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Please note: These notes summarize the content of the lecture, many details and
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1. Lecture on Oct., 18. – Submanifolds of Euclidean space

• References: I do not follow specific books, possible references include [C, Jä-V,
L, W].
• We give four equivalent definitions of the notion of submanifold of dimension
k ∈ N = {0, 1, 2, . . .}. In all four of them, M ⊂ Rn.
• Condition (a) Local parametrizations: For all p ∈M there is an open set
U ⊂ Rk, a neighbourhood V ⊂ Rn of p and a smooth map ϕ : U −→ Rn such
that

1. ϕ is a homeomorphism onto V ∩M , and
2. for all x ∈ U the differential Dxϕ : Rk −→ Rn is injective.

• Condition (b) Locally flat: For all p ∈ M there are an open neigbourhood
V ⊂ Rn of p and W ⊂ Rn of 0 and a diffeomorphism φ : V −→ W such that
φ(p) = 0 and φ(V ∩M) =

(
Rk × {0 ∈ Rn−k}

)
∩W .

• Condition (c) Locally regular level set: For all p ∈ M there is an open
neighbourhood U and a smooth function F : V −→ Rn−k such that

1. F−1(0) = (V ∩M), and
2. for all q ∈M ∩ V the differential DqF : Rn −→ Rn−k is surjective.

• Condition (d) Locally a graph: For all p ∈ M there is an open neighbour-
hood V ⊂ Rn and a smooth function U ⊂ Rn−k defined on an open subset of
U ⊂ Rk together with a permutation σ ∈ Sn such that

V ∩M = {(xσ(1), . . . , xσ(n)) | (x, g(x)) with x ∈ U}.

• Theorem: For a given subset M ⊂ Rn the conditions (a)–(d) are equivalent.
• Proof: The proof of the implications (b) ⇒ (c), (d) ⇒ (a) are trivial. For the

proof of (c) ⇒ (d) one uses the implicit function theorem, for the proof of
(a) ⇒ (b) one applies the inverse function theorem to a function Φ extending
ϕ (the local inverse of Φ satisfies (b)).
• Definition: A subset M ⊂ Rn is a submanifold of dimension k if any of the

conditions (a)–(d) is satisfied.
• Remark: When M is a non-empty submanifold the number k is then the same

in all the conditions, in particular the dimension (a non-empty open subset of
Rl is diffeomorphic to an open subset of Rm only if m = l by the inverse function
theorem, this remains true for homeomorphism but this is more difficult) of a
non-empty submanifold is well defined. By convention, the empty subset is a
submanifold of any dimension (including negative integers).
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• Examples : Rk ×{0} ⊂ Rn, k ≤ n, Sk = {(x1, . . . , xk+1) |x2
1 + . . .+ x2

n = 1} ⊂
Rk+1, and more interestingly

O(n) = {A ∈ Mat(n× n,R) |AAT = E}
are submanifolds. To prove this for O(n) verify condition (c) for

F : Mat(n× n,R) −→ Sym(n,R) = {B ∈ Mat(n× n,R) |B = BT}
A 7−→ AAT − E.

The dimension of O(n) is n(n−1)
2

.

2. Lecture on Oct., 20. – Continuation and abstract manifolds

• Proposition: Let M ⊂ Rn be a smooth submanifold of dimension k, U,U ′ ⊂
Rk open and

ϕ : U −→M ϕ′ : U ′ −→M

local parametrizations of M . Then

ϕ−1 ◦ ϕ′ : ϕ′−1(ϕ(U) ∩ ϕ′(U ′)) −→ ϕ−1(ϕ(U) ∩ ϕ′(U ′))
is a diffeomorphism.
• Proof: ϕ−1◦ϕ′ is a homeomorphism with inverse ϕ′−1◦ϕ. To show that ϕ−1◦ϕ′

is smooth near ϕ′−1(p) ∈ ϕ′−1(ϕ(U) ∩ ϕ′(U ′)) one constructs smooth map F :
V −→ Rn on an open set in Rn containing ϕ′−1(p) such that F ∩ i = f near
ϕ′−1(p) for a inclusion of Rk into Rn (as in the proof of (a) ⇒ (b) last time)
and F is a local diffeomorphism near ϕ′−1.
• Definition: f : M −→ R is smooth near p ∈M if there is a local parametriza-

tion ϕ : U ⊂ Rk −→M such that p ∈ ϕ(U) and f ◦ ϕ is smooth.
• Remark: This is independent from the choice of ϕ by the above proposition.
• Examples: Restrictions of coordinate functions to submanifolds of Rn are

smooth because of the following Lemma.
• Lemma: Let M ⊂ Rn be a submanifold. A function f : M −→ R is smooth

near p ∈ M if and only if there is an open neighbourhood U of p in Rn and a
smooth map F : U −→ R such that F |U∩M = f |U∩M .
• Proof: Exercise.
• Remark: Maps into submanifolds of Rn can be viewed as a collection of n

real valued functions. we therefore have defined what a smooth map between
submanifolds of Euclidean spaces are.
• Example: Consider O(n) ⊂ Mat(n× n,R). The maps

inv : O(n) −→ O(n)

A 7−→ A−1 = AT

· : O(n)×O(n) −→ O(n)

(A,B) 7−→ A ·B.
are all smooth (we view (somehow arbitrarily) O(n)×O(n) as submanifold of
Mat(n× n,R)×Mat(n× n,R). This makes O(n) a Lie group.
• We now start discussing manifolds without reference to an ambient space. The

first attempt is preliminary.
• Definition: Let M be a set. A smooth k-dim. atlas A on M is a collection of

maps ϕi : Ui −→M, i ∈ I (called charts) such that
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1. Ui ⊂ Rk is open and ϕi : Ui −→ ϕi(Ui) is bijective,
2. ∪iϕi(Ui) = M ,
3. for all i, j ∈ I such that ϕi(Ui) ∩ ϕj(Uj) 6= ∅ the preimage under ϕi, ϕj

are open in Rk and

ϕ−1
i ◦ ϕj : ϕ−1

j (ϕi(Ui) ∩ ϕj(Uj)) −→ ϕ−1
i (ϕi(Ui) ∩ ϕj(Uj))

is a diffeomorphism.
• Definition: Two such atlases A,A′ for M are equivalent if their union is still

a smooth atlas.
• Preliminary definition: A manifold of dimension k is a set with an equiva-

lence class of smooth k-dim atlases.
• Example: Submanifolds of Rn and products of such have natural smooth at-

lases.
• Example: For k ≥ 0 let real projective space RPk be the set of lines through

the origin in Rk+1, i.e.

RPk = (Rk+1 \ {0})
/
∼

where (x0, x1, . . . , xn) ∼ (x′0, . . . , x
′
n) if and only if there is λ ∈ R such that

λ · (x0, . . . , xn) = (x′0, . . . , x
′
n). Elements of this set are denoted by homogeneous

coordinates [x0 : . . . : xn]. There is an atlas for RPk with k + 1 charts: For
i ∈ {0, . . . , k} let

ϕi : Rk −→ RPk

(x1, . . . , xk) 7−→ [x1 : . . . : 1 : . . . : xk]

here the 1 occupies the ith slot of the homogenous coordinate. One obtains
the complex projective space CPn of dimension 2n when one replace R by C.
(Just to be clear: These are manifolds.)
• Example: Let M = (R \ {0})∪{p, q}. We define a smooth 1-dim atlas contai-

ning exactly the two charts

ϕp : R −→M ϕq : R −→M

t 7−→
{
t t 6= 0
p t = 0

t 7−→
{
t t 6= 0
q t = 0.

This is a smooth atlas.
• Remark: Every set with a smooth atlas carries a natural topology, this is the

smallest topology on M such that all charts ϕi : Ui −→M are homeomorphisms
onto their image. The topology induced in the previous example is not Haus-
dorff, i.e. every open neighbourhood of p intersects every open neighbourhood
of q.
• Remark: We will occasionally review notions from point set topology. Good

references include [Jä-T],[Q],[Y].

3. Lecture on Oct., 25. – Abstract manifolds, smooth functions

• We give list of constructions of topological spaces.
• Let Y ⊂ (X,O). The subspace topology on Y is the smallest topology so that

the inclusion Y ↪→ X is continuous, i.e. V ⊂ Y is open if and only if there is
an open set U ⊂ X such that X ∩ U = V .
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• Let X be a topological space and ∼ an equivalence relation on X. Then the
quotient topology on X/ ∼ is the largest topology so that the projection π :
X −→ X/ ∼ is continuous, i.e. V ⊂ X/ ∼ is open if and only if π−1(V ) is
open.
• Let (Xi)i∈I be a family of topological spaces. The product topology on

∏
iXi

is the smallest topology so that for all j ∈ I the projection
∏

iXi −→ Xj is
continuous. Warning/Example: The subset (−1, 1)N ⊂ RN is not open.
• A topological space is Hausdorff if for all x 6= y there are disjoint open sets
Ux, Uy such that x ∈ Ux, y ∈ Uy.
• A topological space is compact if for every covering (Ui)i∈I of X by open sets

(i.e. X = ∪iUi)there is a finite subset {i1, . . . , ik} ⊂ I so that X = Ui1∪. . .∪Uik .
• A topological space is paracompact if for every open covering (Ui)i∈I there is a

locally finite refinement, i.e. there is a collection (Vj)j∈J of open sets such that
– ∪jVj = X,
– for all j there is i(j) so that Vj ⊂ Ui(j),
– every x has a neighbourhood Vx so that Vx ∩ Vj is empty for all but

finitely many j.
• A justification for this requirement is a theorem of Stone saying that metric

spaces are paracompact. Compact spaces are paracompact.
• Assume a topological space is Hausdorff and admits an atlas. Then the following

conditions imply paracompactness:
– X is second countable, i.e. there is a countable collection Un, n ∈ N so

that every open set can be obtained as union of these set.
– There is a compact exhaustion of X, i.e. there is a family of compact

sets (Ki)i∈N which are nested (i.e. Ki ⊂ K̊i+1 ⊂ Ki+1 ⊂ K̊i+2 . . .) and
X = ∪Xi.

