DEPARTMENT OF MATHEMATICS LIE ALGEBRAS IN
LMU MUNCHEN MATHEMATICS AND PHYSICS
TERM 2016/17 Joachim Wehler

Problems 01

1. Consider the field K = R or K = C. Prove that the Euclidean norm

n
[|x|| := Z |25 x = (x1,...,x,) € K"
\ =1

is a norm on the vector space K", i.e. it satisfies

i)

Ix[| =0 <= x=0; x€ K"
ii)
[IA-x]|=|A]-|lx]; A € K,x e K"
iii)
et ol < lll + Il 5,y € K (Triangle inequality).

2. Consider the field K = R or K = C. Show that for matrices A € M(n x n,K) the
operator norm
Al := sup{||Ax|| : x e K" and ||x|| < 1}

is a norm on the vector space M(n x n,K), i.e. it satisfies
i)
lA =0 <= A=0; A e M(nxnK)
ii)
IA-All=1|4]-||All; A € K,A € M(n x n,K)
iif)
IA+B| < Al +B

; A,B € M(n x n,K) (Triangle inequality).

In addition show
iv)
|A-B|| < ||A]|-[|B]l; A,B € M(n x n,K)

V)
||| = 1; unit matrix 1 € M(n x n,K).



3. Determine the radius of convergence of the following power series:

)
(=] 1 y
ii)
IR
v=0
iii)
) (_])v+l v
V;l v -
iv)
o (DY oy
vg’O (2v)! ¢
v)

vi) Which functions do the power series i) - iv) represent?

4. Transform the following matrix to upper triangular form:

343
~10-1|eMBx3,R).
1 23

Discussion: Tuesday, 25.10.2016, 12.15 p.m.
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5. The geometric series
Z 7,z€C,
v=0

has radius of convergence R = 1. Hence the series
ZAV € M(nxn,C)
=0

is well-defined for a matrix A € M(n x n,C) with ||A]| < 1.

Show that the matrix 1 —A € M(n x n,C) is invertible with

Si_y AY.

Hint: Imitate the proof of the analogous result for the complex series.

6. The logarithmic series

= 1 v+1
log(1+z) = Z -2,z€C,

v=1

has radius of convergence R = 1.
For a matrix A € M(n x n,C) with ||A|| < 1 one defines

oo

AV
log(1+A): Z VH-TGM(nxn,(C).

Consider an open subset / C R and a differentiable function
B:1—M(nxn,C)
with ||B(t) — 1|| < 1 and [B'(¢),B(t)] =0 for all t € I.

Show: For all ¢ € [ the inverse B(t)~! exists and



& log B() = B()™-B(1) = B(1) - B()"

Hint: In order to compute B(t)~! apply problem 5 with A := 1 — B(¢).

7. 1) Consider an upper triangular matrix A € M(n x n,C).

Show that a series of diagonalizable matrices (Ay)ycn exists with

A= lim A,.

V—roo
ii) Consider a matrix A € M(n x n,C) with ||A|| < log 2.
Show
[(exp A) =1 <1

and
log(exp A) = A.

Hint: Prove the equality in different steps. First, consider the case of a
diagonalizable matrix A. Secondly, generalize the result to an upper triangular
matrix. Eventually, consider the general case.

8. Consider the endomorphism f € End(C?) defined with respect to the canonical
basis by the matrix

12
A_(03>€MQXLC)

1
Ag = (0

A, = (8 3) (nilpotent)

are not the matrices of the Jordan decomposition of f.

i) Show that

w O

) (semisimple)

and

ii) Compute the matrices of the Jordan decomposition of f.

Discussion: Tuesday, 8.11.2016, 12.15 p.m.
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9. i) Show the Jacobi identity for matrices, i.e. for A, B,C € M(n x n,K)
[4,[B,C]] +[B, [C,A]] +[C, [A, B]] = 0.

ii) Show: The set of infinitesimal generators of all 1-parameter subgroups of the
symplectic group is closed with respect to the commutator, i.e. for
matrices X,Y € sp(m,K) holds

[X,Y] € sp(m,K).

