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1. Cohomology of the torus.
Consider the abstract torus T 2 = R2/Z2. We define c1 and c2 to be the closed curves c1 (t) =
(t, 0) and c2 (t) = (0, t) , t ∈ [0, 1]. Any closed curve γ : [a, b]→ T 2 can be lifted to a continious
curve γ̃ : [a, b]→ R2 in R2, i.e. π ◦ γ̃ = γ, where π : R2 → T 2 is the quotient map.

(a) Show that γ̃ (b) − γ̃ (a) ∈ Z2 is independent of the chosen lift. Thus we can associate to
every closed curve two integers called winding numbers.

(b) Show that
∫
γ
β = n

∫
c1
β+m

∫
c2
β, where γ is a closed curve on T 2, β ∈ Ω1 (T 2) is a closed

1-form and n,m ∈ Z2 are the winding numbers corresponding to γ.

(c) Extend the 1-forms dx1, dx2 defined on (0, 1)2 uniquely to 1-forms α1, α2 on T 2. Show that
every closed 1-form β on T 2 can be written as β = a1α1 + a2α2 + df , where a1, a2 ∈ R and
f ∈ C∞ (T 2).
Hint: Use that a 1-form β is exact, if and only if

∫
γ
β = 0 for all compact closed curves γ.

2. Green’s theorem.
On a compact Riemannian manifold M , prove the identity∫

M

(f4g − g4f) vol =

∫
∂M

f ∗ dg − g ∗ df (1)

for f, g ∈ C∞ (M).

3. Harmonic functions on S2.

(a) Consider S2 as submanifold of R3. Compute the metric induced on S2 from the flat metric

ds2 = dx2 + dy2 + dz2 (2)

in R3 (use the spherical coordinates).

(b) Find the δ operator and Laplacian on S2 with respect to the metric computed above.

(c) Show that the vector field y∂z − z∂y generating rotations of R3 restricts to vector field V
on S2 and show that the Laplacian commutes Lie derivative LV .

(d) Find all harmonic forms and identify the non-trivial de Rham cohomology groups of S2.

(e) Restrict the linear polynomials x, y and z from R
3 to S2 and show that they are eigen-

functions of Laplacian.



4. Vector analysis and Stokes theorem.
Consider R3 with cartesian coordinates x1, x2, x3, equipped with the volume form vol = dx1 ∧
dx2 ∧ dx3. To all vectors X (R3) 3 A = Ai∂i, we can associate a 1-form α1 and a 2-form α2 by

α1 = Aidxi and α2 = iAvol. (3)

In addition we have the usual inner product 〈A,B〉 = AiBi and the cross product (A×B)i =
εijkAjBk.

(a) Show that iA×Bvol = α1 ∧ β1 and vol(A,B,C) = 〈A×B,C〉.
We define grad, div and curl by

(df)1 = gradf, dα2 = (divA) vol and dα1 = icurlAvol.

(b) Use forms to show the following relations for A,B ∈ X (R3) and f ∈ F (R3):

div (A×B) = 〈curlA,B〉 − 〈A, curlB〉 (4)

div (fA) = fdivB + 〈gradf,B〉 (5)

curl (fA) = fcurlA+ gradf × A (6)

(c) classical Gauss Theorem in R3:
Consider U, ∂U ⊂ R3 parametrized by Φ : R3 ⊃ VU → U and φ : R2 ⊃ V∂U → ∂U . Use
Stokes Theorem for forms to show∫

U

divA vol =

∫
∂U

〈A,N〉 vol∂U (7)∫
VU

divA det (DΦ) dt1dt2dt3 =

∫
V∂U

〈A,N〉 ‖∂s1φ× ∂s2φ‖ds1ds2, (8)

where N is the unit normal to the surface ∂U, ‖A‖ = 〈A,A〉1/2 and vol∂U = iNvol.

(d) classical Stokes Theorem in R3:
Consider S, ∂S ⊂ R3, parametrized by φ : R2 ⊃ VS → S and γ : R ⊃ V∂S → ∂S. Use
Stokes Theorem for forms to show∫

VS

〈curlA, ∂s1φ× ∂s2φ〉 ds1ds2 =

∫
V∂S

〈A, ∂tγ〉 dt (9)


