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Differentiable manifolds

Please note: These notes summarize the content of the lecture, many details and
examples are omitted. Sometimes, but not always, we provide a reference for proofs,
examples or further reading. Changes to this script are made without any further
notice at unpredictable times. If you find any typos or errors, please let us know.

1. LECTURE ON OCT., 18. — Submanifolds of Euclidean space

References: I do not follow specific books, possible references include [C, J&-V,
L, WI.
We give four equivalent definitions of the notion of submanifold of dimension
ke N=1{0,1,2,...}. In all four of them, M C R™.
Condition (a) Local parametrizations: For all p € M there is an open set
U C R¥, a neighbourhood V' C R"™ of p and a smooth map ¢ : U — R" such
that

1. ¢ is a homeomorphism onto V N M, and

2. for all x € U the differential D, : R¥ — R™ is injective.
Condition (b) Locally flat: For all p € M there are an open neigbourhood
V CR" of pand W C R” of 0 and a diffeomorphism ¢ : V' — W such that
¢(p) =0and p(VNM)= (RF x {0 e R"*}) nW.
Condition (c) Locally regular level set: For all p € M there is an open
neighbourhood U and a smooth function F : V — R"* such that

1. F71(0) = (VN M), and

2. for all ¢ € M NV the differential D, F : R — R"~* is surjective.
Condition (d) Locally a graph: For all p € M there is an open neighbour-
hood V C R™ and a smooth function U C R"* defined on an open subset of
U C R” together with a permutation o € S, such that

VM= {(zq),--%om) | (z,9(x)) with x € U}.

e Theorem: For a given subset M C R™ the conditions (a)—(d) are equivalent.
e Proof: The proof of the implications (b) = (¢),(d) = (a) are trivial. For the

proof of (¢) = (d) one uses the implicit function theorem, for the proof of
(a) = (b) one applies the inverse function theorem to a function ® extending
¢ (the local inverse of ® satisfies (b)).

Definition: A subset M C R" is a submanifold of dimension k if any of the
conditions (a)—(d) is satisfied.

Remark: When M is a non-empty submanifold the number £ is then the same
in all the conditions, in particular the dimension (a non-empty open subset of
R! is diffeomorphic to an open subset of R™ only if m = [ by the inverse function
theorem, this remains true for homeomorphism but this is more difficult) of a
non-empty submanifold is well defined. By convention, the empty subset is a
submanifold of any dimension (including negative integers).



e Examples : R* x {0} CR" k <n, S* = {(z1,...,2p01) |22 +... +22 =1} C
R¥*+1 and more interestingly

O(n) = {A € Mat(n x n,R) | AAT = E}
are submanifolds. To prove this for O(n) verify condition (c) for
F : Mat(n x n,R) — Sym(n,R) = {B € Mat(n x n,R) | B = B}
A AAT - E.
n(n—1)
Sat

The dimension of O(n) is

2. LECTURE ON OcT., 20. — Continuation and abstract manifolds

e Proposition: Let M C R" be a smooth submanifold of dimension k, U, U’ C
R* open and

p:U— M o U — M
local parametrizations of M. Then

p o 1T e(U)NY'(U) — o7 ((U) N (U"))
is a diffeomorphism.

e Proof: p1oy’ is a homeomorphism with inverse 't o . To show that p=1o¢’
is smooth near ¢'~1(p) € @' 1(p(U) N ¢'(U")) one constructs smooth map F :
V — R" on an open set in R™ containing ¢'~!(p) such that F Ni = f near
¢'~(p) for a inclusion of R¥ into R™ (as in the proof of (a) = (b) last time)
and F is a local diffeomorphism near ¢/~ L.

e Definition: f : M — R is smooth near p € M if there is a local parametriza-
tion ¢ : U C R* — M such that p € o(U) and f o ¢ is smooth.

e Remark: This is independent from the choice of ¢ by the above proposition.

e Examples: Restrictions of coordinate functions to submanifolds of R™ are
smooth because of the following Lemma.

e Lemma: Let M C R" be a submanifold. A function f : M — R is smooth
near p € M if and only if there is an open neighbourhood U of p in R™ and a
smooth map F': U — R such that F|yny = flunm-

e Proof: Exercise.

e Remark: Maps into submanifolds of R™ can be viewed as a collection of n
real valued functions. we therefore have defined what a smooth map between
submanifolds of Euclidean spaces are.

e Example: Consider O(n) C Mat(n x n,R). The maps

inv : O(n) — O(n)
Ar— At = AT
-2 0(n) x O(n) — O(n)
(A,B)— A-B.
are all smooth (we view (somehow arbitrarily) O(n) x O(n) as submanifold of
Mat(n x n,R) x Mat(n x n,R). This makes O(n) a Lie group.
e We now start discussing manifolds without reference to an ambient space. The
first attempt is preliminary.

e Definition: Let M be a set. A smooth k-dim. atlas A on M is a collection of
maps @; : U; — M,i € I (called charts) such that



1. U; C R¥ is open and ¢; : U; — ;(U;) is bijective,

2. Uipi(Ui) = M,

3. for all 4,5 € I such that ¢;(U;) N ;(U;) # 0 the preimage under ¢;, ¢;
are open in R* and

pi 0w o;  (@iU) N (U5) — @7 HwiUi) N p;(U;))

is a diffeomorphism.
Definition: Two such atlases A, A’ for M are equivalent if their union is still
a smooth atlas.
Preliminary definition: A manifold of dimension k is a set with an equiva-
lence class of smooth k-dim atlases.
Example: Submanifolds of R™ and products of such have natural smooth at-
lases.
Example: For & > 0 let real projective space RP* be the set of lines through
the origin in R**! i.e.

RP" = (R**1\ {0})/ ~

where (o, 21,...,2,) ~ (xp,...,2,) if and only if there is A € R such that
A (2o, ... xn) = (2, ..., 2). Elements of this set are denoted by homogeneous

coordinates [xo : ... : x,]. There is an atlas for RP¥ with k + 1 charts: For
i€ {0,... k) let

©; : RF — RP”
(X1, ymg) > [Tt Loy

here the 1 occupies the ¢th slot of the homogenous coordinate. One obtains
the complex projective space CP" of dimension 2n when one replace R by C.
(Just to be clear: These are manifolds.)
Example: Let M = (R\ {0}) U{p, q}. We define a smooth 1-dim atlas contai-
ning exactly the two charts

op : R— M Yg: R— M

t t#0 t t#0
t'—>{p t=0 t'_>{q t=0.

This is a smooth atlas.

Remark: Every set with a smooth atlas carries a natural topology, this is the
smallest topology on M such that all charts ¢; : U; — M are homeomorphisms
onto their image. The topology induced in the previous example is not Haus-
dorff, i.e. every open neighbourhood of p intersects every open neighbourhood
of q.

Remark: We will occasionally review notions from point set topology. Good
references include [J&-T],[Q],[Y].

3. LECTURE ON OcrT., 25. — Abstract manifolds, smooth functions

e We give list of constructions of topological spaces.

o Let Y C (X,0). The subspace topology on Y is the smallest topology so that
the inclusion Y < X is continuous, i.e. V' C Y is open if and only if there is
an open set U C X such that X NU =V.



e Let X be a topological space and ~ an equivalence relation on X. Then the
quotient topology on X/ ~ is the largest topology so that the projection 7 :
X — X/ ~ is continuous, i.e. V. C X/ ~ is open if and only if 7~ 1(V) is
open.

o Let (X;)icr be a family of topological spaces. The product topology on [, X,
is the smallest topology so that for all j € I the projection [[, X; — X is
continuous. Warning/Example: The subset (—1,1)N € RY is not open.

e A topological space is Hausdorff if for all x # y there are disjoint open sets
U, U, such that x € U,,y € U,.

e A topological space is compact if for every covering (U;);c; of X by open sets
(i.e. X = U;U;)there is a finite subset {i1,...,ix} C I sothat X = U;,U...UU,,.

e A topological space is paracompact if for every open covering (U;);er there is a
locally finite refinement, i.e. there is a collection (V}),e; of open sets such that

-U;V; =X,

— for all j there is i(j) so that V; C Uy

— every x has a nelghbourhood V., so that Ve N'V; is empty for all but
finitely many j.

e A justification for this requirement is a theorem of Stone saying that metric
spaces are paracompact. Compact spaces are paracompact.

e Assume a topological space is Hausdorff and admits an atlas. Then the following
conditions imply paracompactness:

— X is second countable, i.e. there is a countable collection U,,n € N so
that every open set can be obtained as union of these set.