10. Let M := (R*, g)) denote the Minkowski space with the quadratic form of
signature (1,3)

g RY 5 R, gy (x) := x0° — (x> + 122 +x32),x = (x0,...,X3).
Let H := (Herm(2),qu) denote the real vector space of Hermitian matrices
Herm(2) :={XeM(2x2,C): X =X"}
equipped with the real quadratic form
qy :Herm(2) - R X > det X,

ie.
gr(X) =a-d - |b]

for
ab
X* <bd> 7a7d€R7b€C.

i) Set 0y := 1 € Herm(2) and denote by 6; € Herm(2), j = 1,2,3, the Pauli
matrices.

Show: The family (6;) j—o,... 3 is a basis of the vector space Herm(2).

ii) Consider the map



3
B:M—H,x=(xg,...,x3) =X := ) xj-0j.
j=0

Compute the components of the matrix B (x) € Herm(2) for x = (xo, ...,x3) € R*.
Show: B is an isometric isomorphy, i.e. an isomorphism of vector spaces satisfying

qu(B(x)) = qu(x),x € R,

11. Use the notations introduced in Problem 10.

The Lorentz group is the matrix group of isometries of the Minkowski space M
0(1,3) :={f € GL(4,R) : g (f (x)) = qm(x) for all x € R*}

The group O(1,3) has 4 connected components. The connected component

of 1 € O(1,3) is the proper orthochronous Lorentz group Ll. The term indicates
that elements from

Ll = {BZ (b,‘j)og,’7j53 € 0(1,3) :det B=1,bgy > 1}
keep the orientation of vectors and the sign of their time component.

By means of the isometric isomorphism  we identify the group of isometries of H
O(H) :={g € GL(Herm(2)) : qu(g(X)) = gu(X) for all X € Herm(2)}

with O(1,3) and denote by
Ll (H) c O(H)
the connected component of the neutral element idy € O(H).
i) Show: The map
¥:SL(2,C) — L (H),B+— ¥,

with
Y%:H—HXw+— B-X-B*,

is a well-defined morphism of matrix groups.
Hint: The continous image of a connected set is connected.

ii) Denote by
o(H) C gl(Herm(2)) := (End(Herm(2)),[—,—])

the subalgebra of the infinitesimal generators of all 1-parameter subgroups
of O(H). And let



y:=Lie¥ :s5l(2,C) — o(H)
be the tangent map of ¥ at 1 € SL(2,C).
Show:
Y(A)(X)=A-X+X -A",A€sl(2,C),X € Herm(2).

iii) Show: The map
y:sl(2,C) — o(H)

is an isomorphism of real Lie algebras.
Hint: The family (A;) j—;

L] e =123
"l i-ojs ifj=4,5,6

is basis of s/(2,C) considered as real vector space. Compute explicitly the matrices
representing W(A;), j = 1,...,6 and show: They form a linearly independent family
in the vector space End(Herm(2)).

12. Continue with the notations introduced in Problem 10 and 11.

i) Show
¥(SL(2,C)) C L' (H)

is open and closed. Conclude:
¥:SL(2,C) — L (H)

is surjective.
Hint: First show that ¥(SL(2,C)) is open. Then use

LiH)= |J g ¥(LE2,0)).
geLl (H)

ii) Show ker ¥ = {1} C SL(2,C).
Hint: Evaluate the condition W5 (X) = X for suitable basis elements X € Herm(2).

iii) Show:
¥:SL(2,C) — L (H)

is the universal covering space of the proper orthochronous Lorentz group. It is a
two-fold covering space.

Discussion: Tuesday, 15.11.2016, 12.15 p.m.
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13. i) Compute the descending central series of the Lie algebra of upper triangular

matrices
t(2,K) = {(Z I) € gl(Z,K)}.

Consider a short exact sequence of Lie algebras
0—-Ly—Li—L,—0

and show:

ii) If L is nilpotent then both Ly and L, are nilpotent.

iii) L; is not necessarily nilpotent even if both Ly and L, are nilpotent.

