Ludwig-Maximilians-Universität München Prof. Dr. Ivo Sachs, Prof. Dr. Thomas Vogel Dr. Tomáš Procházka, Dr. Stephan Stadler

Differentiable Manifolds SHEET 11

Due Tue., January 17, 10 am, in the letter box on the 1st floor.

1. Cohomology of the torus.

Consider the abstract torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. We define c_1 and c_2 to be the closed curves $c_1(t) = (t, 0)$ and $c_2(t) = (0, t)$, $t \in [0, 1]$. Any closed curve $\gamma : [a, b] \to T^2$ can be lifted to a continious curve $\tilde{\gamma} : [a, b] \to \mathbb{R}^2$ in \mathbb{R}^2 , i.e. $\pi \circ \tilde{\gamma} = \gamma$, where $\pi : \mathbb{R}^2 \to T^2$ is the quotient map.

- (a) Show that $\tilde{\gamma}(b) \tilde{\gamma}(a) \in \mathbb{Z}^2$ is independent of the chosen lift. Thus we can associate to every closed curve two integers called winding numbers.
- (b) Show that $\int_{\gamma} \beta = n \int_{c_1} \beta + m \int_{c_2} \beta$, where γ is a closed curve on T^2 , $\beta \in \Omega^1(T^2)$ is a closed 1-form and $n, m \in \mathbb{Z}^2$ are the winding numbers corresponding to γ .
- (c) Extend the 1-forms dx_1, dx_2 defined on $(0, 1)^2$ uniquely to 1-forms α_1, α_2 on T^2 . Show that every closed 1-form β on T^2 can be written as $\beta = a_1\alpha_1 + a_2\alpha_2 + df$, where $a_1, a_2 \in \mathbb{R}$ and $f \in C^{\infty}(T^2)$.

Hint: Use that a 1-form β is exact, if and only if $\int_{\gamma} \beta = 0$ for all compact closed curves γ .

2. Green's theorem.

On a compact Riemannian manifold M, prove the identity

$$\int_{M} \left(f \triangle g - g \triangle f \right) \operatorname{vol} = \int_{\partial M} f * dg - g * df \tag{1}$$

for $f, g \in C^{\infty}(M)$.

- 3. Harmonic functions on S^2 .
 - (a) Consider S^2 as submanifold of \mathbb{R}^3 . Compute the metric induced on S^2 from the flat metric

$$ds^2 = dx^2 + dy^2 + dz^2$$
(2)

in \mathbb{R}^3 (use the spherical coordinates).

- (b) Find the δ operator and Laplacian on S^2 with respect to the metric computed above.
- (c) Show that the vector field $y\partial_z z\partial_y$ generating rotations of \mathbb{R}^3 restricts to vector field V on S^2 and show that the Laplacian commutes Lie derivative \mathcal{L}_V .
- (d) Find all harmonic forms and identify the non-trivial de Rham cohomology groups of S^2 .
- (e) Restrict the linear polynomials x, y and z from \mathbb{R}^3 to S^2 and show that they are eigenfunctions of Laplacian.

4. Vector analysis and Stokes theorem.

Consider \mathbb{R}^3 with cartesian coordinates x^1, x^2, x^3 , equipped with the volume form vol $= dx^1 \wedge dx^2 \wedge dx^3$. To all vectors $\mathfrak{X}(\mathbb{R}^3) \ni A = A^i \partial_i$, we can associate a 1-form α^1 and a 2-form α^2 by

$$\alpha^1 = A^i dx^i \quad \text{and} \quad \alpha^2 = i_A vol.$$
 (3)

In addition we have the usual inner product $\langle A, B \rangle = A^i B^i$ and the cross product $(A \times B)^i = \epsilon^{ijk} A_j B_k$.

(a) Show that $i_{A \times B} \text{vol} = \alpha^1 \wedge \beta^1$ and $\text{vol}(A, B, C) = \langle A \times B, C \rangle$. We define grad, div and curl by

 $(df)^1 = \operatorname{grad} f, \qquad d\alpha^2 = (\operatorname{div} A) \operatorname{vol} \qquad \text{and} \qquad d\alpha^1 = i_{\operatorname{curl} A} \operatorname{vol}.$

(b) Use forms to show the following relations for $A, B \in \mathfrak{X}(\mathbb{R}^3)$ and $f \in \mathcal{F}(\mathbb{R}^3)$:

$$\operatorname{div}\left(A \times B\right) = \left\langle \operatorname{curl} A, B\right\rangle - \left\langle A, \operatorname{curl} B\right\rangle \tag{4}$$

$$\operatorname{div}(fA) = f\operatorname{div}B + \langle \operatorname{grad}f, B \rangle \tag{5}$$

$$\operatorname{curl}(fA) = f\operatorname{curl}A + \operatorname{grad}f \times A \tag{6}$$

(c) classical Gauss Theorem in \mathbb{R}^3 :

Consider $U, \partial U \subset \mathbb{R}^3$ parametrized by $\Phi : \mathbb{R}^3 \supset V_U \to U$ and $\phi : \mathbb{R}^2 \supset V_{\partial U} \to \partial U$. Use Stokes Theorem for forms to show

$$\int_{U} \operatorname{div} A \operatorname{vol} = \int_{\partial U} \langle A, N \rangle \operatorname{vol}_{\partial U}$$
(7)

$$\int_{V_U} \operatorname{div} A \, \det \left(D\Phi \right) dt_1 dt_2 dt_3 = \int_{V_{\partial U}} \left\langle A, N \right\rangle \|\partial_{s_1} \phi \times \partial_{s_2} \phi\| ds_1 ds_2, \tag{8}$$

where N is the unit normal to the surface ∂U , $||A|| = \langle A, A \rangle^{1/2}$ and $\operatorname{vol}_{\partial U} = i_N \operatorname{vol}$.

(d) classical Stokes Theorem in \mathbb{R}^3 : Consider $S, \partial S \subset \mathbb{R}^3$, parametrized by $\phi : \mathbb{R}^2 \supset V_S \to S$ and $\gamma : \mathbb{R} \supset V_{\partial S} \to \partial S$. Use Stokes Theorem for forms to show

$$\int_{V_S} \left\langle \operatorname{curl} A, \partial_{s_1} \phi \times \partial_{s_2} \phi \right\rangle ds_1 ds_2 = \int_{V_{\partial S}} \left\langle A, \partial_t \gamma \right\rangle dt \tag{9}$$