— There is a compact exhaustion of X, i.e. there is a famlly of compact
sets (K;)ien which are nested (i.e. K; C Kz+1 C K1 C KZ+2 .) and
X =UX;,.

e Definition: A smooth manifold of dimension n is a topological space M which
is Hausdorff and paracompact such that there is an atlas A = {(U;, ;):er} such
that

— U; C R™is open and ¢; : U; — ¢;(U;) C M is a homeomorphism onto
its image,

- UZQOZ(U,) = M, and

— for all 4,5 € I with ¢;(U;) N¢;(U;) # 0 the transition maps

;' o i oy (wilUs) N (Uy)) — o (wi(Us) N (U))

are smooth
e Examples: Submanifolds of R*, finite products of manifolds, RP", CP" and
many more.
e The next goal is the construction of sufficiently many smooth functions on
smooth manifolds with positive dimension.
e Reminder: The function

AR— R
PR 0 t<0
exp(—t71) t>0
is smooth. The same holds for ¢.(x) = W for ¢ > 0. This function is

nowhere negative and = 1 on { > ¢} while it is = 0 on {z < 0}. Finally, the



function f. on R” defined by
fe(x) =1 = d(|lz]] —¢)

is smooth, it vanishes outside of a 2e-ball around the origin and is = 1 on the
e-ball around the origin.

eletpe M, p: U — M a chart mapping the origin to p. Then for small
enough ¢ > 0, the function

g: M — R

0 z & oU)
T — _
{ fe™ @) = € o)
is well defined and smooth. Using this construction it easy to show that the

vector space of smooth functions on M has infinite dimension (provided that
the dimension of M is positive (and M nonempty)).

4. LECTURE ON OCT., 27. — Smooth functions on manifolds, embedding,
partitions of unity

e Lemma: Closed subsets of compact spaces are compact. (A set in a topological
space is closed if its complement is open).

e Lemma: A compact subset of a Hausdorff space is closed.

e Theorem: Let X be a compact topological space and Y Hausdorff. A conti-
nuous, bijective map f : X — Y is a homeomorphism.

e For the proof one uses the above Lemmas to show that f is open (i.e. maps
open sets to open sets). In the situation at hand this is equivalent to showing
that f is closed (i.e. closed sets are mapped to closed sets).

e Theorem: Let M" be a compact manifold of dimension n. Then there is an
embedding F': M — R onto a submanifold of R™.

e Proof (main steps):

1. For each p € M pick a local parametrization ¢, : U, C R" — M with
p € ¢,(U,) and a smooth function f, which has support inside ¢, (U,)
and f, = 1 on a neighbourhood V,, of p and f, < 1 outside of V. Note
that f, and also the functions f,-x; extend (by 0) to smooth functions on
M with support in U,. The extensions are denoted by the same symbol.

2. The sets V), cover M. Since M is compact finitely many suffice. We denote
them by Vi, ..., V, and the associated functions are denoted by fi, ..., f,.

3. We show that

F: M — (R x R")" = RFHD
¢ — ((£i(@) (fr-21) (@) (ful@)s (i 20) (0)))

is the desired embedding. If F'(q) = F(q¢’) then ¢,q lie in the same set
V. Since the coordinates (i.e. the functions (f; - x;),i = 1,...,n on this
separate points of V; we have ¢ = ¢’. Local parametrizations of F'(M) are
obtained from compositions of local parametrizations of M with F. We
also use the above theorem to conclude that F'is a homeomorphism onto
its image and the subspace topology on F'(M) C R+ This concludes
the proof.
e Remark: The corresponding theorem for non-compact manifolds is true. Be-
fore one can show that one should first show that N = k(n+1) can be replaced
by 2n + 1 (this depends only on the dimension, not on some covering).



e Definition: Let (U;);c; be an open covering of M. A partition of unity subor-
dinate to the covering is a collection of smooth functions (f;);es such that
1. for all z there is a neighbourhood V, such that all but finitely many f;
vanish on V,
2. for all j € J there is i(j) € I such that support(f;) C Uy, and
3. f; >0 and Zjejfj =1.
Because of the first condition one does not have to worry about convergence of
the series in the third condition.

e The following statement is a corollary of the first proposition in the Lecture of
Nov. 3, i.e. the existence of a partiatin of unitiy subordinate to a given open
covering. The corresponding statement for a certain class of topological spaces
and continuous (not smooth) functions is the Lemma of Urysohn.

e Corollary: Let Ay, A; be disjoint closed sets in a manifold. Then there is a
smooth, nowhere negative function g such that g =1 on A; and g =0 on Aj;.

e Proof: Pick a partition of unity (f;);c; subordinate to the covering Uy =
M\ Aop,Uy = M\ A;. Then define

9= > fi-

{j€J|supp(f;)CUo}

. LECTURE ON Nov., 3. — Partition of unity (existence), tangent vectors

e Proposition: Let (U;);c; be an open covering of M. Then there exists a par-
tition of unity subordinate to (Uj;);.

e We will discuss three definitions for a tangent vector at p € M (M a smooth
n-manifold).

e Definition (geometric): A smooth curve at p is a smooth map vy : (—¢,e) —
M such that «(0) = p. Two curves 7,7 at p are equivalent (7o ~ 1) if for a
local parametrization ¢ : U C R” — M around p we have

d d

i, (po0)(t) = @, (¢ o 71)(1).

e This is independent of ¢ and ~ is an equivalence relation.
e The (geometric) tangent space at p is

T,M := {smooth curves at p}/ ~ .

Elements of T,M are tangent vectors.

e Let C*°(M) be the ring (with pointwise addition and multiplication) of smooth
real valued functions on M.

e Definition (algebraic): A derivation at p is a linear map

v:C*(M) —R
which satisfies the Leibniz rule, i.e.

v(fg) =v(f)g(p) + f(p)v(g)

The vector space T,M of all derivations at p is the (algebraic) tangent space of
M at p.

e Remark: Every derivation at p vanishes on constant functions. Moreover, if
f = g on a neighbourhood V' of p then v(f) = v(g). This is shown using a
smooth function h with support in V' which is = 1 on a neighbourhood of p in
V. (Then 0 = v(h(f —g)) = v(f) —v(g).) In particular, instead of C*°(M) we



7

could have used £°(M) = C*(M)/ ~ with f ~ g if and only if f, g coincide
on a neighbourhood of p. Elements of £3°(M) are germs of functions at p. From
now on we will frequently consider smooth functions defined on neighbourhoods
of p.

Lemma: Let U C R"™ be a ball around 0 and f : U — R smooth. Then there
are smooth functions f; : U — R such that

fl@) = FO0) + > a'filx)

and f;(0) = %(O). Here z* is the i-th coordinate, not a power of something.

Using this Lemma one shows that a derivation v at p is determined by v(z?), ..., v(z")
where x" are local coordinates from a local parametrization (¢, U) near p such

that 2'(p) = 0 for all 4. Then dim(7,M) =n. For i = 1,...,n the derivation v

with v(z?) = §;; is denoted by 2.

Definition: A (physicists) tangent vector of M at p is a map

v : Dp(M) = {local parametrizations around p} — R"

such that
v((¥, V) = Dy~ o )u((p,U)).

The vectorspace of such maps obviously dimension < n and = n because of the
chain rule.
To obtain an algebraic tangent vector from a geometric one:

{curves at p}/ ~ — {derivation at p}

2 enm).

] — (fH a .

To obtain a physicists tangent vector from an algebraic one:
{derivation at p} — {physicists tangent vectors}
v (9, U) — (v(z"))y)

where ¢ are the coord. around p from ¢.
To obtain a geometric tangent vector from an physicists tangent vector:

{pysicists tangent vectors} — {curves at p}/ ~
vi— [t o™ (p) + (0. 0)))] -

Fact: All these maps are well defined, bijective and the second map is a linear
isomorphism. Moreover, passing from geometric to algebraic, then to the phy-
sicist version, then back to the geometric, then a geometric tangent vector gets
mapped to itself, etc.

. LECTURE ON NovV., 8. — Differential, Example: Lie groups, tangent
bundle

As we have three definitions of tangent vectors, there are three definitions of
the differential of a smooth map F : M — N between smooth manifolds at
pE M.



e Definition (geometric, curves): The differential D,F is
D,F : T,M = {smooth curves at p} — T,N
[ [Fron].
e Definition (algebraic, derivations): The differential D, F' is
D,F : T,M = {derivations at p}/ ~ — T,N
v (g — v(go F) = v(F*g)).
e Definition (physicists, transformation rule): Let M be a manifold of di-

mension n and (V, ¢) a local parametrization of M around p € M. The diffe-
rential D,F' is

D,F : T,M = {v: D,(M) — R" + transformation rule} — T, N
v ((U7 90) L Dgofl(p) (1/}_1 olo QO) (U((U, @)))) .

e All these versions are well defined and compatible with the identifications of
the various definitions of tangent spaces discussed last time.

e Example: M = R" or an open set in R". Then T,M ~ R" canonically. The
differential of a smooth map between open set of Euclidean space (viewed as
manifolds) coincides with the usual definition where the differential is repre-
sented by the Jacobi matrix (with respect to the natural basis of Euclidean
space.

e Example: Let f: U — R™ be a smooth map defined on an open set of R"
such that 0 € R™ is a regular value. Then for p € M = f71(0)

T,M — ker (D,f : R* = T,R" — R™ = Tj(,)—R™)
d

V] — —
dt],—

v(t)

is a natural isomorphism which we will use frequently to describe tangent spaces
of submanifolds.
e Lemma (chain rule): Let £ : M — M’ and G : M’ — M" be smooth
maps between smooth manifolds. Then
D,(GoF) = (Dp(p)G) o(D,F).
e Lengthy example about Lie groups, general case: Let GG be a Lie group
and g € G. Then
cg:G—G
h +— ghg™*
is smooth and we have the rule ¢, o ¢y = c4y. In particular ¢, is a diffeomor-

phisms with inverse ¢,-1. Moreover ¢4(e) = e. Thus we can differentiate ¢, at e
and we get a linear map

Ady := Decy : T.G — T.G.