14. Show for a nilpotent Lie algebra L # {0}:

1) Any proper subalgebra M C L is properly contained in its normalizer, i.e.
M C NL(M).

ii) An ideal I C L exists with codiml :=dim L —dim I = 1.

iii) The centralizer of an ideal I C L satisfies Cp(I) # {0} .

15. Consider a nilpotent K-Lie algebra L # {0}.

i) Show: ad(L) C Der(L), i.e. not every derivation D of L is an inner derivation.
Hint: Set L =I® K- xo for a suitable ideal I C L and a suitable element xo € L\ I.
If n € N is maximal with Cy(I) C C"L then choose zg € Cr.(I) \ C""'L and

define D(I) := 0 and D(xg) := 2p.

ii) For L := n(3,K) determine explicitly a derivation D € Der(L) \ ad(L).



16. Consider two K-Lie algebras M and I, denoting their Lie brackets by
respectively [—, —]y and [—, —];. Assume the existence of a morphism of Lie
algebras

o : M — Der(I).

On the K-vector space L := I @ M define the K-bilinear map
[—7—]L1L><L—>K

by
[(i1,m1), (i2,m2)|1 == (@(my)(i2) — a(m2)(ir) + [ir, i2]s, [m1, ma)m)

foriy,ip €l and m;,my € M.
Show:

1) The semidirect sum of I and M via o
IxgM:=(L,[—,—]p)
is a K-Lie algebra.
ii) One has a short exact sequence of Lie algebras
01 IxgMPM—0
with j(7) := (i,0) for all i € I and p((i,m)) :=m for allm € M.
iii) The exact sequence from part ii) is also split exact, i.e. a morphism of Lie

algebras
s:M—=1IxgM

with pos = idy exists.

Discussion: Tuesday, 22.11.2016, 12.15 p.m.
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17. Consider a Lie algebra L. Show:

i) Each member C'L,i € N, of the descending central series of L and D'L,i € N, of
the derived series of L is an ideal in L.

ii) For each i € N one has a short exact sequence of Lie algebras
0—CL/CT'L—L/CT'L— L/C'L—0

The exact sequence represents the middle term L/C™*'L as a central extension -
i.e. C'L/C™"'L € Z(L/C'™'L) - of the Abelian Lie algebra L/C'L.

18. i) Show as direct application of the definition of nilpotency: The Lie
algebra n(m,K) of strictly upper triangular matrices is nilpotent.

ii) Compute the derived algebra D't(m,K).

iii) Show: The Lie algebra t(m,K) of upper triangular matrices is solvable.

19. Consider a Lie algebra L and and ideal I C L. Assume: The Lie algebra L/I is
nilpotent and for all x € L the restricted endomorphism

adx:1—1
is nilpotent.

Show: The Lie algebra L is nilpotent.

20. Consider a vector space V.
On one hand, each endomorphism x € gl(V') defines the endomorphism of the
vector space End (V)

ad x :End(V) — End(V),y — [x,y].

10



On the other hand, each automorphism g € GL(V) defines the automorphism
of End(V)
Ad g:End(V)— End(V),y—g-y-g '

Denote by exp : gl(V) — GL(V) the exponential map.

i) Show for all x € gl(V),y € End(V) by induction on n € N:

n

(@)= X (4" () ane

v=0

Hint: (") + (2) = ().

v v

ii) Why does the series
1
v!

s

(ad x)"(y)

v=0

converge for all x € gI(V),y € End(V)? State an argument.
iii) Show for all x € gl(V),y € End(V):

(Adexp ) = 2(5) = T L ad 50,

Discussion: Tuesday, 29.11.2016, 12.15 p.m.

11
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21. Consider a nilpotent Lie algebra L.
Show: The Killing form x of L is identically zero.

Hint: Apply the main theorem from the oral lecture about nilpotent Lie algebras.

22. Consider the Lie algebra L := s/(2,KK).
1) Compute the matrix
m(K) = (k(vi,vj)i<ij<3) € M(3 % 3,K)
of the Killing form x of L with respect to the basis of L
B = (vi,va,v3):=(h:=Ey —Exn,x:=Ep,y:=E).

ii) Determine the rank of m(x).

