

ii)
∆ = {α ∈Φ

+
t : α indecomposable}.

Hint: Φ+ ⊂Φ
+
t , Φ− ⊂Φ

−
t := {α ∈Φ : t(α)< 0} and Φ+∪̇Φ− = Φ = Φ

+
t ∪̇Φ

−
t

imply Φ+ = Φ
+
t ,Φ− = Φ

−
t .

46. Consider a root system Φ of a vector space V and denote by (−,−) a scalar
product on V invariant with respect to the Weyl group of Φ .

Show:

i) Two roots α,β ∈Φ are orthogonal with respect to (−,−) iff their Cartan integer
satisfies < α,β >= 0.

ii) If (α,β ) = 0 for two roots α,β ∈Φ then

σα ◦σβ = σβ ◦σα .

iii) For a symmetry σα of V with vector α 6= 0 the fixed hyperplane Hα is the
orthogonal space of α with respect to (−,−).

47. Consider a root system Φ of a vector space V and denote by (−,−) a scalar
product on V invariant with respect to the Weyl group W of Φ . The root system Φ

is reducible if a decomposition

Φ = Φ1∪̇Φ2,Φ1 6= /0,Φ2 6= /0,
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exists with (Φ1,Φ2) = 0. Otherwise Φ is irreducible. Analogously defined are the
terms reducible and irreducible for a base ∆ of Φ .

Show for an arbitrary base ∆ of Φ :

i) Reducibility of Φ implies reducibility of ∆ .

Hint: span ∆ =V .

ii) Irreducibility of Φ implies irreducibility of ∆ .

Hint: If ∆ = ∆1∪̇∆2 then define Φi := W (∆i), i = 1,2. Use that the
symmetries α ∈ ∆ generate W and use Exercise 46 to show

• α1 ∈ ∆1,α2 ∈ ∆2 implies σα2(α1) = α1
• α1,β1 ∈ ∆1 implies σα1(β1) ∈ span ∆1

and to conclude Φ1 ⊂ span ∆1. Analogously Φ2 ⊂ span ∆2. From (∆1,∆2) = 0
follows (Φ1,Φ2) = 0. Without restriction Φ1 = /0 which implies ∆1 = /0.

48. Consider the root system from Lemma 7.7, no. 5.

i) Determine all bases of Φ .

ii) How many unordered pairs of distinct roots exist? How many unordered pairs
with one short root and one long root exist?

Hint: Use the fact that the Weyl group can be generated by two elements.

————
Discussion: Tuesday, 7.2.2017, 12.15 p.m.
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