This is an isomorphism of vector spaces with inverse Ad,—1 and by the chain
rule the map

Ad: G — Aut(T.G)
g— Dc, = Ad,
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is a group homomorphism which is smooth. Note that Aut(7.G) is an open
subset of the vector space of all endomorphisms of T.G. In particular Aut(7T.G)
is a Lie group. The tangent space at £ (the identity automorphism) is the space
of all endomorphisms of T.G. Moreover Ad, = idr, . Thus we can differentiate
Ad at e and we get a linear map

ad : T.G — Tiq(Aut(7.G)) = End(7T.G)
X r— (Y +— (D AA(X)) (V) =ad(X)(Y)).
This map is called adjoint representation of T.G.

e Terminology: The tangent space at e of a Lie group G is often denoted by
g, it is what is called a Lie algebra. In particular, End(7.G) is a Lie algebra.
The map ad is a Lie algebra homomorphism (once the notion of a Lie algebra
is clear).

e Same example, but more specific with G = O(n) (or any Lie group
which is a subgroup of Gl(n,RR)): We discussed O(n) in the first lecture, we
showed that O(n) is a smooth submanifold of Mat(n x n, R) as preimage of the
regular value E of the map

F : Mat(n x n,R) — Sym(n,R) = {symmetric matrices}

Ar— AAT.
Then TgO(n) = ker(DgF) = {B € Mat(n x n,R)| B + BT = 0}. (Recall
DAF(B) = ABT + BAT.) The map Ad is
Ad: O(n) — Aut(TrO(n))
Ar— (X +— AXAil).

Its differential at F is

ad : TgO(n) =: o(n) — End(o(n))

B (X — ad(B)(X) = BX — XB).

In order to see this, recall that if v(t) = E +tB + t*C(t) with C(t) bounded as
t — 0, then

d
— t))"' =-B.
i, o)
Hence if « represents the tangent vector B in E of O(n), then
d

ad = DAd(B)(X) (t— v (OX (7))

t=0

T dt

Using the product rule we obtain (1). Except for the description of o(n) as
antisymmetric matrices the discussion above is valid for all Lie groups which
are submanifolds of Gl(n,R) and subgroups at the same time.

e Definition: Let M be a smooth manifold of dimension n. The set

™™ = | | T,M
peEM
is the tangent bundle of M. There is an obvious map from T'M to M taking a
tangent vector in T, M to p € M. We denote this map by pr.

e Our goal now is to give T'"M the structure of a manifold. We would like pr to
be a smooth map afterwards.
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Let (U, ¢;)ier be an atlas for M consisting of local parametrizations ¢; : U; —
M of M. Then

UPT_I(%(Uz‘)) =TM.
iel
We define a local parametrization of pr=*(¢;(U;)) by
@it Ui x R" — prY(p;(U;)) € TM
(z,w) — (Ui, 5) — w) € Ty, )M.
This is a bijective map. We used the physicist definitions of tangent vectors
because using the transformation behavior inherent in this definition we will

easily find the coordinate transformation for the atlas ((U; x R™), @;);es. First
note, that

G (v (il Un)) N (i (U7))) = it (i(U) N ps(U)) x R™.
The transition function @_1 o ; is then
i ' (piUi) N i (U;) x R — o7 (0i(U3) N p;(U;)) x R
(2, w) = (5" 0 wil@), Da(ij " 0 i) (w)) .

We have expressed the new transition function in terms of the transition func-
tion of the atlas we started with. Hence @_1 o (p; is smooth.

7. LECTURE ON Nov., 10. — Tangent bundles, vector fields, commutators

of vector fields

On T'M we consider the smallest (sometimes people also say coarsest) topology
such that ¢; : U; x R" — T'M is a homeoemorphism onto its image.
Lemma: Let A, A’ be two equivalent atlases for X. Then the topologies on X
induced by A, A’ coincide.

Proposition: Let A be the smooth atlas for 7'M coming from a smooth atlas
for M (cf. last item of the lecture on Nov., 8th). The topology on T'M which is
induced from A is Hausdorff and second countable, T'M is a smooth manifold,
the map pr : M — M which maps tangent vectors in 7,M to p is smooth,
surjective.

Note that the transition function in (2) is of a particular form: The second

component of @;1 o @; is a linear isomorphism (which depends on ). Thus the
structure of T,/ as a vectorspace is preserved by the transition functions of
our atlas.
Definition: A vector field X on M is a smooth map X : M — T'M such that
proX =idy;. The set X'(M) of vector fields is a vector space over R (pointwise
addition and scalar multiplication). Often one writes I'(T'M) instead of X (M).
Lemma: Given two vector fields X,Y on M there is a vector field [X, Y] such
that

[X,Y](f) = X(Y(f)) = Y(X(S))
for all smooth functions. Moreover, for all XY, Z € X (M)
(X, Y] =—[Y, X] (antisymmetry)
0=[X,Y].Z|+[lY,Z],X]|+[Z, X],Y] (Jacobi identity)
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and [-,-] is bilinear over R (not over the ring of smooth funtions). If f is a
smooth function and X,Y € X(M), then

(X, Y] = fIX, Y]+ (X ()Y
Definition: A (real) Lie algebra is a vector space V' (over R) together with a
bilinear pairing
[,]: VXV —V
which is antisymmetric and satisfies the Jacobi identity.
Example: The space of smooth vector fields is a real Lie algebra.

8. LECTURE ON Nov., 15. — Vector fields, flows, Lie derivative,
commutators

Summary: Let I C R be an interval and X;,t € I, be a smooth family of
vector fields on M. For each py € M and ty € I there is a interval I,,,,, C I
containing ty and a smooth map y(po, to) : Imae —> M such that

V(P to)(to) = po
Y(Po, to)(t) = Xe((po, o) (%))
and every smooth map « : J — M with the same properties has J C I,z
and coincides with v on J.
For every compact interval ty € J C I there is a neighbourhood V' of (po, o)
in M x I such that vy(g,s) is defined on the interval J for (¢,s) € V and

v(¢, s)(t) depends smoothly on all variables (g, s,t) € V' x J.
When M itself or the support

{pe M|X,(p) #0 for somet eI} C M

is compact then

Inae = I for all initial values (po,to) € M x 1.

We will assume this throughout the discussion to simplify the exposition. Pro-
perty (5) is often referred to as completeness. For ¢ty € I the maps

Ve M — M
¢ — 7(q,t0)(t)
is a diffeomorphisms. The inverse is
Yt M — M
q — (g, t)(to).
We obtain a (continuous with respect to every reasonable topology on Diff(M))
map
I — Diff(M) = {¢: M — M |1 a diffeomorphism }
t— .
If X; does not depend on time ¢, then we set I = R and X; = X. All the above
works (assuming completeness), v(p, o) (t) depends only on the difference ¢ —t,.

We usually set to = 0 and write v(p)(t) for solutions of (4). By uniqueness of
the solutions of (4)

T ()())(#) = v(p)(s +1)
and (6) is a homomorphism of groups which is called the flow of X.
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e Definition: Let ¢ be a diffeomorphism of M and Y € X(M). Then

(WY ) (p) = (DY~ )y (X (¢(p))) is the pull back of Y with ¢
(.Y ) (p) == (D) -1 (X (¥~ (p))) is the push forward of Y with 1.

e Definition: Let X,Y € X(M). The Lie-derivative of Y in direction X is

d *
(7) LxY = dt tY
where ¢, is the flow of X.

e (¢;Y)(p) is a smooth family of vectors in T, M.

e Lemma: Let X, Y be smooth vector fields on M and F' € Diff(M). We write
¢ respectively ¢4 for the flow of X respectively Y. Then

a) F*Y = d% 0 “loy,oF.
b) F*Y =Y & Fouy, =10 F for all s € R.
c) LxY =0 < @01, =150 ¢, for all s,t €R.

e The proof of a) is a direct computation with the chain rule. So is the part < of
b), the part = of b) uses the uniqueness of solutions of initial value problems
(¢5(po) and F~1 o 1), o F(pg) solve the same initial value problem). Finally, c)
follows from b) when one shows that LxY = 0 if and only if ¢}Y =Y using
(7).

e Lemma: Let X, Y be smooth vector fields on M and let ¢; respectively 5 be
the flow of X respectively Y. Then

) LxY = 8581: 0.0 )90401#50%
b) (LxY)(f) = X(Y(f)) — Y (X(f)) for all smooth functions f on M.

e The proof of a) relies on the previous Lemma. For b) use the item after the
definition of LxY to show that
2

Jsot

LxY(f) =

fop_othsop.
(0,0)
Then apply the chain rule to the composition of ¢t — (—t,¢) with (7, 7') —

fogp.rodjsogpq_/.
e Remark: In terms of local coordinates one can write

X(x Z a” aiy =a"0,
) 0
Y (2 }:w ) o = V'O

(the rightmost expressions illustrate notation used in physics literature, in par-
ticular the summation convention where a sum sign is understood for indices
which appear in upper and a lower index, the same applies to the second line
in the next equation) and compute [X, Y] from the definition (3) as follows

, ObH da"\ 0O
1 ny __ v
(X, Y](z, ... 2 )—Z( 57 b 81”’) oy

v,p

X, Y]" = a"8,b" — b8, a’.
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9. LECTURE ON Nov., 17. — Left invariant vector fields, Lie algebras of Lie

groups

Lemma: Let X,Y be smooth vector fields on M and F : M — M a diffeo-
morphism. Then

DF(|X.Y]) = [DF(X), DF(Y)].