23. Consider a Lie algebra (L, [—,—]) with C2L = 0.
Show: The map

1
x:LXL—L,(x,y) =~ x+y+ 5'[%)’],

defines a group (L, *).

24. Denote by L := heis; the Heisenberg algebra of 1-dimensional quantum
mechanics.

i) Show C2L = 0.

ii) Consider exercise 20. For x,y € L,t € R, show:

12



x-e¥ =Y. 70N (x) = . (x—t]y,x]) = € - (x+1[x,)]).
iii) For arbitrary but fixed x,y € L consider the differentiable function

2

A:R = GL(3,R), 1+ e e . e” T,
Apply the product rule to decompose

A(l‘) = %Et) =Ai(1)+A2(t) +A3(2).

2
For A (1) = - x- - e~ 7 show:

2
2

Al() = &¢I (xtalxy))

and
A(t) =A(r) - (x+).

iv) For arbitrary but fixed x,y € L consider the differentiable function
B:R — GL(3,R),t > &1,

Show
A(0) =B(0) and B(t) = B(t) - (x+y) forall € R

and conclude
A(t) =B(t) forall t € R.

Hint: Two solutions of the ordinary linear differential equation
F()C,y,l) = F()C,y,l) : ()C+y)

are equal if they have the same initial value.

v) Show: The exponential map of the Heisenberg algebra heis; of 1-dimensional
quantum mechanics
heis; — GL(3,R),x — €*,

satisfies for all x,y € heis; the functional equation

e =",

Discussion: Tuesday, 6.12.2016, 12.15 p.m.

13
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25. Consider a K-Lie algebra L and an ideal / C L.

Show: The Killing form of 7
K:IxI—K

is the restriction of the Killing form of L to I x I.

26. Consider a complex semisimple Lie algebra L, its Lie algebra D := Der(L) of
derivations and the subalgebra

M:=ad(L) CD.
i) For x € L and 6 € D show
[8,ad x] = ad(6(x)).

and conclude
McCD

is an ideal.
ii) Denote by xp the Killing form of D and by
Mt = {xeD:xp(x,M) =0}
the orthogonal space of M with respect to kp. Note
dim M+ > dim D —dim M.

Show:
MM+ ={0}.

Conclude:
[M,M*] = {0} and D =M O M™.

Hint: Reduce the first claim concerning M N M~ to a statement involving the
Killing form xy; of M ~ L.

14



iii) Consider a derivation 8§ € M. Show: Forall x € L
o(x) =0.

Conclude: The adjoint map
ad : L — Der(L)

is surjective, i.e. any derivation of L is an inner derivation.

27. Consider the Lie algebra L := sl(m,K).
Show: Z(L) = {0}.
Hint: For j # k set hj, := E;; — Ej € L. Assume

X=Yxs Esc€Z(L).

s

From 0 = [h i, X] derive
X €o(m,K)

using the linear independency of the family (E,,). Then
prove Z(L)No(m,K) = {0}.

28. Consider the Lie algebra L := sl(m,C).

i) Show:
rad(L) = {0}.

Hint: According to Lie’s theorem assume rad(L) isomorphic to a subalgebra
B C (t(m,C)Nsi(m,C)).

Prove X € B <= X' € B and conclude
B C (o(m,C)Nsl(m,C)).

Conclude rad(L) C Z(L).

ii) Show: L is semisimple.

Discussion: Tuesday, 13.12.2016, 12.15 p.m.

15
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25 . Extend a base of the vector subspace I C L to a base of L. For x € I the
corresponding matrix representations of

adx:L—Tand ad(x)| :1—1

satisfies
tr(ad x) = tr(ad(x)|I).