• Definition: A smooth manifold of dimension n is a topological space M which
is Hausdorff and paracompact such that there is an atlas A = {(Ui, ϕi)i∈I} such
that

– Ui ⊂ Rn is open and ϕi : Ui −→ ϕi(Ui) ⊂ M is a homeomorphism onto
its image,

– ∪iϕi(Ui) = M , and
– for all i, j ∈ I with ϕi(Ui) ∩ ϕj(Uj) 6= ∅ the transition maps

ϕ−1
i ◦ ϕj : ϕ−1

j (ϕi(Ui) ∩ ϕj(Uj)) −→ ϕ−1
i (ϕi(Ui) ∩ ϕj(Uj))

are smooth
• Examples: Submanifolds of Rk, finite products of manifolds, RPn,CPn and

many more.
• The next goal is the construction of sufficiently many smooth functions on

smooth manifolds with positive dimension.
• Reminder: The function

λ : R −→ R

t 7−→
{

0 t ≤ 0
exp(−t−1) t > 0

is smooth. The same holds for ψε(x) = λ(x)
λ(x)+λ(ε−x)

for ε > 0. This function is

nowhere negative and ≡ 1 on {x > ε} while it is ≡ 0 on {x < 0}. Finally, the
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function fε on Rn defined by

fε(x) = 1− ψε(‖x‖ − ε)
is smooth, it vanishes outside of a 2ε-ball around the origin and is ≡ 1 on the
ε-ball around the origin.
• Let p ∈ M , ϕ : U −→ M a chart mapping the origin to p. Then for small

enough ε > 0, the function

g : M −→ R

x 7−→
{

0 x 6∈ ϕ(U)
fε(ϕ

−1(x)) x ∈ ϕ(U)

is well defined and smooth. Using this construction it easy to show that the
vector space of smooth functions on M has infinite dimension (provided that
the dimension of M is positive (and M nonempty)).

4. Lecture on Oct., 27. – Smooth functions on manifolds, embedding,
partitions of unity

• Lemma: Closed subsets of compact spaces are compact. (A set in a topological
space is closed if its complement is open).
• Lemma: A compact subset of a Hausdorff space is closed.
• Theorem: Let X be a compact topological space and Y Hausdorff. A conti-

nuous, bijective map f : X −→ Y is a homeomorphism.
• For the proof one uses the above Lemmas to show that f is open (i.e. maps

open sets to open sets). In the situation at hand this is equivalent to showing
that f is closed (i.e. closed sets are mapped to closed sets).
• Theorem: Let Mn be a compact manifold of dimension n. Then there is an

embedding F : M −→ RN onto a submanifold of Rn.
• Proof (main steps):

1. For each p ∈ M pick a local parametrization ϕp : Up ⊂ Rn −→ M with
p ∈ ϕp(Up) and a smooth function fp which has support inside ϕp(Up)
and fp ≡ 1 on a neighbourhood Vp of p and fp < 1 outside of Vp. Note
that fp and also the functions fp ·xi extend (by 0) to smooth functions on
M with support in Up. The extensions are denoted by the same symbol.

2. The sets Vp cover M . Since M is compact finitely many suffice. We denote
them by V1, . . . , Vk and the associated functions are denoted by f1, . . . , fp.

3. We show that

F : M −→ (R× Rn)k ' Rk(n+1)

q 7−→ ((f1(q), (f1 · x1) (q)) , . . . , (fk(q), (fk · xn) (q)))

is the desired embedding. If F (q) = F (q′) then q, q′ lie in the same set
Vj. Since the coordinates (i.e. the functions (fj · xi), i = 1, . . . , n on this
separate points of Vi we have q = q′. Local parametrizations of F (M) are
obtained from compositions of local parametrizations of M with F . We
also use the above theorem to conclude that F is a homeomorphism onto
its image and the subspace topology on F (M) ⊂ Rk(n+1). This concludes
the proof.

• Remark: The corresponding theorem for non-compact manifolds is true. Be-
fore one can show that one should first show that N = k(n+1) can be replaced
by 2n+ 1 (this depends only on the dimension, not on some covering).
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• Definition: Let (Ui)i∈I be an open covering of M . A partition of unity subor-
dinate to the covering is a collection of smooth functions (fj)j∈J such that

1. for all x there is a neighbourhood Vx such that all but finitely many fj
vanish on Vx,

2. for all j ∈ J there is i(j) ∈ I such that support(fj) ⊂ Ui(j), and
3. fj ≥ 0 and

∑
j∈J fj = 1.

Because of the first condition one does not have to worry about convergence of
the series in the third condition.
• The following statement is a corollary of the first proposition in the Lecture of

Nov. 3, i.e. the existence of a partiatin of unitiy subordinate to a given open
covering. The corresponding statement for a certain class of topological spaces
and continuous (not smooth) functions is the Lemma of Urysohn.
• Corollary: Let A0, A1 be disjoint closed sets in a manifold. Then there is a

smooth, nowhere negative function g such that g ≡ 1 on A1 and g ≡ 0 on A1.
• Proof: Pick a partition of unity (fj)j∈J subordinate to the covering U0 =
M \ A0, U1 = M \ A1. Then define

g =
∑

{j∈J |supp(fj)⊂U0}

fj.

5. Lecture on Nov., 3. – Partition of unity (existence), tangent vectors

• Proposition: Let (Ui)i∈I be an open covering of M . Then there exists a par-
tition of unity subordinate to (Ui)i.
• We will discuss three definitions for a tangent vector at p ∈ M (M a smooth
n-manifold).
• Definition (geometric): A smooth curve at p is a smooth map γ : (−ε, ε) −→
M such that γ(0) = p. Two curves γ0, γ1 at p are equivalent (γ0 ∼ γ1) if for a
local parametrization ϕ : U ⊂ Rn −→M around p we have

d

dt

∣∣∣∣
t=0

(ϕ ◦ γ0)(t) =
d

dt

∣∣∣∣
t=0

(ϕ ◦ γ1)(t).

• This is independent of ϕ and ∼ is an equivalence relation.
• The (geometric) tangent space at p is

TpM := {smooth curves at p}
/
∼ .

Elements of TpM are tangent vectors.
• Let C∞(M) be the ring (with pointwise addition and multiplication) of smooth

real valued functions on M .
• Definition (algebraic): A derivation at p is a linear map

v : C∞(M) −→ R
which satisfies the Leibniz rule, i.e.

v(fg) = v(f)g(p) + f(p)v(g).

The vector space TpM of all derivations at p is the (algebraic) tangent space of
M at p.
• Remark: Every derivation at p vanishes on constant functions. Moreover, if
f = g on a neighbourhood V of p then v(f) = v(g). This is shown using a
smooth function h with support in V which is ≡ 1 on a neighbourhood of p in
V . (Then 0 = v(h(f − g)) = v(f)− v(g).) In particular, instead of C∞(M) we
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could have used E∞p (M) = C∞(M)/ ∼ with f ∼ g if and only if f, g coincide
on a neighbourhood of p. Elements of E∞p (M) are germs of functions at p. From
now on we will frequently consider smooth functions defined on neighbourhoods
of p.
• Lemma: Let U ⊂ Rn be a ball around 0 and f : U −→ R smooth. Then there

are smooth functions fi : U −→ R such that

f(x) = f(0) +
∑
i

xifi(x)

and fi(0) = ∂f
∂xi

(0). Here xi is the i-th coordinate, not a power of something.
• Using this Lemma one shows that a derivation v at p is determined by v(x1), . . . , v(xn)

where xi are local coordinates from a local parametrization (ϕ,U) near p such
that xi(p) = 0 for all i. Then dim(TpM) = n. For i = 1, . . . , n the derivation v
with v(xi) = δij is denoted by ∂

∂xi
.

• Definition: A (physicists) tangent vector of M at p is a map

v : Dp(M) = {local parametrizations around p} −→ Rn

such that

v((ψ, V )) = Dp(ψ
−1 ◦ ϕ)v((ϕ,U)).

The vectorspace of such maps obviously dimension ≤ n and = n because of the
chain rule.
• To obtain an algebraic tangent vector from a geometric one:

{curves at p}/ ∼ −→ {derivation at p}

[γ] 7−→
(
f 7−→ d

dt

∣∣∣∣
t=0

(f ◦ γ)(t)

)
.

• To obtain a physicists tangent vector from an algebraic one:

{derivation at p} −→ {physicists tangent vectors}
v 7−→

(
(ϕ,U) 7−→ (v(xi))i

)
where xi are the coord. around p from ϕ.
• To obtain a geometric tangent vector from an physicists tangent vector:

{pysicists tangent vectors} −→ {curves at p}/ ∼
v 7−→

[
t 7−→ ϕ(ϕ−1(p) + tv((ϕ,U)))

]
.

• Fact: All these maps are well defined, bijective and the second map is a linear
isomorphism. Moreover, passing from geometric to algebraic, then to the phy-
sicist version, then back to the geometric, then a geometric tangent vector gets
mapped to itself, etc.