This is a computation using the chain rule, ; is the flow of X:

DF([X,Y]) = DF(LyxY) = DF(% orY)

t=0
d
= —| D(Foyp, 0o F")™ DF(Y)
a| 22 )
flow of Fi X =F\Y

— [DF(X), DF(Y)].

Lemma: The following map is a diffeomorphism whose restriction to {g} x T.G
is a linear isomorphism onto T,G

Vv :GxT.G—TG
(9, v) ¥ (Dlg)(v)

where [, : G — G denotes left multiplication with g, i.e. [,(h) = gh. Moreover
pr o is the projection onto the first factor of G x T.G.

Both the target and the domain of ¢ are manifolds of dimension 2dim(G).
To see that D1 is surjective (hence an isomorphism) use the decomposition
Ty (G x T.G) =T,G x T,(T.G) = T,G x T.G.

Definition: A vector field X on G is left invariant if 1, X = X. (This is
equivalent to ;X = X.)

A left invariant vector field is determined by its value at one point (for example
e). Thus there is an isomorphism

T.G — g := {left-invariant vector fields on G}
Xr— (X :h— (Dl)(X)).

Theorem: Left-invariant vector fields are complete, i.e. solutions of initial value
problems are defined on R.

For the proof, start with a solution v defined on (—¢,&) with v(h)(0) = h.
In order to extend this show that [,)/2) © v solves the initial value problem
alh-v(e)(e/2))(0) = h-~(e)(e/2)) and & = X o a.

Combine these two curves to obtain a solution for the original initial value
problem (starting at h) with domain (—¢, 3¢/2), i.e. the size of the domain has
increased by the amount £/2. Doing this infinitely many times one obtains a
solution with domain R.

Lemma: By (8) g is closed under Lie brackets [-, -], i.e. it is a Lie algebra. We
say that g is the Lie algebra of the Lie group G.
Definition: The exponential map of a Lie group G is

exp: T.G=g— G
X — yx(e)(1)

where vx(e)(t) solves the initial value problem 4 = X o with initial value e
and X is the left invariant vector field with X (e) = X.



e Example: Let G C Gl(n,R) be a Lie subgroup (i.e. a submanifold and a
subgroup) and X € g. Then

X:G—TG
H v (Dlg)(X) = H - X.
The solution of the initial value problem v(FE)(t) = F and 4 = X o~y is

B = exp(ex) = 3

Note that exp(A)exp(B) = exp(A + B) only if AB = BA but not in general.
Because of left-invariance
V(H)(t) = Hexp(tX).
Finally, using the Lemmas from the last lecture one obtains:
X.Y] (E) = XY —YX.
field
vector fie

e Simple examples one can discuss include G = SO(3),S' = U(1) C C,... with
g=50(3),u(l) ~iR,....

10. LECTURE ON Nov. 22. — Multilinear Forms

e Definition: If V' is a vector space over some field K then a linear form is a
linear function ¢ : V' — K. The set of linear forms on V form a vector space
denoted by V* with dim(V*)= dim(V').

o If {e;}, i =1,---n = dim(V) is a basis of V then {e*'}, i = 1,---n is the dual
basis if e*(e;) = 07

e A k-linear form (or simply k-form) is an alternating k-linear function

¢  VxVx...xV-=K

k times
(xla e 737/6) = ¢(I1, e 7xl€) = Sgn(g)¢(x0(1)7 e ,{Eo—(k))
for o € X, the symmetric group. In particular, for ¢ € V*, i =1,---
NP A @dF € AFV* defined through
¢1 A ¢2 A gbk(‘rh e ,f[‘k) - det(¢z($]))
1,7 =1,---kis a k-form.
e The above construction gives rises to a basis in A*V*: Proposition: any k-
linear exterior form w € AFV* can be expanded as
w= Z Wiy iy €N 2N N e
1< <o << <n

k <n,

where w;, ... ;, € K.
e Definition(exterior product) For w € A*V* and ¢ € APV* the exterior
product is defined through

— e e A2 A LA R A A M2 A LA et
WA Q= E Wit i @i o€ PANEEN o ANETEANETT NETEAN - Ne

1<j1<jo<--<ip<n
1< <2< < <n
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e Proposition For w € A*V* ¢ € AFV* ¢ € APV* and p A? V* we have
a) pA(WHY)=gNw+PAY

b) GA (WA p) = (9Aw) Ap
c) pAw=(=1)Pru A ¢

11. LECTURE ON Nov. 24. — Differential Forms on R"[Ca]

e For V = R" and {z!,---, 2"} coordinates on R™ (or a subset thereof) we
identify the elements of the dual basis {e*'} with the coordinate differentials
{dz'}.

e Definition A field of exterior forms or an exterior form of degree k, k < n
is a map w that associates to each point p € R™ an element w(p) € AFV*.
Furthermore, w(p) can be expanded as

w(p) = Z iy oo i, (p) A2 Adx™ A~ Ada™
1<i1<ia< <1 <n
If, the real functions a;, ... ;, (p) are differentiable, then w is called a differential k-

form. The set of differential k-forms forms a vector space, denoted by QF(R™).
e Definition For f € C'(R") we denote by df its differential. Then the map

d : QFR") — QYR
w(p) — dw(p) = Z da, ... i, (p) Ada™ Adx Ao Ada's
1<t <o << <n
is well defined for {a;, ... ;, (p)} € CY(R™). dw(p) is the exterior derivative of the

differential form w(p) .
e Proposition For w(p), ¢ (p) € QF(R")and ¢ € QF(R™) we have
a) d(w(p) +1¥(p)) = dw(p) + dy(p)
b) d(w(p) A ¢(p)) = dw(p) A ¢(p) + (—=1)*w(p) A de(p)
¢) ddw(p) =0 assuming w is twice differentiable
e Definition For w(p),¥(p) € QF(R") and Z € X(R") we define the interior
derivative or interior product as the map

iy © QFR™) — QFH(R™)

w(p) = ((izw)(p) : (21, wpa) > w(Z, 21, 1))
is well defined for (21, -+ ,xp-1) €V x V x -+ x V and {a;, ... 4, (p)} € C*(R").
kfl‘t,imes

dw(p) is the exterior derivative of the differential form w(p) .
e Proposition For w(p) € QF(R"), ¢ € OP(R") and Z € X(R") we have
) i2(w A 6) = (iz0) A é-+ (1w A (i26)
b) iz(izw) =0

12. LECTURE ON Nov. 29. — Pullback and Lie derivative [Ca]

e Definition Let f € C*°(R",R™) and f, : T,R" — T, R™ be its differential,
or push forward. Then the pull back of a differential form on R™ is given by the
map

o QFR™) = QFR™)
w= ((ffw)p): (21, ok) = w(f(P)(fern, -, fur))



for (x1,--- ,xx) € T,R" X T,R" x --- x T,R™.

~
k times

e Proposition For g € C*(RP,R"), f € C*(R",R™), h € C*(R",R); w, ) €
QF(R™) and ¢ € QF(R™) we have
a) [f(w+v)=fw+ [
b) f*(hw) = f*(h)g"(w)
c) [flwAe)=(f'w)A(fo)
d) (fog)w=g"(fw)
e) df*(w) = f*(dw)

e Remark We choose coordinates {y'} on R™ and take

wp) = Y e @)yt Ay A Ady™

1< <ig << <n

Then we have, using b) and c)

(fw)(p) = > (Fanea)p) Ayt A frdyE A A frdy™

1<t <9< <ip<n

- Z ai, i, (f(p)) dft Adf2 A Adf*

1<y <ip << <n

which gives a simple and intuitive expression for the pull back of a generic

differential form.
e Definition (Lie Derivative) Let Z € X(R") be a differentiable vector field,
¢y its flow and w € QF(R"), then the Lie derivative of w is defined as

d *
Lyw = a (Pw)

t=0
In components we have
Lyw)(p) = izdag, .. ;)N Azt Ady? A - A dy'
1y 5tk
1< <ta< <1 <n

+ Z iy iy AT A Ad(igdz?) Ao A datt

1< << <1 <n

Useful formula: Lyw = (diz +izd)w.