As a consequence, for x,y € 1

K(x,y) = tr(ad(x)ad(y)) = tr((ad(x)ad(y)|l) = K1 (x,y)-

26 .1) Forx,ye L,y € D:
[8.ad x)(y) = 8(ad(x)(»)) — (ad x)(8()) = 8([x,3]) — [x,8 ] =

[6(x) 3]+ [x,8 y] = [x, 6 y] = [8(x),y] = ad(8(x)) (y)-
As a consequence [D,M] C M.

ii) To obtain the estimation
dim M* > dim D — dim M
note: In

M*':={xeD:xp(x,M)=0} = () ker[kp(—,m): D — C]

meM

for each m € M the linear functional
kp(—,m):D— C
reduces the dimension by at most one.

The orthogonal space M of the ideal M C D is an ideal of D. Because L is
semisimple, its Killing form and also the Killing form kj, is nondegenerate. Due to
the previous exercise Ky is the restriction of kp. Forx e MNM + we have

16



kp(x,M) =0 due to x € M+

and
Kp(x,M) = Ky (x,M) due tox € M.

Therefore
Ky (x M ) =0

which implies x = 0 by nondegenerateness of kj; and proves
MM+ ={0}.
Because M C D and M+ C D are ideals
[M,M*] c MNM* C {0}.

Hence
D=MoM*

as a vector space due to the dimension formula
dim D > dim (M +M™*) = dim M + dim M* — dim(M N\ M*) >

>dim M+ (dim D —dim M) = dim D
and as a direct sum of Lie algebras due to [M,M*] = {0}.
iii) According to part ii) any derivation 8 € D decomposes as

§=208+8 withé € M,8 € M™*.
Consider a derivation § € M. For all x € L due to part i)
ad(8(x)) = [8,ad x] € [§,M] C [M*+,M] = {0}.
Therefore ad (5 (x)) = 0. Injectivity of ad implies
o(x) =0.

As a consequence M- = {0} and D = M = ad(L).

27 .1) Assume X = (x,5) € Z(L). Set

X =Y Xy with Xys := Xyy - Eys.

s

For arbitrary but fixed j < k

0= [hjkaX] = [Ejj 7Ekk’ZX”} = Z[Ejj7 rs] 7Z[Ekk7er] =

[ [

17



:ZSjr'xrs'Ejs_ZSjs'xrs rj Z6kr Xrs * Ekr"'zgks Xps B =
TS 7S

ns
=Y Xy Ejs = Y % Erj = ) %k Eis + Y % Ene = S1 = $2— 83+ Sa.
s r s r
We compute each summand separately:

S1=Xjj+Xp+ Y, Xjs
sEIk

Sy = Xjj+Xij + Z Xsj

s#j.k

83 = X + Xiej + Z Xis
s£j.k

S4 = Xjx + X + Z Xk
s#j.k

We obtain

0="51—8—S3484 =2Xjx —2Xij + Y (Xjs — Xyj — Xes + Xoi)-
s# )k

Therefore X,; = 0 for all (r,s) ¢ {(J, ), (k,k)}. Varying the pairs i < k implies
Z(L) C o(m,K).
ii) For
X =YX €Z(L)
J
choose arbitrary but fixed r # s. Then

0= [Ers,X] =Y [Ers,Xjjl = Y (xjj - Ers - Ejj = Xjj - Ejj - Ers) =
7 7

Z 6]5 Xjj- r/ Z(6jr'xjj'Ejs):xss'Ers_xrr'Ers:(xss_xrr)'Ers-
J J

Therefore x;; = const. independent from j = 1,...,m. And tr X = 0 implies X = 0.

28 . Consider the Lie algebra L = s/(m,C) and denote by R := rad(L) its radical.

i) By definition L C gl(m,C). Solvability of R C gl(m,C) implies via Lie’s theorem
R C (t(m,C)Nsl(m,C)).

Also the algebra R of transposed matrices is solvable. Hence R" = R which

implies
RCo(m,C)NL

18



all matrices from the radical are diagonal and have zero trace.

ii) Because R C L is an ideal we have [L,R] C R.
Consider an arbitrary X € R. Then X is a diagonal matrix according to part i)

X =) xjj-Ejj.
J

For arbitrary but fixed r # s

[XaErs} = ijj'[EjjaErs] :ijj'gjr'Ejs _ijj'ajs'Erj =Xpp+ Eps — Xg5Eps =
J J J

= (xrr_xss) ‘E,y€RC D(m,(C)

which implies [X, E,s] = 0. For a diagonal matrix

Y=Y yu-Ew €L
X

apparently
[X,Y]=0.