6. Lecture on Nov., 8. – Differential, Example: Lie groups, tangent
bundle

• As we have three definitions of tangent vectors, there are three definitions of
the differential of a smooth map F : M −→ N between smooth manifolds at
p ∈M .
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• Definition (geometric, curves): The differential DpF is

DpF : TpM = {smooth curves at p} −→ TpN

[γ] 7−→ [F ◦ γ].

• Definition (algebraic, derivations): The differential DpF is

DpF : TpM = {derivations at p}/ ∼ −→ TpN

v 7−→
(
g 7−→ v(g ◦ F ) =: v(F ∗g)

)
.

• Definition (physicists, transformation rule): Let M be a manifold of di-
mension n and (V, ϕ) a local parametrization of M around p ∈ M . The diffe-
rential DpF is

DpF : TpM = {v : Dp(M) −→ Rn + transformation rule} −→ TpN

v 7−→
(
(U,ϕ) 7−→ Dϕ−1(p)

(
ψ−1 ◦ F ◦ ϕ

)
(v((U,ϕ)))

)
.

• All these versions are well defined and compatible with the identifications of
the various definitions of tangent spaces discussed last time.
• Example: M = Rn or an open set in Rn. Then TpM ' Rn canonically. The

differential of a smooth map between open set of Euclidean space (viewed as
manifolds) coincides with the usual definition where the differential is repre-
sented by the Jacobi matrix (with respect to the natural basis of Euclidean
space.
• Example: Let f : U −→ Rm be a smooth map defined on an open set of Rn

such that 0 ∈ Rm is a regular value. Then for p ∈M = f−1(0)

TpM −→ ker
(
Dpf : Rn = TpRn −→ Rm = Tf(p)=0Rm

)
[γ] 7−→ d

dt

∣∣∣∣
t=0

γ(t)

is a natural isomorphism which we will use frequently to describe tangent spaces
of submanifolds.
• Lemma (chain rule): Let F : M −→ M ′ and G : M ′ −→ M ′′ be smooth

maps between smooth manifolds. Then

Dp(G ◦ F ) =
(
DF (p)G

)
◦ (DpF ) .

• Lengthy example about Lie groups, general case: Let G be a Lie group
and g ∈ G. Then

cg : G −→ G

h 7−→ ghg−1

is smooth and we have the rule cg ◦ cg′ = cgg′ . In particular cg is a diffeomor-
phisms with inverse cg−1 . Moreover cg(e) = e. Thus we can differentiate cg at e
and we get a linear map

Adg := Decg : TeG −→ TeG.

This is an isomorphism of vector spaces with inverse Adg−1 and by the chain
rule the map

Ad : G −→ Aut(TeG)

g 7−→ Dcg = Adg
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is a group homomorphism which is smooth. Note that Aut(TeG) is an open
subset of the vector space of all endomorphisms of TeG. In particular Aut(TeG)
is a Lie group. The tangent space at E (the identity automorphism) is the space
of all endomorphisms of TeG. Moreover Ade = idTeG. Thus we can differentiate
Ad at e and we get a linear map

ad : TeG −→ Tid(Aut(TeG)) = End(TeG)

X 7−→ (Y 7−→ (DeAd(X)) (Y ) = ad(X)(Y )) .

This map is called adjoint representation of TeG.
• Terminology: The tangent space at e of a Lie group G is often denoted by
g, it is what is called a Lie algebra. In particular, End(TeG) is a Lie algebra.
The map ad is a Lie algebra homomorphism (once the notion of a Lie algebra
is clear).
• Same example, but more specific with G = O(n) (or any Lie group

which is a subgroup of Gl(n,R)): We discussed O(n) in the first lecture, we
showed that O(n) is a smooth submanifold of Mat(n×n,R) as preimage of the
regular value E of the map

F : Mat(n× n,R) −→ Sym(n,R) = {symmetric matrices}
A 7−→ AAT .

Then TEO(n) = ker(DEF ) = {B ∈ Mat(n × n,R) |B + BT = 0}. (Recall
DAF (B) = ABT +BAT .) The map Ad is

Ad : O(n) −→ Aut(TEO(n))

A 7−→ (X 7−→ AXA−1).

Its differential at E is

ad : TEO(n) =: o(n) −→ End(o(n))

B 7−→ (X 7−→ ad(B)(X) = BX −XB) .
(1)

In order to see this, recall that if γ(t) = E + tB+ t2C(t) with C(t) bounded as
t→ 0, then

d

dt

∣∣∣∣
t=0

(γ(t))−1 = −B.

Hence if γ represents the tangent vector B in E of O(n), then

ad = DAd(B)(X) =
d

dt

∣∣∣∣
t=0

(
t 7−→ γ(t)X(γ(t))−1

)
.

Using the product rule we obtain (1). Except for the description of o(n) as
antisymmetric matrices the discussion above is valid for all Lie groups which
are submanifolds of Gl(n,R) and subgroups at the same time.
• Definition: Let M be a smooth manifold of dimension n. The set

TM :=
⋃
p∈M

TpM

is the tangent bundle of M . There is an obvious map from TM to M taking a
tangent vector in TpM to p ∈M . We denote this map by pr.
• Our goal now is to give TM the structure of a manifold. We would like pr to

be a smooth map afterwards.
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• Let (Ui, ϕi)i∈I be an atlas for M consisting of local parametrizations ϕi : Ui −→
M of M . Then ⋃

i∈I

pr−1(ϕi(Ui)) = TM.

We define a local parametrization of pr−1(ϕi(Ui)) by

ϕ̂i : Ui × Rn −→ pr−1(ϕi(Ui)) ⊂ TM

(x,w) 7−→ ((Ui, ϕi) 7−→ w) ∈ Tϕi(x)M.

This is a bijective map. We used the physicist definitions of tangent vectors
because using the transformation behavior inherent in this definition we will
easily find the coordinate transformation for the atlas ((Ui × Rn), ϕ̂i)i∈I . First
note, that

ϕ̂−1
i

(
pr−1(ϕi(Ui)) ∩ pr−1(ϕj(Uj))

)
= ϕ−1

i (ϕi(Ui) ∩ ϕj(Uj))× Rn.

The transition function ϕ̂−1
j ◦ ϕ̂i is then

ϕ−1
i (ϕi(Ui) ∩ ϕj(Uj))× Rn −→ ϕ−1

j (ϕi(Ui) ∩ ϕj(Uj))× Rn

(x,w) 7−→
(
ϕ−1
j ◦ ϕi(x), Dx(ϕ

−1
j ◦ ϕi)(w)

)
.

(2)

We have expressed the new transition function in terms of the transition func-
tion of the atlas we started with. Hence ϕ̂−1

j ◦ ϕ̂i is smooth.

7. Lecture on Nov., 10. – Tangent bundles, vector fields, commutators
of vector fields

• On TM we consider the smallest (sometimes people also say coarsest) topology
such that ϕi : Ui × Rn −→ TM is a homeoemorphism onto its image.
• Lemma: Let A,A′ be two equivalent atlases for X. Then the topologies on X

induced by A,A′ coincide.
• Proposition: Let A be the smooth atlas for TM coming from a smooth atlas

for M (cf. last item of the lecture on Nov., 8th). The topology on TM which is
induced from A is Hausdorff and second countable, TM is a smooth manifold,
the map pr : TM −→ M which maps tangent vectors in TpM to p is smooth,
surjective.

Note that the transition function in (2) is of a particular form: The second
component of ϕ̂−1

j ◦ ϕ̂i is a linear isomorphism (which depends on x). Thus the
structure of TpM as a vectorspace is preserved by the transition functions of
our atlas.
• Definition: A vector field X on M is a smooth map X : M −→ TM such that

pr◦X = idM . The set X (M) of vector fields is a vector space over R (pointwise
addition and scalar multiplication). Often one writes Γ(TM) instead of X (M).
• Lemma: Given two vector fields X, Y on M there is a vector field [X, Y ] such

that

(3) [X, Y ](f) = X(Y (f))− Y (X(f))

for all smooth functions. Moreover, for all X, Y, Z ∈ X (M)

[X, Y ] = −[Y,X] (antisymmetry)

0 = [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] (Jacobi identity)
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and [·, ·] is bilinear over R (not over the ring of smooth funtions). If f is a
smooth function and X, Y ∈ X (M), then

[X, fY ] = f [X, Y ] + (X(f))Y.

• Definition: A (real) Lie algebra is a vector space V (over R) together with a
bilinear pairing

[·, ·] : V × V −→ V

which is antisymmetric and satisfies the Jacobi identity.
• Example: The space of smooth vector fields is a real Lie algebra.

8. Lecture on Nov., 15. – Vector fields, flows, Lie derivative,
commutators

• Summary: Let I ⊂ R be an interval and Xt, t ∈ I, be a smooth family of
vector fields on M . For each p0 ∈ M and t0 ∈ I there is a interval Imax ⊂ I
containing t0 and a smooth map γ(p0, t0) : Imax −→M such that

γ(p0, t0)(t0) = p0

γ̇(p0, t0)(t) = Xt(γ(p0, t0)(t)).
(4)

and every smooth map α : J −→ M with the same properties has J ⊂ Imax
and coincides with γ on J .

For every compact interval t0 ∈ J ⊂ I there is a neighbourhood V of (p0, t0)
in M × I such that γ(q, s) is defined on the interval J for (q, s) ∈ V and
γ(q, s)(t) depends smoothly on all variables (q, s, t) ∈ V × J .