13. LECTURE ON DEC. 1. — Differential forms on smooth manifolds

e Definition An exterior k-form w on a smooth manifold M is a choice, for every
point p € M, of an element w(p) in the vector space A*(T,M)* of alternating
k-linear functions, w(p) : T,M x T,M x - x T,M — R.

k times

e To continue we pull this form back to open sets U, of the atlas of M. This
naturally leads to

e Definition For a given parametrisation f, : U, — M, the representative w, is
given by

Wo = fow.
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e Remark The independence of this definition on the choice of coordinates (pa-
rametrisations) follows from the observation that for f,/s : Uy s — M we have
in Ua Ny B

(f5" o fa)'ws = fal(f5 ') ws) = fawlssanvs) = Wa

e If w, is differentiable in one parametrisation (and therefore in all by the above
remark) then w is a differential form on M. The vector space of differential
k-forms is denoted by QF(M).

e Remark The operations (d,A,ix, Lx) are naturally extended to QF(M). In
particular,

dw, = dfjw =: frdw|s, w.)

o If we Q" (M), M oriented, n = dim(M) has compact support, K C M, then

this form can be integrated over M as follows: Suppose first that K C f,(U,)

for some o« € I and {z'}, i = 1,--- ,n, cartesian coordinates on R", then we
define

/w:/wa :/aada:l/\---/\dx”:/aadxlde---dx”

M Ua Ua Ua

where the last expression is the Lebesgue integral defined for continuous func-
tions on U,. The last step in the above definition proceeds through evaluation
of w, on an infinitesimal hypercube in R™ spanned by the vectors dx'0,: where
the dx' are the coordinate differentials.

e Remark Under a change of coordinates, f = (f;! o f3) : Us — U, such that
[+« has positive determinant with {z* = f(y)} coordinates on U, and {y'}
coordinates on Ug we have

/aﬁdyldyz---dy” = /w[g = /f*wa
Us

Us Us

= [aalfsrdst ae it

Us

- / aa(F)Af A df

Ua

= /aa(gz:)dm1 A---da”

Ua

= /aa(x)d:vl --oda”.
Ua

e If the support K is not contained in any coordinate nbhd f,(U,) we construct
a partition of unity {¢;} subordinate to the covering {U,}. That is (see part I)

- a) ;¢1: 1
—b) 0 < ¢; <1 and supg; € U, for some a € [
and define [w:= )" [ pw.
M

=101
e Remark The convergence of the above sum is guaranteed by the assumption

of paracompactness (see part I)



18

14. LECTURE ON DEC. 6. — Manifolds with boundary

In order to parametrise manifolds with boundary we consider maps from open
sets in H" = {z!,--- 2" € R"|z; <0.

Definition An open set, V', in H" is the intersection of an open set U C R"
with H". A function f : V — R is differentiable if there exists an open set
U C R” such that V C U together with a differentiable function f : U — R
such that f|y = f|v.

A smooth manifold with boundary is then defined in complete analogy with a
smooth manifold without boundary (see 3rd lecture) by replacing R™ by H"
everywhere.

A point P € M is on the boundary 0M if for some parametrisation f : V C
H™ — M we have f(0,2% -+ 2") = P.

Lemma This definition of a point on M is independent of the choice of
parametrisation.

Proposition The boundary M of an n-dimensional smooth manifold with
boundary is an (n — 1)-dimensional smooth manifold. Furthermore,the orien-
tation on M induces an orientation on 0M.

Let w be an (n—1)-form on a smooth manifold M of dimension n with boundary.
Then dw can be integrated on M/

Theorem (Stokes) Let M be a smooth, compact, oriented manifold of dim
n with boundary and ¢ : 9M — M be the inclusion map of the boundary into
M. Then for w € QY we have

/i*w = /dw.
oM M

15. LECTURE ON DEC. 8. — Poincare Lemma

w € QF(M) is closed if dw = 0 and ezact if w = dv globally for some v € QF 1L,
Since d? = 0 every exact form is closed.The converse is not true but we want
to show that every closed form is nevertheless exact in the nbhd of some point.
Defiition A smooth manifold M is contractible to some point pg € M if there
exists a differentiable map
H : MxR—>M
(p,t) = H(p,t) e M
such that H(p,1) = p and H(p,0) = po Vp € M.
To every w € QF(M) we can the associate a k-form @ € QF(M x R) as
w=Hw
On the other hand, any @ € QF(M x R) has a unique decomposition of the
form
Ww=wi+ dt A n
with ig,w; = 0 and i9,m; =0
Conversely we can associate a k-form w € QF(M) to each @ € QF(M x R) with
the help of the inclusion map
iw o M—MxR
it(p) = (p,t) € M X R
Then ifw € QF(M) provided w € QF(M x R).
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e Let us furthermore define the map

I QF(M xR) = QM)

1

(]77)(217 T 7zk—1) = /77(17: t)(ata Ups 21,50 7it*2k—1)dt~
0

16. LECTURE ON DEC. 13. — Poincare lemma, deRham cohomology
and Riemannian manifolds

The key result which then establishes local exactness is the
e Lemma

it — g = d(Iw) + I(dw)
Indeed, since H oy =id and H o iy, = pg, Vp € M we have
w=(Hoi)w=1w

and
0= (Hoip)'w=ijw

From this the desired result he follows:
e Theorem Let M be a contractible, smooth manifold and w € Q¥(M) with
dw = 0. Then there exists a k — 1 form a € Q*"}(M) such that w = da.
e OF(M) is a vector space over R whose elements form a group with respect to
addition. It turns out, however that there are invariant sub group which we will
NOW review.

e Definition Let M be a smooth manifold of dimension n. The the set of
a) closed k-form is the k-th cocycle group, with real coefficients Z*(M, R)
b) exact k-form is the k-th coboundary group, with real coefficients B*(M, R)
c) HE(M,R) = Z*¥(M,R)/B*(M,R) is the k-th deRham cohomology group
with real coefficients.
e Let us now assume that M is a smooth manifold endowed with a (pseudo)
Riemannian metric

g X(M)xX(M)— F(M)
(z,9)(P) = gp(z,y)

for p € M. In particular, in an open set V containing p with coordinates {z’}
the vectors {0,:} form a basis of X(M). Then g¢;;(p) := ¢(0ui, 0,i) is a set of
smooth functions on V- C M.
e If ¢ is non-degenerate, then g = (g~');; gives rise to an isomorphism between
T,M and T; M through

TyM > da' = g7 g(0,s,-)

e Definition {0,;} is called the coordinate basis of T,M. The orthonormal or
non-coordinate basis {e,} of of T, M is defined by the condition g(eq4, €y) = dap-
Note that for a given Riemannian metric g the set {e,} is unique only up
e/ = A’e, where A is an orthogonal transformation.



17. LECTURE ON DEC. 15. — Volume form, Hodge * operation

e After picking an orientation the volume form vol on M is a differential form of
maximal degree s.t vol(ey, - - ,e,) = 1. This, in turn, gives rise to a multilinear
map * : Q™(M) — Q"™ (M), the Hodge star operation point wise defined as

« QM) — QM)

M N e Aty §Ub L §ambmg g 1Vol

bm b

where 6% is replaced by n® for a pseudo Riemannian manifold. e denotes the
dual basis of the orthonormal basis eq, . ... In particular, x1 = vol. In terms of
the coordinate basis the volume form takes the form

vol = /|glda! A -~ Ada™ = —”||g|eil...indx“ Ao Adat
n!

where 4/|g| is positive evaluation of the absolute value of the determinant of
g. Accordingly

VIl

sdz! Ao Ada" = g
(n—m)!

G ey T A A
Taking the Hodge star operation twice produces the identity up to a sign.

Concretely, for w € Q™

(=1)™(»=m)y  Riemannian
* kW = m(n—m)+1 :
(—1) w Lorentzian

where the extra minus sign in the Lorentzian case is due to the absolute value
of the determinant entering in the definition of the Hodge * operation.