As a consequence R C Z(L), which due to part i) implies
R=0.

ii) Now R = rad(L) = 0 implies L = sl(m,C) semisimple.

19
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29. Consider a complex Lie algebra L.

Show: If L is semisimple and solvable then L = {0}.

30. Consider a short exact sequence
0—Ly—Li—L,—0
of complex Lie algebras.

Show: Semisimplicity of L; implies semisimplicity of L,.

31. Consider a finite-dimensional vector space V and an
endomorphism f € End(V) which splits V as a direct sum of eigenspaces

V=vi(f).
Fy

Let W C V be an f-stable subspace, i.e.f(W) C W.
i) Show: If an element
w=vi+.v,eW
decomposes as the sum of eigenvectors of f with corresponding, pairwise distinct
eigenvalues (A;)i=1,. . thenv; € W foralli=1,....k.

Hint: Induction on k. For the induction step consider f(w) — A; - w.

ii) Show:
W =W NnVi(f)).

A

iii) Show: The assumption f(W) C W is necessary for the conclusion of part ii).

20



32. Consider a complex simple Lie algebra L and two symmetric, nondegenerate
bilinear forms
Y,6 :LxL—C,

which are “associative” in the sense
Y([x,y)2) = v(x, [y,2]) and 6([x,y],2) = 6(x,[».2]),x,y,2,€ L.
Show: A constant y € C* exists such that
Yy=p-0:LxL—C.
Hint: For x,y € L\ {0} use the linear maps
L—L* x— y(x,—),and L— L*,y— 8(—,y),

to define an endomorphism f : L — L, x — y. Relate the behaviour of f to the
adjoint representation.

Discussion: Tuesday, 20.12.2016, 12.15 p.m.
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33. Consider a K-Lie algebra L and two finite dimensional L-modules V and W.
Consider the induced L-modules V*, V* @ W and Homg (V,W).

Show: The canonical isomorphism of K-vector spaces
V QW — Homg (V,W),A@w = fi ,

with
faw®):=A)-wyveV,

is a morphism of L-modules.

34. Consider an Abelian Lie algebra L.

Show: The Lie algebra of derivations of L equals the Lie algebra of linear
endomorphisms of the vector space of L, i.e.

Der(L) =gl(L).

35. Consider a Lie algebra S and a vector space V, considered as an Abelian Lie
algebra. According to Excercise 34 any representation

p:S—glV)
satisfies p(§) C Der(V). Therefore the semidirect product
VxpS
is a well-defined Lie algebra, fitting into the exact sequence of Lie algebras
0=V =2Vx,§—=85—0.

Assume S semisimple and p : S — V nonzero and irreducible. Show
for L:=V x, §:

i) Derived algebra: L = [L,L]

22



Hint: Consider S C L as subalgebra and V C L as ideal with L=S5+V.
Verify p(S)(V) =[S, V]r. Conclude V = [S,V]. and [S,S], = S. Show L C [L,L].

ii) Center: Z(L) = {0}

iii) No direct product: There do not exist Lie algebras L semisimple and L,
solvable with L ~ L; x L,. In particular, L is not semisimple.

36. Consider a complex semisimple Lie algebra L. Using Weyl’s theorem on
complete reducibility give a direct proof for

ad(L) = Der(L),
cf. Exercise 26.

Hint: Check that any derivation 8 € Der(L) defines an L-module structure on the
vector space C @ L according to

)C.(Cl,y) = (0761- 5()6) + [xvy]L)7x7y € L7a cC.

Discussion: Tuesday, 10.1.2017, 12.15 p.m.
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37. Consider the semisimple Lie algebra M := s/(3,C) and its subalgebra
L:=spanc < h:=Ey —Ex,x:=E2,y = Ey >~sl(2,C).