When M itself or the support

{p ∈M |Xt(p) 6= 0 for some t ∈ I} ⊂M

is compact then

(5) Imax = I for all initial values (p0, t0) ∈M × I.
We will assume this throughout the discussion to simplify the exposition. Pro-
perty (5) is often referred to as completeness. For t, t0 ∈ I the maps

ψt : M −→M

q 7−→ γ(q, t0)(t)

is a diffeomorphisms. The inverse is

ψ−1
t : M −→M

q 7−→ γ(q, t)(t0).

We obtain a (continuous with respect to every reasonable topology on Diff(M))
map

I −→ Diff(M) = {ψ : M −→M |ψ a diffeomorphism }
t 7−→ ψt.

(6)

If Xt does not depend on time t, then we set I = R and Xt = X. All the above
works (assuming completeness), γ(p, t0)(t) depends only on the difference t−t0.
We usually set t0 = 0 and write γ(p)(t) for solutions of (4). By uniqueness of
the solutions of (4)

γ(γ(p)(s))(t) = γ(p)(s+ t)

and (6) is a homomorphism of groups which is called the flow of X.



12

• Definition: Let ψ be a diffeomorphism of M and Y ∈ X (M). Then

(ψ∗Y )(p) := (Dψ−1)ψ(p)(X(ψ(p))) is the pull back of Y with ψ

(ψ∗Y )(p) := (Dψ)ψ−1(p)(X(ψ−1(p))) is the push forward of Y with ψ.

• Definition: Let X, Y ∈ X (M). The Lie-derivative of Y in direction X is

(7) LXY :=
d

dt

∣∣∣∣
t=0

ϕ∗tY

where ϕt is the flow of X.
• (ϕ∗tY )(p) is a smooth family of vectors in TpM .
• Lemma: Let X, Y be smooth vector fields on M and F ∈ Diff(M). We write
ϕt respectively ψs for the flow of X respectively Y . Then

a) F ∗Y = d
ds

∣∣
s=0

F−1 ◦ ψs ◦ F.
b) F ∗Y = Y ⇔ F ◦ ψs = ψs ◦ F for all s ∈ R.
c) LXY = 0 ⇔ ϕt ◦ ψs = ψs ◦ ϕt for all s, t ∈ R.

• The proof of a) is a direct computation with the chain rule. So is the part⇐ of
b), the part ⇒ of b) uses the uniqueness of solutions of initial value problems
(ψs(p0) and F−1 ◦ ψs ◦ F (p0) solve the same initial value problem). Finally, c)
follows from b) when one shows that LXY = 0 if and only if ϕ∗tY = Y using
(7).
• Lemma: Let X, Y be smooth vector fields on M and let ϕt respectively ψs be

the flow of X respectively Y . Then

a) LXY = ∂2

∂s∂t

∣∣∣
(0,0)

ϕ−t ◦ ψs ◦ ϕt.
b) (LXY )(f) = X(Y (f))− Y (X(f)) for all smooth functions f on M .

• The proof of a) relies on the previous Lemma. For b) use the item after the
definition of LXY to show that

LXY (f) =
∂2

∂s∂t

∣∣∣∣
(0,0)

f ◦ ϕ−t ◦ ψs ◦ ϕt.

Then apply the chain rule to the composition of t 7−→ (−t, t) with (τ, τ ′) 7−→
f ◦ ϕτ ◦ ψs ◦ ϕτ ′ .
• Remark: In terms of local coordinates one can write

X(x1, . . . , xn) =
n∑
ν=1

aν(x1, . . . , xn)
∂

∂xν
= aν∂ν

Y (x1, . . . , xn) =
n∑
µ=1

bµ(x1, . . . , xn)
∂

∂xµ
= bµ∂µ

(the rightmost expressions illustrate notation used in physics literature, in par-
ticular the summation convention where a sum sign is understood for indices
which appear in upper and a lower index, the same applies to the second line
in the next equation) and compute [X, Y ] from the definition (3) as follows

[X, Y ](x1, . . . , xn) =
∑
ν,µ

(
aν
∂bµ

∂xν
− bν ∂a

µ

∂xν

)
∂

∂xµ

[X, Y ]µ = aν∂νb
µ − bν∂νaµ.
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9. Lecture on Nov., 17. – Left invariant vector fields, Lie algebras of Lie
groups

• Lemma: Let X, Y be smooth vector fields on M and F : M −→ M a diffeo-
morphism. Then

(8) DF ([X, Y ]) = [DF (X), DF (Y )].

• This is a computation using the chain rule, ϕt is the flow of X:

DF ([X, Y ]) = DF (LXY ) = DF (
d

dt

∣∣∣∣
t=0

ϕ∗tY )

=
d

dt

∣∣∣∣
t=0

D(F ◦ ϕt ◦ F−1︸ ︷︷ ︸
flow of F∗X

)−1 DF (Y )︸ ︷︷ ︸
=F∗Y

= [DF (X), DF (Y )].

• Lemma: The following map is a diffeomorphism whose restriction to {g}×TeG
is a linear isomorphism onto TgG

ψ : G× TeG −→ TG

(g, v) 7−→ (Dlg)(v)

where lg : G −→ G denotes left multiplication with g, i.e. lg(h) = gh. Moreover
pr ◦ ψ is the projection onto the first factor of G× TeG.
• Both the target and the domain of ψ are manifolds of dimension 2dim(G).

To see that Dψ is surjective (hence an isomorphism) use the decomposition
T(g,v)(G× TeG) = TgG× Tv(TeG) = TgG× TeG.
• Definition: A vector field X on G is left invariant if lg∗X = X. (This is

equivalent to l∗gX = X.)
• A left invariant vector field is determined by its value at one point (for example
e). Thus there is an isomorphism

TeG −→ g := {left-invariant vector fields on G}
X 7−→ (X : h 7−→ (Dlh)(X)) .

• Theorem: Left-invariant vector fields are complete, i.e. solutions of initial value
problems are defined on R.
• For the proof, start with a solution γ defined on (−ε, ε) with γ(h)(0) = h.

In order to extend this show that lγ(e)(ε/2) ◦ γ solves the initial value problem
α(h · γ(e)(ε/2))(0) = h · γ(e)(ε/2)) and α̇ = X ◦ α.

Combine these two curves to obtain a solution for the original initial value
problem (starting at h) with domain (−ε, 3ε/2), i.e. the size of the domain has
increased by the amount ε/2. Doing this infinitely many times one obtains a
solution with domain R.
• Lemma: By (8) g is closed under Lie brackets [·, ·], i.e. it is a Lie algebra. We

say that g is the Lie algebra of the Lie group G.
• Definition: The exponential map of a Lie group G is

exp : TeG = g −→ G

X 7−→ γX(e)(1)

where γX(e)(t) solves the initial value problem γ̇ = X ◦ γ with initial value e
and X is the left invariant vector field with X(e) = X.
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• Example: Let G ⊂ Gl(n,R) be a Lie subgroup (i.e. a submanifold and a
subgroup) and X ∈ g. Then

X : G −→ TG

H 7−→ (DlH)(X) = H ·X.
The solution of the initial value problem γ(E)(t) = E and γ̇ = X ◦ γ is

γ(E)(t) = exp(tX) =
∞∑
n=0

(tX)n

n!
.

Note that exp(A) exp(B) = exp(A + B) only if AB = BA but not in general.
Because of left-invariance

γ(H)(t) = H exp(tX).

Finally, using the Lemmas from the last lecture one obtains:

[X, Y ]︸ ︷︷ ︸
vector field

(E) = XY − Y X.

• Simple examples one can discuss include G = SO(3), S1 = U(1) ⊂ C, . . . with
g = so(3), u(1) ' iR, . . ..

10. Lecture on Nov. 22. – Multilinear Forms

• Definition: If V is a vector space over some field K then a linear form is a
linear function φ : V → K. The set of linear forms on V form a vector space
denoted by V ∗ with dim(V ∗)= dim(V ).
• If {ei}, i = 1, · · ·n = dim(V ) is a basis of V then {e∗i}, i = 1, · · ·n is the dual

basis if e∗i(ej) = δij.
• A k-linear form (or simply k-form) is an alternating k-linear function

φ : V × V × . . .× V︸ ︷︷ ︸
k times

→ K

(x1, · · · , xk) 7→ φ(x1, · · · , xk) = sgn(σ)φ(xσ(1), · · · , xσ(k))

for σ ∈ Σk, the symmetric group. In particular, for φi ∈ V ∗, i = 1, · · · k ≤ n,
φ1 ∧ φ2 · · · ∧ φk ∈ ∧kV ∗ defined through

φ1 ∧ φ2 · · · ∧ φk(x1, · · · , xk) = det(φi(xj))

i, j = 1, · · · k is a k-form.
• The above construction gives rises to a basis in ∧kV ∗: Proposition: any k-

linear exterior form ω ∈ ∧kV ∗ can be expanded as

ω =
∑

1≤i1<i2<···<ik≤n

ωi1,··· ,ike
∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ik

where ωi1,··· ,ik ∈ K .
• Definition(exterior product) For ω ∈ ∧kV ∗ and φ ∈ ∧pV ∗ the exterior

product is defined through

ω ∧ φ =
∑

1≤j1<j2<···<ip≤n
1≤i1<i2<···<ik≤n

ωi1,··· ,ikφj1,··· ,jke
∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ik ∧ e∗i1 ∧ e∗j2 ∧ · · · ∧ e∗jp
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• Proposition For ω ∈ ∧kV ∗, ψ ∈ ∧kV ∗, φ ∈ ∧pV ∗ and ρ ∧q V ∗ we have
a) φ ∧ (ω + ψ) = φ ∧ ω + φ ∧ ψ
b) φ ∧ (ω ∧ ρ) = (φ ∧ ω) ∧ ρ
c) φ ∧ ω = (−1)pkω ∧ φ