18. LECTURE ON DEcC. 20. — Inner product, adjoint to d

e An important application of the Hodge * operation is the definition of an inner
product on ™. For w,n € Q™(M) we define

() = QA"xQ" >R
(w,n) /w/\*n
M

For (M, g) Riemannian the inner product (-,-) is positive definite, (w,w) > 0,

w # 0.
o Let d: Q™1 — Q™ be the exterior derivative on the deRham complex (€, d).
Then the adjoint exterior derivative § : Q™ — Q™! is defined by

5 (—1)™m+D+1 4 dx  Riemannian
T (=)D dx Lorentzian

e Proposition Let (M, g) be a compact orientable, (pseudo) Remannian mani-
fold without boundary and v € Q™(M), 8 € Q™' (M). Then

(dB, @) = (B, 6cx).
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19. LECTURE ON DEc. 22. — Laplacian, Hodge decomposition

The Laplace operator on differential forms is defined as
A Q" — Q™
A = (d+0)>=ds+dd

If (M,g) is a compact Riemannian manifold without boundary, then A is a
semi-positive definite operator since

(w, Aw) = (w, (d + §)*w) = (dw, 6w) + (dw,dw) >0

Definition
1) we Q™ is harmonic if Aw = 0, closed if dw = 0 and co-closed if dw = 0
2) w e Q™ is co-exact if w = S\ for some A € Q™! everywhere on M.
3) The set of harmonic form of degree m is denoted by Harm™(M).

e An m-form is harmonic if it is closed and co-closed.

e Hodge decomposition Theorem Let ()M, g) be a compact, orientable Re-
mannian manifold without boundary. Then Q™ (M) can be decomposed uni-
quely as

Q™ = dQ"™ e Q" @ Harm™

Wm = dam—l D 56m+1 Dy
Theorem Let (M, g) be a compact, orientable Riemannian manifold without
boundary. Then

H™(M) = Harm™(M)

The isomorphism is provided by identifying [w] € H™ with Pw,, where P is
the projection to the harmonic subspace.

20. LECTURE ON JAN. 10. — H"(M) for dim(M) = n and applications

Brouwer’s fixed point theorem: Let B;(0) C R™"! be the closed unit ball
around the origin and f : B1(0) — B;(0) a smooth map. Then f has a fixed
point, i.e. there is a point € B1(0) such that f(x) = x.
e Remark: The theorem holds for continuous maps.
e Proof: By contradiction. B;(0) is an n + l-manifold with boundary. If there is
no fixed point, then
Y B1(0) —0B4(0)
x —1)(x) = the intersection of the line through f(z),x
with 0B;(0) which is closer to x than to f(x)

is smooth and satisfies ¢ (z) = x for all x € 9B;(0). Let w be a n-form on
0B1(0) = 5" so that [, o w # 0.

Let ¢ : 9B1(0) — B;(0) denote the inclusion (this is a smooth map). Then
Lo = idyp, (). Hence

0 [ w= [ wonw= [ @

By the Poincaré-Lemma, ©*w is exact, i.e. there is a n — 1-form A\ such that
Y*w = dA\. Then

0 # - (dX) = /n d(L*\) = /85”(2) A=0.
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yields a contradiction (we used Stokes theorem and the naturality of d). More
details can be found in [M]

Theorem: Let M be a closed, oriented, connected manifold of dimension n.
Then H"(M) ~ R.

Proof: We use the Hodge decomposition, for his we fix a positive definite
Riemannian metric on M. The following diagram summarizes fact discussed
previously.

Harm" (M) —=— H*(M)

’il* L:
Harm" *(M) —— H"*(M).

We apply this to k = 0: Then H°(M) = ker(d : Q°(M) = C°(M) — Q' (M))
consists of functions with vanishing differential. On connected manifolds such
functions are constant. Thus H™(M) ~ {constant functions on M} = R.

Lemma: Let M be closed manifold, oriented, connected and of dimension n.
Then

/M:H”(M)—>R

[w] — / w
M
is a well defined isomorphism.
Proof: The map is well defined by Stokes theorem: If w,n represent the same
cohomology class, then w — 1 = d\ and

/w—/n:/d)\:/ A=0.
M M M OM=0

Linearity is clear, it is surjective since [, (x1) # 0 and we already know that
dim(H™(M)) = 1.

Under the current assumptions on M this means that w is exact if and only if
Jyyw=0.

Definition: Let M, N be closed oriented manifolds of dimension n and f :
M — N a smooth map. For w € Q*(N) with [, w # 0 define

dest) - L2

This is called the degree of f.

Remark: This does not depend on the choice of w since the integrals only
depend on the cohomology class of w. Because of H"(N) ~ R the choice of a
non-vanishing cohomology class is unique up to a non-vanishing factor which
is canceled in the definition of the degree.

Theorem: deg(f) is an integer, it can be computed in terms of the behavior
of Df at all points of f~!(p) for a regular value p of f.

e Fact: A theorem by Sard implies that regular values of f exist.
e Proof of Theorem: Pick a regular value p, consider f~!(p). For each ¢ €

/7 (p) there is a neighborhood U(q) such that f|y(, is a diffeomorphism onto
its image (which is a neighborhood of p). In particular, f~!(p) is finite and one
can choose the U(q) pairwise disjoint. We pick w with support in (), f(U(q))
such that [ w # 0.
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Then [, ffw = D g f1(p) fU(q) fliw- By the transformation rule

§ i FU@) Y it Df, is an orientation preserving isomorphism
v f |U(q)w ) - f FU@) Y it Df, is an orientation reversing isomorphism.

Then ff(U(q)) w = fNoJ implies

degm:’{ g€ (p) H_H g€ f(p) }'ez.

Df, or. preserving Df, or. reversing

21. LECTURE ON JAN. 12. — Mapping degree - Examples

e Lemma: Let M, M5, M3 be smooth orientable closed connected manifolds of
the same dimension and f : My — My, g : My — M; are smooth maps.

Then deg(g o f) = deg(g)deg(f).
e Proof: Let w € Q"(Mj3) with fM3 w # 0 If deg(g) # 0, then the proof is

Jor, g w) — [o P g'w) [y, 97w
deg(go f) = = = = — =7 = deg(f)deg(g)
fMg w sz gw fMg w
where we used g*w to compute deg(f). That is legitimate since deg(g) # 0
implies fM2 g'w # 0. If deg(g) = 0, then g*w = d\ for some A € Q" 1(My).
Then

deg(g o f)

S FG@) [y £AN) AN
fMSw stw fMSW

by Stokes theorem.

e Examples: The identity map has degree 1, the antipodal map A : S" —
S™ A(x) = —x has degree (—1)""!, it has to satisfy 1 = deg(A4?) = (deg(A))%.
The map ¢y : S — S, z — 2* has degree k where k is a given integer.

e Lemma: The wedge product of closed forms is exact, the wedge product of a
closed form with an exact form is exact.

e The proof is a direct computation.

e Consequence: If M is a smooth manifold, then H*(M) is not only a R-vector
space. It is a ring! We apply this ring structure to show:

e Proposition: Every map of f : S — T? has degree 0. (Here 7% = S* x S is
a torus carrying the product orientation.)

e Proof: There are two projection maps pry, pry : 72 — S* (on the first /second
factor). Let o € Q'(S") such that [, o # 0. Then w = prio A pria = oy A ay

satisfies )
/ w = ( / a) # 0.
T2 St

We now assume the fact that H'(S5?) = {0} (this will be proved later). The
degree of f is then

= 0 = deg(f)deg(g)

- fSQ f*Oél A\ f*OéQ

fT2 W .
Since f*ay is exact (H'(S5?) = 0) it follows that f*a; A f*ay is also exact. The
integral of an exact form over a closed manifold vanishes by Stokes theorem.

Therefore deg(f) = 0.
e Lemma: H'(S?) = {0}.

deg(f)
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e Proof: Let Dy = S?\ {(0,0,—1)} and Dy, = 5%\ {(0,0,1)}. These sets are

discs, there intersection is connected. Let n € Q!(S?) be closed. We want to
show that n is exact.

By the Poincaré-Lemma there are 0-forms/smooth functions Ay respectively
Ag on Dy, respectively Dy such that

Ay =1|py dA\r, =1|p, .

If \yg = A, on Dy N Dy, then these two forms can be glued to a global form
A such that d\ = 7. We modify A\, to make sure that his works. Note that on
DynN Dy

d(A|pynp, — ALlppnpy) = NMpunp, — N punp, = 0.

Hence Ay — Ap is constant on Dy N Dy, (we use that Dy N Dy, is connected).
Let C be the constant and replace A\, by Ap + C.

Consequence: For no Riemannian metric there is a non-trivial harmonic 1-
form on S2.

Fact: After the next theorem, you will have all means needed to prove that for
n>0

R if k=0
H¥(S™)~¢ 0 if1<k<n-—1
R if £ =n.

Theorem: Let f,g : M — N be smooth maps between manifolds which are
homotopic, i.e. there is smooth map h : M x R — N such that h(-,0) = f
and h(-,1) = ¢g. Then f*=g*: H*(N) — H*(M).

Proof: The proof is almost the same as the proof of the Poincaré-Lemma.
Consider

«
to

O (N) > Q7 (M x R) = Q*(M)

"
L1

where ¢; : M — M x R is the inclusion p — (p, j) for j =0, 1. Then hoiy = f
and hot; = g. We use the operator I : QF(M,R) — QF~1(M) from the proof
of the Poincaré-Lemma (with the property dol+1od =i} —if). Ilf n € Q*(N)
is closed, then

g —fn=(dol+TIod)(h'n)=d(Ih™n).

Hence [f*n] = [g*n].

This concludes our discussion of the differential topology of manifolds for some
time.

Theorem: Let M be a smooth manifold. Then M admits a Riemannian (i.e.
positive definite) metric.