The restriction of the adjoint representation ad : M — gl(M) to the subalgebra L
defines an L-module structure

LxM— M, (x,m)— x.m:= ad(x)(m).

i) Compute the vector space dimension of M and of the direct sum of
irreducible s/(2,C)-modules:

Vi=v0)ev()aeV()aV(2).
ii) Show: Both s/(2,C)-modules M and V are isomorphic.

1.
iii) Specify a primitive element e and the derived family (e; := 5 (y'.€))ien for
i!

each irreducible summand of M.

38. The vector space C[u, v] of complex polynomials in two variables has a basis of
monomials (u* -vV), ven. A homogeneous polynomial of degree n € N is an
element
Puyv)= Y auy-u V" * eClu,v],auy €C.
H+v=n

Denote by
Pol" C Clu,v]

the subspace of homogeneous polynomials of degree n.
1) For n € N determine the vector space dimension dim Pol”".
ii) Set L := s/(2,C). The tautological L-module V(1) ~ C? has the L-operation

LxC? = C% (z,w) = z.w:=z(w).
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Identify the elements of the canonical basis of C> with the variables u and v

(4) =ant (%) =+

Show: The vector space Pol",n € N, is an irreducible L-module of highest weight n
with respect to the L-operation

dP(u,v) N )aP(u,v).

L x Pol" — Pol",(z,P(u,v)) — z.P(u,v) := (z.u) 3 (zv 3

Determine a primitive element e € Pol".

39. Set L:=s1(2,C).
i) Consider the two irreducible L-modules V' (3) and V (7).

Show: The tensor product
V:=V(T)®V(3)

decomposes as the direct sum of irreducible L-modules
VV(I10)aV(®B)aV(6) eV (4).
Hint: Consider primitive elements e € V(7) and f € V(3). Use their derived

families (e;)i—o,....7 and (f;) j—o,..3 to obtain bases of the tensor product V.
Determine primitive elements for each of the supposed summands.

ii) Make a conjecture for the general case: How does the tensor product
V(n) @V (m),n>m,

decompose as a sum of irreducible L-modules?

40. Set L =s1(3,C).

i) Consider the subalgebra of traceless diagonal matrices
H:=233,C)NL.

Prove that H C L is a maximal toral subalgebra.

ii) Consider the basis of H

(h1 :=E11 —Ex,hy := Ey — E33)
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Compute the Cartan decomposition of L with respect to H, i.e. determine a basis of
each root space Ly of L and determine for the corresponding root o € @ the values
(X(hl) and Oﬂ(hz).

iii) Which linear relations exist between the roots from @?

iv) Show: There exist three roots o; € ®,i = 1,2,3, with elements
hi € H,x; € Lg;,yi € L_q,

such that
L; :=spanc < hj,x;,y; >~ s1(2,C)

and
L=H® P (Ly, ®L_q,).
i=1,23

Discussion: Tuesday, 17.1.2017, 12.15 p.m.
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Problems 11
41. A Cartan subalgebra H of a Lie algebra L is a nilpotent subalgebra H C L equal
to its normalizer, i.e. H = Ny (H).

Show: Any maximal toral subalgebra of a complex semisimiple Lie algebra L is a
Cartan subalgebra of L.

Hint: Use the Cartan decomposition of L.

42. Consider a root system @ of a real finite-dimensional vector space V.

Show: For any root o € @ the required symmetry 6, of V with vector ¢ satisfying
ou(P)C P

is uniquely determined.

Hint: Assume the existence of o7 and 6. Consider u := 0, o 61. On one hand,

prove u(x) = x mod R a and conclude: All eigenvalues of u are = 1. On the other

hand: Show the existence of an exponent n € N with «" = id. From both results
derive u = id.

43. Consider the Lie algebra L = s/(3,C) and the maximal toral subalgebra
H:=03(3,C)nL.

i) For the root set @ of (L, H) verify the axioms (R1)-(R4) of a root system of the
vector space V := R?.

ii) Determine a base A = {a, B} of ®. To which type of the classification (see
Lemma 7.7 of the lecture) does @ belong?

iii) Show: The Weyl group #  of @ is isomorphic to the symmetric group Syms;.

