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1. Let M be a compact, oriented, connected n-manifold with non-empty boundary and α a closed
(n− 1)-form with

∫
∂M

α 6= 0. Show that there is no closed form β on M which coincides with
α on ∂M .

Conversely, assume that ∂M is connected and
∫
∂M

α = 0. Prove that there is a closed (n− 1)-
form β on M whose restriction to ∂M is α.

2. a) Let ∇ be a covariant deriviative on TM which is torsion free and g a semi-Riemannian
metric. Prove that

R : χ(M)× χ(M)× χ(M)× χ(M) −→ R
(X, Y, Z,W ) 7−→ g(∇X(∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z,W )

is a tensor.

b) Let G be a Lie group and g a bi-invariant metric (i.e. g(X, Y ) is constant when X, Y
are both left invariant/right invariant ). Show that the Levi-Civita connection of g on G
satisfies ∇XY = [X, Y ]/2 for left invariant vector fields X, Y .

Apology: The original version of this exercise assumed only that g is left invariant.

3. In this exercise we use the fact that through every pair of points x, y ∈ Sn such that x 6= y 6= −x
there is a unique plane containing x, y and the origin. The intersection of this plane with Sn is
the great circle through x, y,.

a) Show that a map f : Sn −→ Sn which has no fixed point is homotopic to the antipodal
map A : Sn −→ Sn.

b) Prove that every map f : Sn −→ Sn whose degree is not (−1)n+1 has a fixed point.

4. Let k ∈ Z and n > 0.

a) Prove that for every closed oriented n-manifold there is a map f : M −→ Sn of degree of
k.

Hint: Construct first a map g of the n-ball onto the sphere such that the map is constant
on a neighbourhood of the boundary of the ball such that this map is an embedding on a
neighbourhood of the origin and g−1(g(0)) = {0}.

b) Let M be a compact oriented connected manifold and f : M −→ Sn a smooth map which
is not surjective. Prove that f is homotopic to a constant map.

Hint: If p 6∈ f(M) choose −p as the image of the constant map.



5. (Do not hand in, this is significantly more difficult.)

Let M be a closed, oriented, connected n-manifold. Prove that two maps f, g : M −→ Sn are
homotopic if and only of deg(f) = deg(g).

Here are a few hints and useful facts for the difficult direction.

• The goal is to construct a smooth map H : M × [0, 1] −→ Sn which coincides with f on
M × {0} and with g on M × {1}.
• Solve exercise 4 first.

• A connected compact 1-manifold with boundary is diffeomorphic to either a circle or a
closed interval.

• Assume H exists. Then H has a regular value p such that N = H−1(p) ⊂M is a compact
submanifold with boundary which has dimension 1 and whose interior is disjoint from
∂(M× [0, 1]) such that TqN⊕Tq∂M = TpM at boundary points p ∈ H−1(p). In particular,
∂N ⊂ ∂(M × [0, 1]).

• N has a neighbourhood tube(N) ' N ×Dn (called tubular neighbourhood, think of the
neighbourhood as a rope of dimension n + 1 with N in its interior) such that for each
q ∈ N the restriction of H to {q} × Dn is a diffeomorphisms onto its image. Moreover
(∂N)×Dn ⊂ ∂(M × [0, 1]).

• You may assume that there is p ∈ Sn which is a regular value for both f and g.

• Construct H−1(p) first. Continue assuming that p is a regular value of H with all the nice
properties mentioned above. Then define H on a tubular neighbourhood, then extend to
M × [0, 1].