11. Lecture on Nov. 24. – Differential Forms on Rn[Ca]

• For V = Rn and {x1, · · · , xn} coordinates on Rn (or a subset thereof) we
identify the elements of the dual basis {e∗i} with the coordinate differentials
{dxi}.
• Definition A field of exterior forms or an exterior form of degree k, k ≤ n

is a map ω that associates to each point p ∈ Rn an element ω(p) ∈ ∧kV ∗.
Furthermore, ω(p) can be expanded as

ω(p) =
∑

1≤i1<i2<···<ik≤n

ai1,··· ,ik(p) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

If, the real functions ai1,··· ,ik(p) are differentiable, then ω is called a differential k-
form. The set of differential k-forms forms a vector space, denoted by Ωk(Rn).
• Definition For f ∈ C1(Rn) we denote by df its differential. Then the map

d : Ωk(Rn)→ Ωk+1(Rn)

ω(p) 7→ dω(p) :=
∑

1≤i1<i2<···<ik≤n

dai1,··· ,ik(p) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik

is well defined for {ai1,··· ,ik(p)} ∈ C1(Rn). dω(p) is the exterior derivative of the
differential form ω(p) .
• Proposition For ω(p), ψ(p) ∈ Ωk(Rn)and φ ∈ Ωk(Rn) we have

a) d(ω(p) + ψ(p)) = dω(p) + dψ(p)
b) d(ω(p) ∧ φ(p)) = dω(p) ∧ φ(p) + (−1)kω(p) ∧ dφ(p)
c) ddω(p) = 0 assuming ω is twice differentiable

• Definition For ω(p), ψ(p) ∈ Ωk(Rn) and Z ∈ X(Rn) we define the interior
derivative or interior product as the map

iZ : Ωk(Rn)→ Ωk−1(Rn)

ω(p) 7→ ((iZω)(p) : (x1, · · · , xk−1) 7→ ω(Z, x1, · · · , xk−1))

is well defined for (x1, · · · , xk−1) ∈ V × V × · · · × V︸ ︷︷ ︸
k−1 times

and {ai1,··· ,ik(p)} ∈ C1(Rn).

dω(p) is the exterior derivative of the differential form ω(p) .
• Proposition For ω(p) ∈ Ωk(Rn), φ ∈ Ωp(Rn) and Z ∈ X(Rn) we have

a) iZ(ω ∧ φ) = (iZω) ∧ φ+ (−1)kω ∧ (iZφ)
b) iZ(iZω) = 0

12. Lecture on Nov. 29. – Pullback and Lie derivative [Ca]

• Definition Let f ∈ C∞(Rn,Rm) and f∗ : TpRn → Tf(p)Rm be its differential,
or push forward. Then the pull back of a differential form on Rm is given by the
map

f ∗ : Ωk(Rm)→ Ωk(Rn)

ω 7→ ((f ∗ω)(p) : (x1, · · · , xk) 7→ ω(f(p))(f∗x1, · · · , f∗xk))
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for (x1, · · · , xk) ∈ TpRn × TpRn × · · · × TpRn︸ ︷︷ ︸
k times

.

• Proposition For g ∈ C∞(Rp,Rn), f ∈ C∞(Rn,Rm), h ∈ C∞(Rn,R); ω, ψ ∈
Ωk(Rm) and φ ∈ Ωk(Rm) we have

a) f ∗(ω + ψ) = f ∗ω + f ∗ψ
b) f ∗(hω) = f ∗(h)g∗(ω)
c) f ∗(ω ∧ φ) = (f ∗ω) ∧ (f ∗φ)
d) (f ◦ g)∗ω = g∗(f ∗ω)
e) df ∗(ω) = f ∗(dω)

• Remark We choose coordinates {yi} on Rm and take

ω(p) =
∑

1≤i1<i2<···<ik≤n

ai1,··· ,ik(p) dyi1 ∧ dyi2 ∧ · · · ∧ dyik

Then we have, using b) and c)

(f ∗ω)(p) =
∑

1≤i1<i2<···<ik≤n

(f ∗ai1,··· ,ik)(p) f
∗dyi1 ∧ f ∗dyi2 ∧ · · · ∧ f ∗dyik

=
∑

1≤i1<i2<···<ik≤n

ai1,··· ,ik(f(p)) df i1 ∧ df i2 ∧ · · · ∧ df ik

which gives a simple and intuitive expression for the pull back of a generic
differential form.
• Definition (Lie Derivative) Let Z ∈ X(Rn) be a differentiable vector field,
φt its flow and ω ∈ Ωk(Rn), then the Lie derivative of ω is defined as

LZω =
d

dt
(φ∗tω)

∣∣∣∣
t=0

In components we have

(LZω)(p) =
∑

1≤i1<i2<···<ik≤n

(iZdai1,··· ,ik) ∧ dxi1 ∧ dyi2 ∧ · · · ∧ dyik

+
∑

1≤i1<i2<···<ik≤n

ai1,··· ,ik dxi1 ∧ · · · ∧ d(iZdxi2) ∧ · · · ∧ dxik

Useful formula: LZω = (d iZ + iZ d)ω.

13. Lecture on Dec. 1. – Differential forms on smooth manifolds

• Definition An exterior k-form ω on a smooth manifold M is a choice, for every
point p ∈ M , of an element ω(p) in the vector space Λk(TpM)∗ of alternating
k-linear functions, ω(p) : TpM × TpM × · × TpM︸ ︷︷ ︸

k times

→ R.

• To continue we pull this form back to open sets Uα of the atlas of M . This
naturally leads to
• Definition For a given parametrisation fα : Uα →M , the representative ωα is

given by

ωα = f ∗αω.
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• Remark The independence of this definition on the choice of coordinates (pa-
rametrisations) follows from the observation that for fα/β : Uα/β →M we have
in Uα ∩ Uβ

(f−1
β ◦ fα)∗ωβ = f ∗α((f−1

β )∗ωβ) = f ∗αω|fβ(Uα∩Uβ) = ωα

• If ωα is differentiable in one parametrisation (and therefore in all by the above
remark) then ω is a differential form on M . The vector space of differential
k-forms is denoted by Ωk(M).
• Remark The operations (d,Λ, iX , LX) are naturally extended to Ωk(M). In

particular,
dωα = df ∗αω =: f ∗αdω|fα(Uα)

• If ω ∈ Ωn(M), M oriented, n = dim(M) has compact support, K ⊂ M , then
this form can be integrated over M as follows: Suppose first that K ⊂ fα(Uα)
for some α ∈ I and {xi}, i = 1, · · · , n, cartesian coordinates on Rn, then we
define∫

M

ω =

∫
Uα

ωα =

∫
Uα

aαdx1 ∧ · · · ∧ dxn =

∫
Uα

aαdx1dx2 · · · dxn

where the last expression is the Lebesgue integral defined for continuous func-
tions on Uα. The last step in the above definition proceeds through evaluation
of ωα on an infinitesimal hypercube in Rn spanned by the vectors dxi∂xi where
the dxi are the coordinate differentials.
• Remark Under a change of coordinates, f = (f−1

α ◦ fβ) : Uβ → Uα such that
f∗ has positive determinant with {xi = f i(y)} coordinates on Uα and {yi}
coordinates on Uβ we have∫

Uβ

aβdy1dy2 · · · dyn =

∫
Uβ

ωβ =

∫
Uβ

f ∗ωα

=

∫
Uβ

aα(f(y))f ∗dx1 ∧ · · · f ∗dxn

=

∫
Uα

aα(f)df 1 ∧ · · · dfn

=

∫
Uα

aα(x)dx1 ∧ · · · dxn

=

∫
Uα

aα(x)dx1 · · · dxn.

• If the support K is not contained in any coordinate nbhd fα(Uα) we construct
a partition of unity {φi} subordinate to the covering {Uα}. That is (see part I)

– a)
m∑
i=1

φi = 1

– b) 0 ≤ φi ≤ 1 and supφi ∈ Uα for some α ∈ I
and define

∫
M

ω :=
m∑
i=1

∫
M

φiω.

• Remark The convergence of the above sum is guaranteed by the assumption
of paracompactness (see part I)
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14. Lecture on Dec. 6. – Manifolds with boundary

• In order to parametrise manifolds with boundary we consider maps from open
sets in Hn = {x1, · · · , xn ∈ Rn|x1 ≤ 0.
• Definition An open set, V , in Hn is the intersection of an open set U ⊂ Rn

with Hn. A function f : V → R is differentiable if there exists an open set
U ⊂ Rn such that V ⊂ U together with a differentiable function f̄ : U → R
such that f̄ |V = f |V .
• A smooth manifold with boundary is then defined in complete analogy with a

smooth manifold without boundary (see 3rd lecture) by replacing Rn by Hn

everywhere.
• A point P ∈ M is on the boundary ∂M if for some parametrisation f : V ⊂
Hn →M we have f(0, x2, · · · , xn) = P .
• Lemma This definition of a point on ∂M is independent of the choice of

parametrisation.
• Proposition The boundary ∂M of an n-dimensional smooth manifold with

boundary is an (n − 1)-dimensional smooth manifold. Furthermore,the orien-
tation on M induces an orientation on ∂M .
• Let ω be an (n−1)-form on a smooth manifoldM of dimension n with boundary.

Then dω can be integrated on M/
• Theorem (Stokes) Let M be a smooth, compact, oriented manifold of dim
n with boundary and i : ∂M → M be the inclusion map of the boundary into
M . Then for ω ∈ Ω(n−1) we have∫

∂M

i∗ω =

∫
M

dω.

