Ludwig-Maximilians-Universität München Prof. Dr. Ivo Sachs, Prof. Dr. Thomas Vogel Dr. Tomáš Procházka, Dr. Stephan Stadler

Differentiable Manifolds SHEET 12

Due Tue., January 24, 10 am, in the letter box on the 1st floor.

1. Let M be a compact, oriented, connected *n*-manifold with non-empty boundary and α a closed (n-1)-form with $\int_{\partial M} \alpha \neq 0$. Show that there is no closed form β on M which coincides with α on ∂M .

Conversely, assume that ∂M is connected and $\int_{\partial M} \alpha = 0$. Prove that there is a closed (n-1)-form β on M whose restriction to ∂M is α .

2. a) Let ∇ be a covariant derivitive on TM which is torsion free and g a semi-Riemannian metric. Prove that

$$R: \chi(M) \times \chi(M) \times \chi(M) \times \chi(M) \longrightarrow \mathbb{R}$$
$$(X, Y, Z, W) \longmapsto g(\nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]} Z, W)$$

is a tensor.

b) Let G be a Lie group and g a bi-invariant metric (i.e. g(X, Y) is constant when X, Y are both left invariant/right invariant). Show that the Levi-Civita connection of g on G satisfies $\nabla_X Y = [X, Y]/2$ for left invariant vector fields X, Y.

Apology: The original version of this exercise assumed only that g is left invariant.

- 3. In this exercise we use the fact that through every pair of points $x, y \in S^n$ such that $x \neq y \neq -x$ there is a unique plane containing x, y and the origin. The intersection of this plane with S^n is the great circle through x, y.
 - a) Show that a map $f: S^n \longrightarrow S^n$ which has no fixed point is homotopic to the antipodal map $A: S^n \longrightarrow S^n$.
 - b) Prove that every map $f: S^n \longrightarrow S^n$ whose degree is not $(-1)^{n+1}$ has a fixed point.
- 4. Let $k \in \mathbb{Z}$ and n > 0.
 - a) Prove that for every closed oriented *n*-manifold there is a map $f: M \longrightarrow S^n$ of degree of k.

Hint: Construct first a map g of the *n*-ball onto the sphere such that the map is constant on a neighbourhood of the boundary of the ball such that this map is an embedding on a neighbourhood of the origin and $g^{-1}(g(0)) = \{0\}$.

b) Let M be a compact oriented connected manifold and $f: M \longrightarrow S^n$ a smooth map which is not surjective. Prove that f is homotopic to a constant map. Hint: If $p \notin f(M)$ choose -p as the image of the constant map. 5. (Do not hand in, this is significantly more difficult.)

Let M be a closed, oriented, connected n-manifold. Prove that two maps $f, g: M \longrightarrow S^n$ are homotopic if and only of $\deg(f) = \deg(g)$.

Here are a few hints and useful facts for the difficult direction.

- The goal is to construct a smooth map $H: M \times [0,1] \longrightarrow S^n$ which coincides with f on $M \times \{0\}$ and with g on $M \times \{1\}$.
- Solve exercise 4 first.
- A connected compact 1-manifold with boundary is diffeomorphic to either a circle or a closed interval.
- Assume H exists. Then H has a regular value p such that $N = H^{-1}(p) \subset M$ is a compact submanifold with boundary which has dimension 1 and whose interior is disjoint from $\partial(M \times [0, 1])$ such that $T_q N \oplus T_q \partial M = T_p M$ at boundary points $p \in H^{-1}(p)$. In particular, $\partial N \subset \partial(M \times [0, 1])$.
- N has a neighbourhood tube(N) ≃ N × Dⁿ (called tubular neighbourhood, think of the neighbourhood as a rope of dimension n + 1 with N in its interior) such that for each q ∈ N the restriction of H to {q} × Dⁿ is a diffeomorphisms onto its image. Moreover (∂N) × Dⁿ ⊂ ∂(M × [0, 1]).
- You may assume that there is $p \in S^n$ which is a regular value for both f and g.
- Construct $H^{-1}(p)$ first. Continue assuming that p is a regular value of H with all the nice properties mentioned above. Then define H on a tubular neighbourhood, then extend to $M \times [0, 1]$.