Proof: Pick a covering of M by charts (U;, ¢;) and a subordinate partition of
unity p;. Then

g(X,Y) = (@590 (X Y) =Y pigicn (Dpigy X, Dpig)Y)
J J

is positive definite.
This does not work for Lorentzian metrics.
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22. LECTURE ON JAN. 17. — Tensors,Connections

Remark: Formally, a tensor field (7, s) on a manifold is a section of the bundle
of multilinear maps
IT"M x ... xT"MxTMx...xTM —R.

vV vV
r times s times

In many cases, the definition of a tensor will involve several summands some
of which are not tensorial in the sense that they take (locally defined) vector
fields as input. It is then important to check that the number/vector the tensor
returns for a collection of vector fields depends only on the value of the vector
fields at a given point.

Examples include differential forms (a s-form is a (0, s)-tensor).

e Criterion: Tensors are not only R-linear but linear over functions.
e Definition: A connection or covariant differential on T'M is a map

X(M) x x(M) — x(M)
(X,)Y)— VyY
such that for all smooth functions f
— V is R-bilinear,

— V is linear over smooth functions in the first factor, i.e. VyixY = fVxY
and

— (Vx(fY)(p) = f(0)(VxY) () + (D) (X ()Y (p).
The same definition applies to the bundle T*M in defining Vxa with « a
1-form.
Definition: Let V be a connection on T'M. The torsion of V is the antisym-
metric tensor

T x(M) x x(M) — x(M)
(X,Y) — VxY — Vy X — [X,Y].

Definition: A connection on a manifold with a (possibly indef.) metric g is
metric if

Lx(9(Y, Z)) = g(VxY, Z) + g(Y,Vx Z).
Theorem: On each semi-Riemannian manifold M there is a unique connection

V which is metric and has vanishing torsion. This connection is called the Levi-
Cwita connection. It satisfies

29(VxY,Z) = Lxg(Y. Z) + Lyg(X, Z) — Lz9(X,Y)
Examples: Let M be a submanifold of R and g the restriction of the standard

metric to M. Let pr denote the orthogonal projection of T,R" to T, M (for some
p € M). Then the Levi-Civita connection on M is

(VxY)(p) := pr(DxY)(p) = pr (z"(9uy")dy) (p)-

Definition: Let g be a semi-Riemannian metric, V the Levi-Civita connection
and z* local coordinates near a point. The Christoffel symbols of g are defined
by

Vo, 0, = 17,0
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e Lemma: The Christoffel symbols can be computed by

1 dg dg dg
FK — _km Hm vm uv .
v = o9 (8x” * Ozt OJx™

23. LECTURE ON JAN. 19. — Parallel transport

e Definition: A connection on T*M is a map
V:x(M) x QY(M) — QY(M)
which is R-bilinear, C*°-linear in the first variable and satisfies

Vx(fa)=(Lxf)a+ fVxa.

e Definition: Let V be a connection on T'M. Then there is a unique connection
V' on T*M such that

Lx(a(Y)) = (Via)(Y) + a(VxY).

Usually, one writes again V instead of V'.
e More generally, of A is a (r, s)-tensor and V a connection on 7'M, then there
is a unique operator D such that D defined by

Lx (A(aq, ... 00, Y1,...,Y5) = (DxA) (a1, ..., a0, Y1, ..., Ys)) +
S CA(LVxa, . Yi L Y) 4 Alan, o, VYL
i J

and Dx A is again a (r, s)-tensor for each vector field X, DA is a (r, s+1)-tensor.
e Example: If V is the Levi-Civita connection of (M, g), then Vg = 0. If V is
any connection on M, then the Hessian of f € C°°(M) is defined as

Hess(f)(X,Y) = (Vi (df))Y-

This bilinear form is symmetric for all f if and only if V is torsion free.

e Definition: Let A be a (0, s)-tensor and f : M — N smooth. Then f*A
defined by (f*A)(X1,...,Xs) = A(Df(X1),...,Df(X;)) is a (0, s)-tensor, the
pull back of A.

e Definition: Let M be a manifold and v : (a,b) — M a continuous curve.
A wector field along ~ is a continuous map X : (a,b) — T'M such that
X(t) c T,y(t)M.

e Definition: Let V be a connection on 7'M and v a smooth curve. Then there
is a unique operator

% : {smooth vector fields along v} — {smooth vector fields along ~}

which is linear over R, ¥ (f,) = L(f(¢))X, + f(t)%X,(t), and
v
dt
for every of X, which is the restriction of a local vector field near y(t) to 7.
e Definition: A vector field X along ~ is called parallel if %F7 =0.

X,(1) = V()X
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Theorem: Let v be a smooth curve and Xy € T )M. Then there is a unique
parallel vector field X along 7 such that X (0) = X,. If V is metric, then the
map which assigns X(s) to Xy is an isometry.

The solution of this initial value problem is called parallel transport of X
along ~.
Definition: Let v : [0,1] — M be a smooth curve and V a connection on
TM. Then

By TyoM — TyayM

where X is the unique parallel vector field along v which coincides with X, at
0. P, is an isomorphism of vector spaces who depends on +.

24. LECTURE ON JAN. 24. — Geodesics, curvature

Remark: If V is a metric connection on 7'M and X, Y are vector fields along
v, then

d \Y \Y

0.7 0) =g (FX0.Y0) +9 (X0, 370).

In particular, parallel transport along « is an isometry when V is metric.
Definition: Let V be a connection on M. A curve vy : I — M is a geodesic
when * is parallel along v, i.e. %ﬁ =0.

This condition is often written as Vs7 = 0 Strictly speaking, one has to
extend ¥ to a vector field on M defined on a neighbourhood of ().
Theorem: Let X, € T,M and V a connection. Then there is a unique geodesic
v : (—e,e) — M such that 4(0) = X.

Proof: In local coordinates ', ..., 2" around p a curve v(t) = (c(¢), ..., c"(t))
is a geodesic if and only if

() + Ffj(cl(t), LA M)ENF () =0forall k=1,...,n.
This is a system of ordinary differential equations of order 2 and all coefficients
are smooth (we assumed that connections are smooth implicitly by requiring
that VxY is smooth for smooth X,Y, it would have been more explicit to
require that the Christoffel symbols are smooth).

Standard theorems from the theory of ordinary differential equations then
finish the proof.

Example: Straight lines in (R", g5;) and great circles on S™ C (R™*!, g5;) (both
parametrized by arc length) are geodesics.

e Remark: If V is metric and V is metric, ||| is constant.

e Lemma: Let V,V be two connections on 7'M which have the same geodesics,
i.e. v is a V-geodesic if and only if it is a V-geodesic (we talk about parametrized
curves).

Then V — V is a antisymmetric (0, 2)-tensor with values in T M. Conversely,
if V — V is antisymmetric, then both connections have the same geodesics.
Proof: Let X € T'M. Then there is a geodesic v with 4(0) = X (at the same
time for V and V. Then

(V-V)(X,X) = V7 - V55
=0.
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i.e. V — V is antisymmetric. The converse is simpler.

e Lemma: Let V be a connection and A a antisymmetric (0, 2)-tensor with values
in TM. Then the torsion of V = V 4+ A is TV = TV + 2A where TV is the
torsion of V (A could be =TV /2).

e Proof: Compute.

e Consequence: Define an equivalence relation on the set of connections on T'M
as follows: V ~ V if and only if these connections have the same geodesic. Then
each equivalence class contains precisely one torsion free connection.

e Definition: The curvature of a connection V is the (0, 3)-tensor with value in

TM

Rz x(M) x x(M) x x(M) — x(M)

(R,Y,Z) — R(X,Y)Z =VxVyZ — VyVxZ — Vixy Z.

e Theorem (Riemann): Let V be the Levi-Civita connection of (M, g). Then
R = 0 if and only if for every p € M there is a chart ¢ : U — (R", g5) around
p such that ¢ is an isometry (and gy is the standard (semi)-Riemannian metric
on R™).

e Proof: Step 0: Pick a orthonormal basis X, ..., X,, of T, M and a local coordi-

nate system (y!,...,y") around p. We use the Levi-Civita connection throug-
hout.

Step 1: Extend X, ..., X, to parallel vector fields along the y'-coordinate
axis (+,0,...,0).

Step 2: Extend the result to parallel vector fields along the curves (y',-,0,...,0)
which are parallel to the y?-coordinate axis in our coordinates.

Step 3: Extend the result to parallel vector fields along the curves (y', 42, -,0,...,0)
which are parallel to the 3*-coordinate axis in our coordinates.

Step 4: Iterate, obtain vector fields Xl, ...,X, on a neighbourhood of p.
Because the connection is metric, parallel transport is an isometry. Hence
X Tyevns X, is everywhere orthonormal.

Step 5: From R = 0 we conclude %f(i = 0 along (y',-,0,...,0): This uses
[(%i, 8yj] =0 and

0=Vs,Vo,Xi=V,,Vs, X

~

Hence Valei is parallel along (y',-,0,...,0). By construction Valez‘ =0 at
(y',0,0,...,0). Hence Valei =0 along (y*,-,0,...,0).