15. Lecture on Dec. 8. – Poincare Lemma

• ω ∈ Ωk(M) is closed if dω = 0 and exact if ω = dγ globally for some γ ∈ Ωk−1.
Since d2 = 0 every exact form is closed.The converse is not true but we want
to show that every closed form is nevertheless exact in the nbhd of some point.
• Defiition A smooth manifold M is contractible to some point p0 ∈M if there

exists a differentiable map

H : M × R→M

(p, t) 7→ H(p, t) ∈M
such that H(p, 1) = p and H(p, 0) = p0 ∀p ∈M .
• To every ω ∈ Ωk(M) we can the associate a k-form ω̄ ∈ Ωk(M × R) as

ω̄ = H∗ω

On the other hand, any ω̄ ∈ Ωk(M × R) has a unique decomposition of the
form

ω̄ = ω1 + dt ∧ η
with i∂tω1 = 0 and i∂tη1 = 0
• Conversely we can associate a k-form ω ∈ Ωk(M) to each ω̄ ∈ Ωk(M ×R) with

the help of the inclusion map

it : M →M × R
it(p) = (p, t) ∈M × R

Then i∗t ω̄ ∈ Ωk(M) provided ω̄ ∈ Ωk(M × R).
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• Let us furthermore define the map

I : Ωk(M × R)→ Ωk−1(M)

(Iη)(z1, · · · , zk−1) =

1∫
0

η(p, t)(∂t, it∗z1, · · · , it∗zk−1)dt.

16. Lecture on Dec. 13. – Poincare lemma, deRham cohomology
and Riemannian manifolds

The key result which then establishes local exactness is the
• Lemma

i∗1ω̄ − i∗0ω̄ = d(Iω̄) + I(dω̄)

Indeed, since H ◦ i1 = id and H ◦ i1 = p0,∀p ∈M we have

ω = (H ◦ i1)∗ω = i∗1ω̄

and

0 = (H ◦ i0)∗ω = i∗0ω̄

From this the desired result he follows:
• Theorem Let M be a contractible, smooth manifold and ω ∈ Ωk(M) with

dω = 0. Then there exists a k − 1 form α ∈ Ωk−1(M) such that ω = dα.
• Ωk(M) is a vector space over R whose elements form a group with respect to

addition. It turns out, however that there are invariant sub group which we will
now review.
• Definition Let M be a smooth manifold of dimension n. The the set of

a) closed k-form is the k-th cocycle group, with real coefficients Zk(M,R)
b) exact k-form is the k-th coboundary group, with real coefficients Bk(M,R)
c) Hk(M,R) = Zk(M,R)/Bk(M,R) is the k-th deRham cohomology group

with real coefficients.
• Let us now assume that M is a smooth manifold endowed with a (pseudo)

Riemannian metric

g : X(M)× X(M)→ F(M)

(x, y)(p) 7→ gp(x, y)

for p ∈ M . In particular, in an open set V containing p with coordinates {xi}
the vectors {∂xi} form a basis of X(M). Then gij(p) := g(∂xi , ∂xj) is a set of
smooth functions on V ⊂M .
• If g is non-degenerate, then gij = (g−1)ij gives rise to an isomorphism between
TpM and T ∗pM through

T ∗pM 3 dxi = gijg(∂xj , ·)

• Definition {∂xj} is called the coordinate basis of TpM . The orthonormal or
non-coordinate basis {ea} of of TpM is defined by the condition g(ea, eb) = δab.
Note that for a given Riemannian metric g the set {ea} is unique only up
e′a = Abaeb where A is an orthogonal transformation.
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17. Lecture on Dec. 15. – Volume form, Hodge ∗ operation

• After picking an orientation the volume form vol on M is a differential form of
maximal degree s.t vol(e1, · · · , en) = 1. This, in turn, gives rise to a multilinear
map ∗ : Ωm(M)→ Ωn−m(M), the Hodge star operation point wise defined as

∗ : Ωm(M)→ Ωn−m(M)

ea1 ∧ · · · ∧ eam 7→ δa1b1 · · · δambmiebm · · · ieb1vol

where δab is replaced by ηab for a pseudo Riemannian manifold. ei denotes the
dual basis of the orthonormal basis e1, . . .. In particular, ∗1 = vol. In terms of
the coordinate basis the volume form takes the form

(9) vol =
√
|g|dx1 ∧ · · · ∧ dxn =

√
|g|
n!

εi1···indxi1 ∧ · · · ∧ dxin

where
√
|g| is positive evaluation of the absolute value of the determinant of

g. Accordingly

∗dx1 ∧ · · · ∧ dxn =

√
|g|

(n−m)!
gi1j1 · · · gimjmεj1···jmjm+1···jndxim+1 ∧ · · · ∧ dxjn

Taking the Hodge star operation twice produces the identity up to a sign.
Concretely, for ω ∈ Ωm

∗ ∗ ω =

{
(−1)m(n−m)ω Riemannian
(−1)m(n−m)+1ω Lorentzian

where the extra minus sign in the Lorentzian case is due to the absolute value
of the determinant entering in the definition of the Hodge ∗ operation.

18. Lecture on Dec. 20. – Inner product, adjoint to d

• An important application of the Hodge ∗ operation is the definition of an inner
product on Ωm. For ω, η ∈ Ωm(M) we define

(·, ·) : Ωm × Ωm → R

(ω, η) 7→
∫
M

ω ∧ ∗η

For (M, g) Riemannian the inner product (·, ·) is positive definite, (ω, ω) > 0,
ω 6= 0.
• Let d : Ωm−1 → Ωm be the exterior derivative on the deRham complex (Ω, d).

Then the adjoint exterior derivative δ : Ωm → Ωm−1 is defined by

δ =

{
(−1)n(m+1)+1 ∗ d∗ Riemannian
(−1)n(m+1) ∗ d∗ Lorentzian

• Proposition Let (M, g) be a compact orientable, (pseudo) Remannian mani-
fold without boundary and α ∈ Ωm(M), β ∈ Ωm−1(M). Then

(dβ, α) = (β, δα).
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19. Lecture on Dec. 22. – Laplacian, Hodge decomposition

• The Laplace operator on differential forms is defined as

∆ : Ωm → Ωm

∆ = (d + δ)2 = dδ + δd

If (M, g) is a compact Riemannian manifold without boundary, then ∆ is a
semi-positive definite operator since

(ω,∆ω) = (ω, (d + δ)2ω) = (δω, δω) + (dω, dω) ≥ 0

• Definition
1) ω ∈ Ωm is harmonic if ∆ω = 0, closed if dω = 0 and co-closed if δω = 0
2) ω ∈ Ωm is co-exact if ω = δλ for some λ ∈ Ωm+1 everywhere on M .
3) The set of harmonic form of degree m is denoted by Harmm(M).

• An m-form is harmonic if it is closed and co-closed.
• Hodge decomposition Theorem Let (M, g) be a compact, orientable Re-

mannian manifold without boundary. Then Ωm(M) can be decomposed uni-
quely as

Ωm = dΩm−1 ⊕ δΩm+1 ⊕Harmm

ωm = dαm−1 ⊕ δβm+1 ⊕ γ
• Theorem Let (M, g) be a compact, orientable Riemannian manifold without

boundary. Then
Hm(M) ∼= Harmm(M)

The isomorphism is provided by identifying [ω] ∈ Hm with Pωm where P is
the projection to the harmonic subspace.

20. Lecture on Jan. 10. – Hn(M) for dim(M) = n and applications

• Brouwer’s fixed point theorem: Let B1(0) ⊂ Rn+1 be the closed unit ball
around the origin and f : B1(0) −→ B1(0) a smooth map. Then f has a fixed
point, i.e. there is a point x ∈ B1(0) such that f(x) = x.
• Remark: The theorem holds for continuous maps.
• Proof: By contradiction. B1(0) is an n+ 1-manifold with boundary. If there is

no fixed point, then

ψ : B1(0) −→∂B1(0)

x 7−→ψ(x) = the intersection of the line through f(x), x

with ∂B1(0) which is closer to x than to f(x)

is smooth and satisfies ψ(x) = x for all x ∈ ∂B1(0). Let ω be a n-form on
∂B1(0) = Sn so that

∫
∂B1(0)

ω 6= 0.

Let ι : ∂B1(0) −→ B1(0) denote the inclusion (this is a smooth map). Then
ι ◦ ψ = id∂B1(0). Hence

0 6=
∫
Sn
ω =

∫
Sn

(ψ ◦ ι)∗ω =

∫
Sn
ι∗(ψ∗ω).

By the Poincaré-Lemma, ψ∗ω is exact, i.e. there is a n − 1-form λ such that
ψ∗ω = dλ. Then

0 6=
∫
Sn
ι∗(dλ) =

∫
Sn
d(ι∗λ) =

∫
∂Sn=∅

λ = 0.
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yields a contradiction (we used Stokes theorem and the naturality of d). More
details can be found in [M]
• Theorem: Let M be a closed, oriented, connected manifold of dimension n.

Then Hn(M) ' R.
• Proof: We use the Hodge decomposition, for his we fix a positive definite

Riemannian metric on M . The following diagram summarizes fact discussed
previously.

Harmk(M)
' //

∗'
��

Hk(M)

'
��

Harmn−k(M)
' // Hn−k(M).

We apply this to k = 0: Then H0(M) = ker(d : Ω0(M) = C∞(M) −→ Ω1(M))
consists of functions with vanishing differential. On connected manifolds such
functions are constant. Thus Hn(M) ' {constant functions on M} = R.
• Lemma: Let M be closed manifold, oriented, connected and of dimension n.

