Ludwig-Maximilians-Universität München Prof. Dr. Ivo Sachs, Prof. Dr. Thomas Vogel Dr. Tomas Prochazka, Dr. Stephan Stadler

Differentiable Manifolds SHEET 2

Due wed., november 2nd, 10 am, in the letter box on the 1st floor. Please note that november 1st is a holiday.

- 1. The exam will be on february 15, from noon till 4pm.
- 2. Denote by S^n the euclidean unit sphere of dimension n, realized as

$$S^{n} := \{ x \in \mathbb{R}^{n+1} | \|x\| = 1 \}.$$

Set N := (0, ..., 0, 1) be the north pole and define for every $x \in S^n - \{N\}$ the point $p_N(x)$ as the intersection of the line through N and x with the hyperplane $P := \{y \in \mathbb{R}^{n+1} | y_{n+1} = 0\}$. Show that

- (a) $p_N: S^n \{N\} \to P$ is a homeomorphism.
- (b) One obtains a smooth atlas $\{p_N, p_S\}$ for S^n where p_S is defined as p_N with the north pole replaces by the south pole S = -N.
- 3. Let M be a smooth manifold. Suppose that $f: M \to M$ is a smooth involution without fixed points, i.e. for all points $x \in M$ the conditions $f \circ f(x) = x$ and $f(x) \neq x$ are satisfied. Define an equivalence relation on M by $x \sim y$ if and only if f(x) = f(y). Show that the associated quotient space M/\sim naturally inherits the structure of a smooth manifold such that the projection $\pi: M \to M/\sim$ is smooth.
- 4. Let S^n be the euclidean unit sphere.
 - (a) Show that the real projective space $\mathbb{R}P^n := S^n/(x \sim -x)$ is a smooth manifold.
 - (b) Set $H := \{y \in \mathbb{R}^6 | y_1 + y_2 + y_3 = 1\}$. Consider the map

$$v: \mathbb{R}P^2 \longrightarrow H$$

[x: y: z] $\longmapsto (x^2, y^2, z^2, xy, yz, xz).$

Show that v is a smooth embedding. Conclude that $\mathbb{R}P^2$ can be realized as submanifold of \mathbb{R}^5 .