

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

SoSe 2015 Prof. Dr. Thomas Vogel

Niedrig-dimensionale Topologie Blatt 10

Aufgabe 1. Seien F, G kompakte orientierte zusammenhängende Flächen und $\pi_1(F) \neq \{1\}$ sowie $f: (F, \partial F) \longrightarrow (G, \partial G)$ eine stetige Abbildung so dass $f_*: \pi_1(F) \longrightarrow \pi_1(G)$ injektiv ist.

- (a) Nehme $\partial G \neq \emptyset$ an (bis (e)) und folgere $\partial F \neq \emptyset$.
- (b) Zeige, dass man f zu einer Abbildung f' homotopieren kann (durch Abbildungen von Paaren $(F, \partial F) \longrightarrow (G, \partial G)$) so dass die Einschränkung von f' auf ∂F eine Überlagerung ist.
- (c) Betrachte die zu $f_*(\pi_1(F))$ gehörende Überlagerung $\widehat{G} \longrightarrow G$, die Hochhebung von f' bezeichnen wir mit $\widehat{f}: F \longrightarrow \widehat{G}$. Wir nehmen zuerst an, dass es zwei verschiedene Randkomponenten R_0, R_1 von F gibt, so dass $\widehat{f}(R_0) = \widehat{f}(R_1)$. Zeige mit Hilfe eines geeigneten Weges der R_0 mit R_1 verbindet, dass R_0 und R_1 frei homotop sind.
 - Folgere, dass unter den gegebenen Bedingungen F ein Kreisring ist.
- (c) Ab jetzt nehmen wir an, dass die Einschränkung $\hat{f}:\partial F\longrightarrow\partial \hat{G}$ eine Einbettung ist. Sei nun α ein wesentlicher Bogen in G der zwei Punkte am Rand verbindet. Zeige, dass man annehmen kann, dass $\hat{f}^{-1}(\alpha)$ auch ein Kreisbogen ist.
- (d) Beweise induktiv, dass f homotop zu einer Überlagerung ist.
- (e) Falls $\partial G = \emptyset$ kann man G entlang einer nichttrennenden einfach geschlossenen Kurve aufschneiden und dann die obige Diskussion anwenden um im Fall $\partial G = \emptyset$ zu zeigen, dass f homotop zu einer Überlagerungsabbildung ist.

Sie haben folgendes gezeigt: Entweder ist F ein Kreisring und f ist homotop zu einer Abbildung deren Bild in einer Randkomponente von G liegt, oder f ist homotop (als Abbildung von Paaren) zu einer Überlagerungsabbildung.

Aufgabe 2. Sei M eine kompakte irreduzible 3-Mannigfaltigkeit und F eine kompakte zusammenhängende Untermannigfaltigkeit mit Rand (!) in ∂M so dass

- $F \not\simeq S^2, D^2, \mathbb{RP}^2$ und
- $\pi_1(F) \longrightarrow \pi_1(M)$ ist ein Isomorphismus.

Unser Ziel ist zu beweisen, dass M homöomorph zu $F \times [0,1]$ ist, und zwar kann man den Homöomorphismus so wählen, dass $F \subset \partial M$ nach $F \times \{0\}$ abgebildet wird. Wir beschränken uns auf den Fall $\partial F \neq \emptyset$.

- (0) Sei F eine zusammenhängende Fläche mit $\partial F \neq \emptyset$. Beweise, dass $F \times [0,1]$ ein Henkelkörper ist.
- (a) Zeige, dass jede Komponente von $\partial M \setminus \mathring{F}$ inkompressibel in M ist.

- (b) Zeige, dass $\pi_2(M) = \{0\}$ und dann, dass $\pi_i(M) = \{0\}$ (mit dem Satz von Hurewicz) für $i \geq 3$. Folgere mit Hilfe des Satzes von Whitehead, dass die Inklusion $\iota : F \longrightarrow M$ eine Homotopieäquivalenz ist. Es existiert also ein Retrakt $\rho : M \longrightarrow F$ so dass $\rho \circ \iota = \mathrm{id}_F$ und $\iota \circ \rho$ ist homotop zu id_M . (ρ ist der erste Schritt zur Konstruktion einer Bündelabbildung pr : $M \longrightarrow F$.)
- (c) Wir wählen wesentliche Bögen $\alpha_1, \ldots, \alpha_k$ in F so dass man eine Scheibe D erhält, wenn man F entlang dieser Bögen aufschneidet. Zeige, dass ρ homotop zu einer Abbildung ρ' ist, so dass $D_i = \rho'^{-1}(\alpha_i)$ inkompressible Flächen sind. Zeige weiter, dass die Flächen D_i Scheiben sind. Wir fixieren Tubenumgebungen von D_i die jeweils homömorph zu $D_i \times [-1,1]$ sind so dass $\partial D_i \times [-1,1] \subset \partial M$.
- (d) Sei E die 2-Zelle $(F \setminus \bigcup_i ((\partial D_i) \times [-1,1])) \cup \bigcup_i D_i \times \{\pm 1\}$. Zeige, dass der Rand von E eine Scheibe in ∂M berandet.
- (e) Kunstruiere nun eine Faserung pr : $M \longrightarrow F$.