Then ∫
M

: Hn(M) −→ R

[ω] 7−→
∫
M

ω

is a well defined isomorphism.
• Proof: The map is well defined by Stokes theorem: If ω, η represent the same

cohomology class, then ω − η = dλ and∫
M

ω −
∫
M

η =

∫
M

dλ =

∫
∂M=∅

λ = 0.

Linearity is clear, it is surjective since
∫
M

(∗1) 6= 0 and we already know that
dim(Hn(M)) = 1.
• Under the current assumptions on M this means that ω is exact if and only if∫

M
ω = 0.

• Definition: Let M,N be closed oriented manifolds of dimension n and f :
M −→ N a smooth map. For ω ∈ Ωn(N) with

∫
N
ω 6= 0 define

deg(f) =

∫
M
f ∗ω∫
N
ω

.

This is called the degree of f .
• Remark: This does not depend on the choice of ω since the integrals only

depend on the cohomology class of ω. Because of Hn(N) ' R the choice of a
non-vanishing cohomology class is unique up to a non-vanishing factor which
is canceled in the definition of the degree.
• Theorem: deg(f) is an integer, it can be computed in terms of the behavior

of Df at all points of f−1(p) for a regular value p of f .
• Fact: A theorem by Sard implies that regular values of f exist.
• Proof of Theorem: Pick a regular value p, consider f−1(p). For each q ∈
f−1(p) there is a neighborhood U(q) such that f |U(q) is a diffeomorphism onto
its image (which is a neighborhood of p). In particular, f−1(p) is finite and one
can choose the U(q) pairwise disjoint. We pick ω with support in

⋂
q f(U(q))

such that
∫
N
ω 6= 0.
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Then
∫
M
f ∗ω =

∑
q∈f−1(p)

∫
U(q)

f |∗U(q)ω. By the transformation rule∫
U(q)

f |∗U(q)ω =

{ ∫
f(U(q))

ω if Dfq is an orientation preserving isomorphism

−
∫
f(U(q))

ω if Dfq is an orientation reversing isomorphism.

Then
∫
f(U(q))

ω =
∫
N
ω implies

deg(f) =

∣∣∣∣{ q ∈ f−1(p)
Dfq or. preserving

}∣∣∣∣− ∣∣∣∣{ q ∈ f−1(p)
Dfq or. reversing

}∣∣∣∣ ∈ Z.

21. Lecture on Jan. 12. – Mapping degree - Examples

• Lemma: Let M1,M2,M3 be smooth orientable closed connected manifolds of
the same dimension and f : M1 −→ M2, g : M2 −→ M3 are smooth maps.
Then deg(g ◦ f) = deg(g)deg(f).
• Proof: Let ω ∈ Ωn(M3) with

∫
M3
ω 6= 0 If deg(g) 6= 0, then the proof is

deg(g ◦ f) =

∫
M1
f ∗(g∗ω)∫
M3
ω

=

∫
M1
f ∗(g∗ω)∫
M2
g∗ω

·
∫
M2
g∗ω∫

M3
ω

= deg(f)deg(g)

where we used g∗ω to compute deg(f). That is legitimate since deg(g) 6= 0
implies

∫
M2
g∗ω 6= 0. If deg(g) = 0, then g∗ω = dλ for some λ ∈ Ωn−1(M2).

Then

deg(g ◦ f) =

∫
M1
f ∗(g∗(ω))∫
M3
ω

=

∫
M1
f ∗(dλ)∫
M3
ω

=

∫
M1
d(f ∗λ)∫
M3
ω

= 0 = deg(f)deg(g)

by Stokes theorem.
• Examples: The identity map has degree 1, the antipodal map A : Sn −→
Sn, A(x) = −x has degree (−1)n+1, it has to satisfy 1 = deg(A2) = (deg(A))2.
The map ϕk : S1 −→ S1, z 7→ zk has degree k where k is a given integer.
• Lemma: The wedge product of closed forms is exact, the wedge product of a

closed form with an exact form is exact.
• The proof is a direct computation.
• Consequence: If M is a smooth manifold, then H∗(M) is not only a R-vector

space. It is a ring! We apply this ring structure to show:
• Proposition: Every map of f : S2 −→ T 2 has degree 0. (Here T 2 = S1×S1 is

a torus carrying the product orientation.)
• Proof: There are two projection maps pr1, pr2 : T 2 −→ S1 (on the first/second

factor). Let α ∈ Ω1(S1) such that
∫
S1 α 6= 0. Then ω = pr∗1α ∧ pr∗2α = α1 ∧ α2

satisfies ∫
T 2

ω =

(∫
S1

α

)2

6= 0.

We now assume the fact that H1(S2) = {0} (this will be proved later). The
degree of f is then

deg(f) =

∫
S2 f

∗α1 ∧ f ∗α2∫
T 2 ω

.

Since f ∗α1 is exact (H1(S2) = 0) it follows that f ∗α1 ∧ f ∗α2 is also exact. The
integral of an exact form over a closed manifold vanishes by Stokes theorem.
Therefore deg(f) = 0.
• Lemma: H1(S2) = {0}.
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• Proof: Let DH = S2 \ {(0, 0,−1)} and DL = S2 \ {(0, 0, 1)}. These sets are
discs, there intersection is connected. Let η ∈ Ω1(S2) be closed. We want to
show that η is exact.

By the Poincaré-Lemma there are 0-forms/smooth functions λL respectively
λH on DL respectively DH such that

dλH = η|DH dλL = η|DL .

If λH ≡ λL on DL ∩ DH , then these two forms can be glued to a global form
λ such that dλ = η. We modify λL to make sure that his works. Note that on
DH ∩DL

d (λH |DH∩DL − λL|DH∩DL) = η|DH∩DL − η|DH∩DL ≡ 0.

Hence λH − λL is constant on DH ∩DL (we use that DH ∩DL is connected).
Let C be the constant and replace λL by λL + C.
• Consequence: For no Riemannian metric there is a non-trivial harmonic 1-

form on S2.
• Fact: After the next theorem, you will have all means needed to prove that for
n > 0

Hk(Sn) '

 R if k = 0
0 if 1 ≤ k ≤ n− 1
R if k = n.

• Theorem: Let f, g : M −→ N be smooth maps between manifolds which are
homotopic, i.e. there is smooth map h : M × R −→ N such that h(·, 0) = f
and h(·, 1) = g. Then f ∗ = g∗ : H∗(N) −→ H∗(M).
• Proof: The proof is almost the same as the proof of the Poincaré-Lemma.

Consider

Ω∗(N)
h∗ // Ω∗(M × R)

ι∗0 --

ι∗1

11 Ω
∗(M)

where ιj : M −→M ×R is the inclusion p 7→ (p, j) for j = 0, 1. Then h◦ ι0 = f
and h ◦ ι1 = g. We use the operator I : Ωk(M,R) −→ Ωk−1(M) from the proof
of the Poincaré-Lemma (with the property d ◦ I + I ◦ d = i∗1− i∗0). If η ∈ Ω∗(N)
is closed, then

g∗η − f ∗η = (d ◦ I + I ◦ d)(h∗η) = d(Ih∗η).

Hence [f ∗η] = [g∗η].
• This concludes our discussion of the differential topology of manifolds for some

time.
• Theorem: Let M be a smooth manifold. Then M admits a Riemannian (i.e.

positive definite) metric.
• Proof: Pick a covering of M by charts (Ui, ϕi) and a subordinate partition of

unity ρj. Then

g(X, Y ) :=
∑
j

ρj(ϕ
∗
i(j)gi)(X, Y ) =

∑
j

ρjgi(j)(Dϕi(j)X,Dϕi(j)Y )

is positive definite.
• This does not work for Lorentzian metrics.
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22. Lecture on Jan. 17. – Tensors,Connections

• Remark: Formally, a tensor field (r, s) on a manifold is a section of the bundle
of multilinear maps

T ∗M × . . .× T ∗M︸ ︷︷ ︸
r times

×TM × . . .× TM︸ ︷︷ ︸
s times

−→ R.

In many cases, the definition of a tensor will involve several summands some
of which are not tensorial in the sense that they take (locally defined) vector
fields as input. It is then important to check that the number/vector the tensor
returns for a collection of vector fields depends only on the value of the vector
fields at a given point.

Examples include differential forms (a s-form is a (0, s)-tensor).
• Criterion: Tensors are not only R-linear but linear over functions.
• Definition: A connection or covariant differential on TM is a map

χ(M)× χ(M) −→ χ(M)

(X, Y ) 7−→ ∇XY

such that for all smooth functions f
– ∇ is R-bilinear,
– ∇ is linear over smooth functions in the first factor, i.e. ∇fXY = f∇XY

and
– (∇X(fY ))(p) = f(p)(∇XY )(p) + (Df)(X(p))Y (p).

The same definition applies to the bundle T ∗M in defining ∇Xα with α a
1-form.
• Definition: Let ∇ be a connection on TM . The torsion of ∇ is the antisym-

metric tensor

T : χ(M)× χ(M) −→ χ(M)

(X, Y ) 7−→ ∇XY −∇YX − [X, Y ].

• Definition: A connection on a manifold with a (possibly indef.) metric g is
metric if

LX(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

• Theorem: On each semi-Riemannian manifold M there is a unique connection
∇ which is metric and has vanishing torsion. This connection is called the Levi-
Civita connection. It satisfies

2g(∇XY, Z) = LXg(Y, Z) + LY g(X,Z)− LZg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]).