[terating this argumenﬁ we obtain vkai = 0 for all 7,k on the domain of
X;. Hence V;X,; =0 for all Z.

Step 6: Because V is torsion free
Therefore the local flows ¢; of X; and @; of X ; commute for all 7, j.

Step 7: We construct the coordinates. The following map is well defined for
€ > 0 small enough.
Y (—e,e) X (—g,6) X ... (—e,6) — M

(z',2%,...,2") — o1(xh) (e2(2) (. on(@™)(p)) .. .) -
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Step 8: These are coordinates with the desired properties. Because all flows
commute with each other

(D)) = 2

- dwi¢(xl’ coa)
d

= %Qpi(ti)<<ﬁ1($l)( e Spn(xn)(p)) o )
— Xl(@/)(xl, o).

By the inverse function theorem v is a diffeomorphism from a neighbourhood of
0 to a neighbourhood of p. The last computation also shows that the coefficients
of g in the coordinates given by 1 are constant and coincide with the coefficients
of the standard metric.

25. LECTURE ON JAN. 26. — Curvature Tensors, Bianchi identities,
Examples

Proposition: The curvature tensor of a Riemannian manifold (M, g) has the
following properties:

(i) R(X,Y)Z =—-R(Y,X)Z

(ii) g(R(X> Y)Za W) = g(R(Y7 X)W> Z)

(i) R(X,Y)Z+R(Y,Z) X+ R(Z,X)Y =0

(V) g(R(X,Y)Z,W) = g(R(Z,W)X.Y)
Proof: (i) is obvious, (ii) follows from a computation using that V is metric,
(iii) uses the fact that V is torsion free (and the Jacobi identity) and (iv) follows
from (i),(ii),(iii), cf. [M2], p.54.
Definition: 7'M valued (0, 3)-tensors are called curvature tensors if they sa-
tisfy the properties in the previous proposition. (iii) is called the first Bianchi
identity.
Proposition: The curvature tensor of a Riemannian manifold satisfies the
second Bianchi identity

(VxR)(Y, Z)W + (VyR)(Z, X)W + (V2R)(X,Y)W = 0.

e Proof: computation

e [t is notoriously laborious to compute the curvature tensor unless the example
in question is very symmetric.

Definition: Let (M, g) be a Riemannian manifold and X,Y € T,M linearly
independent. Then

9(R(X, Y)Y, X)
9(X, X)g(Y,Y) — (9(X,Y))?
Warning: The lecture contained a typo, the above definition is correct. See
also (10) below.

Example: The Levi-Civita connection on R™ with the standard Lorentzi-
an/Riemannian metric has

K(X,Y) =

0
ox?
where h' are the components of Y. The curvature tensor vanishes.

Example: The orthogonal group acts by isometries on (5", g) (viewed as sub-
manifold of R"™!) and using this action one can move every 2-plane on T'S™ to

VxY = (Lxh")
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any other such plane. Therefore the sectional curvature of S™ is constant, and
we have seen that this determines the curvature tensor.
A curvature tensor which yields constant sectional curvature on S™ is

g(R(X7 Y)27 W) = K(g(X’ Z)g(}/, W) - g<X7 W)g(}/, Z))

Since the sectional curvature determines the curvature tensor, this is the right
answer (you have to determine K).

Example: Let G be a Lie-group and g a bi-invariant metric. Then VxY =
[X,Y]/2 where X, Y are left-invariant vector fields. This is enough to determine
the sectional curvature on G: By the definition of R and the Jacobi identity

R(X,Y)Z = i[z, X, Y]

Because g is Ad-invariant g(Adexp(i2)« X, Adexpz)Y) = g(X,Y') where ¢, is the
flow of the left-invariant vector field Z and Ad : G — G maps ¢ to hgh™!
(see p. 13 at the bottom). Differentiating with respect to t one gets

9([Z2,X],Y) +9(X,[2,Y]) =0
where all vector fields are left invariant. Then
9([X, Y], [X, Y])
Ag(X, X)g(V,Y) — (9(X,Y))?)
when ¢ is positive definite.

Example: When (M, g) = (M, g1) X (Ms, g2) then the curvature tensor of M
decomposes accordingly.

K(X,Y) =

26. LECTURE ON JAN. 31. — Ricci curvature, divergence, Bochner’s
theorem

Definition: Let (M, g) be a (semi)-Riemannian manifold and V the Levi-Civita
connection and fix an Orthonormal basis F; of T,M. Then

Ric(X,Y) Z g(R(E;, X)Y, E;) respectively

scal = ZRic
= Zg (Ei, E))E;, Ey)

is the Ricci-curvature respectively the scalar curvature. The Ricci curvature is
a symmetric (0, 2)-tensor field, the scalar curvature a smooth function which
do not depend on the choice of ONB.

Definition: Let X be a smooth vector field on (M, g) a semi Riemannian
manifold of dimension n and wvol the Riemannian volume form (c.f. (9) on
p. 20). Then Lxvol is a n-form, hence there is a unique function div(X) such
that

div(X) - vol = Lxvol = dixvol.
This is the divergence of X.

e Lemma: With the notation from above div(X) = >". g(Vg, X, E;).
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e Proof: This follows from the definitions and the fact that vol is parallel. This
means that VzvolO for all Z: This can be seen from the definition of vol by
extending Z to a local vector field and E; to a local framing which is parallel
along flow lines of Z. (Note that g is parallel because it is metric.)

e Lemma: Let X be as above and a(-) = g(X,-) the dual 1-form of X. Then
da = div(X).

e Proof: Although this is a local statement, it is convenient to assume that M
is closed, oriented. Then for every smooth function f

(6a, f) = /M g(a, df yvol = /M (Lx f)vol

_ /M F(Lxvol) = /M Fdiv(X)vol

by Stokes theorem. This implies the claim.
e Lemma: In the situation above, a is closed if and only if V +—— VX is
symmetric.
e Proof: Computation using the fact da(X,Y) = Lx(a(Y)) — Ly(a(X)) —
o([X,Y]).
e Lemma: Let X € x(M) so that g(X,-) = a is closed and f = || X|?/2 Then
1. grad(f) = VxX.
2. Vy(grad(f)) = R(V, X)X + (VxS)(V)+ S(S(V)) with S(V) = Vi X.
e Proof: Recall g(grad(f),:) = df. Part 1 is elementary. For part 2 compute
using the fact that V is torsion free.
e Lemma: In the situation from the previous Lemma:

(11) ~Af = ||[VX|? + g(X, grad(div(X))) + Ric(X, X).

e Poof: Take traces of the summands in the second part of the previous lemma.
Use trace(VxS) = Vx(traceS). This is proved as follows using orthonormal
frames (Fy, ..., F,) defined on the neighbourhood of a point.

trace(VxS) = Z g(VxS)E;, E;)

= Z (Lx(g(S(Ei), Ei)) — g(S(Ei), Vx E;) — g(S(Vx E;), E;))

= Vx <Z 9(S(E3), Ei)) =Y (9(S(E), VxE) + g(S(Vx E,), Ey))

i

= Vx(trace(S —QZg i), VxE;)

= Vx(trace(9)) — zz ( (Z 9(S(Ey), E;)E;, VXEZ))
= Vx(trace(S —QZg 9(E;, VxE;)

= Vx(trace(S5)).

TO get to the second line use the definition of Vg, rearrange to the third,
use symmetry of S to get to the fourth. To get to the fifth line write S(FE;)
in terms of the orthonormal basis F;, rearrange to get to the sixth. The last
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ZEEE 50

==

<O =
i)

2=

L,

equality follows from the symmetry of S on the one hand, and the fact that
0= Lx(g(Ei, E))) = g(VxE;, E;) + g(E;, Vx Ej;) (symmetric matrices are or-
thogonal to antisymmetric matrices).
Theorem (S. Bochner, 1946): Let (M, g) be a connected positive definite
Riemmanian manifold such that Ric(V, V) >0 for all V € T M.

If « is a harmonic 1-form, then the vector field dual to it is parallel. There
are at most n linearly independent harmonic 1-forms.

If there is a point p where Ric(V,V) > 0 for all 0 # V € T,M, then all
harmonic 1-forms vanish.
Proof: Let o be harmonic, hence closed and coclosed. Use (11). Note that
Sy (Af)-1vol = 0 because A is symmetric. div(X) vanishes because dov = 0 by
a previous lemma. Therefore

Oz/MAfvol
:/ (VX + Ric(X, X)) vol.
M

Hence VX = 0, i.e. X is parallel. Because M is connected X is determined
by its value at one point. The space of parallel vector fields is at most n-
dimensional. If Ric(V, V) > 0 for all 0 # V' € T,M, then X has to vanish at
that point and X vanishes every where. Then there is no non-trivial harmonic
1-form.

Example: The sphere satisfies the assumptions of the theorem and we know
H'(S™) = 0 when n > 2. The torus 7" = S' x ... S! shows that n linearly
independent 1-forms can indeed arise. 7" has no metric with Ric > 0 such that
the inequality is strict in one point.
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