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1. Let N be a submanifold of the semi-Riemannian manifold (M, g) and∇ the Levi-Civita connec-
tion on TM . We assume that g restricts to a semi-Riemannian metric on N .

We denote the orthogonal projection of

TM |N = {tangent vectors of M with base point in N}

to TN by pr. Prove that

∇ : χ(N)× χ(N) −→ χ(N)

(X, Y ) 7−→ pr (∇XY )

is the Levi-Civita connection on N .

2. We keep the notation and setup from exercise 1. The second fundamental form of N at p ∈M
in M is

IIp : χ(N)× χ(N) −→ TN⊥

(X, Y ) 7−→ pr⊥(∇XY )

where pr⊥ is the orthogonal projection TpM −→ TpN
⊥. Show that II is a symmetric tensor

(with values in TN⊥ ⊂ TM).

3. Let γ be a smooth curve in M and ∇ a connection on TM . Let ∇
dt

be the operator on vector
fields along γ induced by ∇. Show that if ∇ is metric with respect ot g, then

d

dt
g(X(t), Y (t)) = g

(
∇
dt
X(t), Y (t)

)
+ g

(
X(t),

∇
dt
Y (t)

)
for all vector fields X, Y along γ.

4. Let 〈X, Y 〉 = −X0Y 0 +
∑n

i=1X
iY i denote a Lorentzian metric on Rn+1. We consider

Hn = {(x0, x1, . . . , xn) ∈ Rn+1 | 〈x, x〉 = −1 and x0 > 0}.

a) Show that Hn is a smooth, connected n-manifold and that 〈·, ·〉 induces a Riemannian
metric on Hn.

b) Let p = (1, 0, . . . , 0) ∈ Hn and X0 = ∂
∂x1 ∈ TpHn. Find the unique geodesic γ : R −→ Hn

in Hn with γ̇(0) = X0.

c) We denote the isometry group of (Rn+1, 〈·, ·〉) by O(1, n). Prove that this group acts
transitively and isometrically on Hn. Show that for all Y0 ∈ TqHn there is A ∈ O(1, n)
such that (DA)(Y0) = X0.