Hint: Both groups are generated by two elements. Determine the relations.
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44. Consider the following definitions relating real and complex structures:

e FElements of a complex vector space V can be considered elements of a real
vector space Vi by restricting the scalars from C to R. Similarly, if L is a
complex Lie algebra then by restricting scalars from C to R the Lie algebra L
can be considered a real Lie algebra L.

e If M is areal Lie algebra then the complexification of M is the complex Lie
algebra C ®r M with Lie bracket

[z1 ®@my,z2 @my] := (21 -22) @ [m1,m2],z1,20 € C,my,my € M.

e A real form of a complex Lie algebra L is a real subalgebra M C Ly such that
the complex linear map

j:CRrM =L 1@m—m,iQ@mei-m,

is an isomorphism of complex Lie algebras.

i) Show: The Lie algebra su(n) is a real form of the Lie algebra algebra si(n,C).

Hint: The decomposition

. z+z | z2—2
SR T

of complex numbers induces a similar decomposition of elements from sl(n,C)
and an inverse of the map j

sl(n,C) = C®x su(n).

ii) Let M be a real Lie algebra and L := M its complexification. Consider a
complex vector space V.
Show: Any real representation of M on the real vector space Vg has a unique
extension to a complex representation of L on the complex vector space V, i.e. for
the real-linear M-module structure g : M X Vg — Vg exists a unique complex
linear L-module structure

Uc:LxXV =V

such that forallme M,x e R,v eV

”C(j(x@)m)vv) = ”R(x'mv V)'

Hint: The definition of u¢ reduces to the definition of uc (j(i ®@m),v).

Discussion: Tuesday, 24.1.2017, 12.15 p.m.
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Problems 12

45. Consider a root system & of a vector space V.

Show that any base A = {q,..., @, } of @ can be obtained by a linear functional,
ie.

i) A linear functional r € V* exists such that
Acdt:={aec®:ta)>0}.

ii)
A ={a € d : o indecomposable}.

Hint: " C &, ¢~ C &, :={a e P:t(a) <0} and PTUP™ = P = " U,
imply @+ = &, &~ = P,

46. Consider a root system & of a vector space V and denote by (—, —) a scalar
product on V invariant with respect to the Weyl group of ®.

Show:

i) Two roots @, B € P are orthogonal with respect to (—, —) iff their Cartan integer
satisfies < o, f >=0.

ii) If (a, B) = 0 for two roots a, B € P then
Gy ©0p = Og 0 Oq.

iii) For a symmetry o, of V with vector a # 0 the fixed hyperplane H, is the
orthogonal space of ¢ with respect to (—, —).

47. Consider a root system @ of a vector space V and denote by (—, —) a scalar
product on V invariant with respect to the Weyl group % of &. The root system &
is reducible if a decomposition

D= ¢IU(I)%@I 7& ®7 (1)2 7é 07
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exists with (@, ®,) = 0. Otherwise @ is irreducible. Analogously defined are the
terms reducible and irreducible for a base A of P.

Show for an arbitrary base A of &:

i) Reducibility of @ implies reducibility of A.
Hint: span A =V.

ii) Irreducibility of @ implies irreducibility of A.

Hint: If A = AjUA; then define &; := #(4;),i = 1,2. Use that the
symmetries o € A generate # and use Exercise 46 to show

o Oy €A, € Ay implies Gy, (0t1) = o4
e o,Bi €Ay implies 6q, (B1) € span A

and to conclude ®; C span Ay. Analogously @, C span A,. From (A;,A2) =0
follows (P;, P,) = 0. Without restriction &; = @ which implies A} = 0.

48. Consider the root system from Lemma 7.7, no. 5.
i) Determine all bases of &.

ii) How many unordered pairs of distinct roots exist? How many unordered pairs
with one short root and one long root exist?

Hint: Use the fact that the Weyl group can be generated by two elements.

Discussion: Tuesday, 7.2.2017, 12.15 p.m.
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