• Examples: Let M be a submanifold of Rn and g the restriction of the standard
metric to M . Let pr denote the orthogonal projection of TpRn to TpM (for some
p ∈M). Then the Levi-Civita connection on M is

(∇XY )(p) := pr(DXY )(p) = pr (xµ(∂µy
ν)∂ν) (p).

• Definition: Let g be a semi-Riemannian metric, ∇ the Levi-Civita connection
and xµ local coordinates near a point. The Christoffel symbols of g are defined
by

∇∂ν∂µ = Γκνµ∂κ.
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• Lemma: The Christoffel symbols can be computed by

Γκνµ =
1

2
gκm

(
∂gµm
∂xν

+
∂gνm
∂xµ

− ∂gµν
∂xm

)
.

23. Lecture on Jan. 19. – Parallel transport

• Definition: A connection on T ∗M is a map

∇ : χ(M)× Ω1(M) −→ Ω1(M)

which is R-bilinear, C∞-linear in the first variable and satisfies

∇X(fα) = (LXf)α + f∇Xα.

• Definition: Let ∇ be a connection on TM . Then there is a unique connection
∇′ on T ∗M such that

LX(α(Y )) = (∇′Xα)(Y ) + α(∇XY ).

Usually, one writes again ∇ instead of ∇′.
• More generally, of A is a (r, s)-tensor and ∇ a connection on TM , then there

is a unique operator D such that D defined by

LX (A(α1, . . . , αr, Y1, . . . , Ys)) = (DXA) (α1, . . . , αr, Y1, . . . , Ys)) +∑
i

A(. . . ,∇Xαi, . . . , Y1, . . . , Ys) +
∑
j

A(α1, . . . , αr, . . . ,∇XYj, . . .)

and DXA is again a (r, s)-tensor for each vector field X, DA is a (r, s+1)-tensor.
• Example: If ∇ is the Levi-Civita connection of (M, g), then ∇g ≡ 0. If ∇ is

any connection on M , then the Hessian of f ∈ C∞(M) is defined as

Hess(f)(X, Y ) = (∇′X(df))Y.

This bilinear form is symmetric for all f if and only if ∇ is torsion free.
• Definition: Let A be a (0, s)-tensor and f : M −→ N smooth. Then f ∗A

defined by (f ∗A)(X1, . . . , Xs) := A(Df(X1), . . . , Df(Xs)) is a (0, s)-tensor, the
pull back of A.
• Definition: Let M be a manifold and γ : (a, b) −→ M a continuous curve.

A vector field along γ is a continuous map X : (a, b) −→ TM such that
X(t) ∈ Tγ(t)M .
• Definition: Let ∇ be a connection on TM and γ a smooth curve. Then there

is a unique operator

∇
dt

: {smooth vector fields along γ} −→ {smooth vector fields along γ}

which is linear over R, ∇
dt

(fγ) = d
dt

(f(t))Xγ + f(t)∇
dt
Xγ(t), and

∇
dt
Xγ(t) = ∇γ̇(t)X

for every of Xγ which is the restriction of a local vector field near γ(t) to γ.
• Definition: A vector field X along γ is called parallel if ∇

dt
Fγ ≡ 0.
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• Theorem: Let γ be a smooth curve and X0 ∈ Tγ(0)M . Then there is a unique
parallel vector field X along γ such that X(0) = X0. If ∇ is metric, then the
map which assigns X(s) to X0 is an isometry.

The solution of this initial value problem is called parallel transport of X0

along γ.
• Definition: Let γ : [0, 1] −→ M be a smooth curve and ∇ a connection on
TM . Then

Pγ : Tγ(0)M −→ Tγ(1)M

X0 7−→ X(1)

where X is the unique parallel vector field along γ which coincides with X0 at
0. Pγ is an isomorphism of vector spaces who depends on γ.

24. Lecture on Jan. 24. – Geodesics, curvature

• Remark: If ∇ is a metric connection on TM and X, Y are vector fields along
γ, then

d

dt
g(X(t), Y (t)) = g

(
∇
dt
X(t), Y (t)

)
+ g

(
X(t),

∇
dt
Y (t)

)
.

In particular, parallel transport along γ is an isometry when ∇ is metric.
• Definition: Let ∇ be a connection on M . A curve γ : I −→ M is a geodesic

when γ̇ is parallel along γ, i.e. ∇
dt
γ̇ = 0.

This condition is often written as ∇γ̇ γ̇ = 0 Strictly speaking, one has to
extend γ̇ to a vector field on M defined on a neighbourhood of γ(t).
• Theorem: Let X0 ∈ TpM and ∇ a connection. Then there is a unique geodesic
γ : (−ε, ε) −→M such that γ̇(0) = X0.
• Proof: In local coordinates x1, . . . , xn around p a curve γ(t) = (c1(t), . . . , cn(t))

is a geodesic if and only if

c̈k(t) + Γkij(c
1(t), . . . , cn(t))ċi(t)ċj(t) = 0 for all k = 1, . . . , n.

This is a system of ordinary differential equations of order 2 and all coefficients
are smooth (we assumed that connections are smooth implicitly by requiring
that ∇XY is smooth for smooth X, Y , it would have been more explicit to
require that the Christoffel symbols are smooth).

Standard theorems from the theory of ordinary differential equations then
finish the proof.
• Example: Straight lines in (Rn, gst) and great circles on Sn ⊂ (Rn+1, gst) (both

parametrized by arc length) are geodesics.
• Remark: If ∇ is metric and ∇ is metric, ‖γ̇‖ is constant.
• Lemma: Let ∇,∇ be two connections on TM which have the same geodesics,

i.e. γ is a∇-geodesic if and only if it is a∇-geodesic (we talk about parametrized
curves).

Then ∇−∇ is a antisymmetric (0, 2)-tensor with values in TM . Conversely,
if ∇−∇ is antisymmetric, then both connections have the same geodesics.
• Proof: Let X ∈ TM . Then there is a geodesic γ with γ̇(0) = X (at the same

time for ∇ and ∇. Then

(∇−∇)(X,X) = ∇γ̇ γ̇ −∇γ̇ γ̇

= 0.
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i.e. ∇−∇ is antisymmetric. The converse is simpler.
• Lemma: Let∇ be a connection and A a antisymmetric (0, 2)-tensor with values

in TM . Then the torsion of ∇ = ∇ + A is T∇ = T∇ + 2A where T∇ is the
torsion of ∇ (A could be −T∇/2).
• Proof: Compute.
• Consequence: Define an equivalence relation on the set of connections on TM

as follows: ∇ ∼ ∇ if and only if these connections have the same geodesic. Then
each equivalence class contains precisely one torsion free connection.
• Definition: The curvature of a connection ∇ is the (0, 3)-tensor with value in
TM

R : χ(M)× χ(M)× χ(M) −→ χ(M)

(R, Y, Z) 7−→ R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

• Theorem (Riemann): Let ∇ be the Levi-Civita connection of (M, g). Then
R ≡ 0 if and only if for every p ∈M there is a chart ϕ : U −→ (Rn, gst) around
p such that ϕ is an isometry (and gst is the standard (semi)-Riemannian metric
on Rn).
• Proof: Step 0: Pick a orthonormal basis X1, . . . , Xn of TpM and a local coordi-

nate system (y1, . . . , yn) around p. We use the Levi-Civita connection throug-
hout.

Step 1: Extend X1, . . . , X2 to parallel vector fields along the y1-coordinate
axis (·, 0, . . . , 0).

Step 2: Extend the result to parallel vector fields along the curves (y1, ·, 0, . . . , 0)
which are parallel to the y2-coordinate axis in our coordinates.

Step 3: Extend the result to parallel vector fields along the curves (y1, y2, ·, 0, . . . , 0)
which are parallel to the y3-coordinate axis in our coordinates.

Step 4: Iterate, obtain vector fields X̂1, . . . , X̂n on a neighbourhood of p.
Because the connection is metric, parallel transport is an isometry. Hence
X̂1, . . . , X̂n is everywhere orthonormal.

Step 5: From R ≡ 0 we conclude ∇
dt
X̂i = 0 along (y1, ·, 0, . . . , 0): This uses

[∂yi , ∂yj ] = 0 and

0 = ∇∂y1
∇∂y2

X̂i = ∇∂y2
∇∂y1

X̂i.

Hence ∇∂y1
X̂i is parallel along (y1, ·, 0, . . . , 0). By construction ∇∂y1

X̂i = 0 at

(y1, 0, 0, . . . , 0). Hence ∇∂y1
X̂i = 0 along (y1, ·, 0, . . . , 0).

Iterating this argument we obtain ∇ykX̂i = 0 for all i, k on the domain of

X̂i. Hence ∇ZX̂i = 0 for all Z.
Step 6: Because ∇ is torsion free

0 = ∇X̂i
X̂j −∇X̂j

X̂i − [X̂i, X̂j]

= 0− 0− [X̂i, X̂j].

Therefore the local flows ϕi of X̂i and ϕj of X̂j commute for all i, j.
Step 7: We construct the coordinates. The following map is well defined for

ε > 0 small enough.

ψ : (−ε, ε)× (−ε, ε)× . . . (−ε, ε) −→M

(x1, x2, . . . , xn) 7−→ ϕ1(x1)
(
ϕ2(x2) (. . . ϕn(xn)(p)) . . .

)
.
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Step 8: These are coordinates with the desired properties. Because all flows
commute with each other

(Dψ)(∂xi) =
d

dxi
ψ(x1, . . . , xn)

=
d

dxi
ϕi(ti)

(
ϕ1(x1)

(
. . . ϕn(xn)(p)

)
. . .
)

= X̂i(ψ(x1, . . . , xn)).

By the inverse function theorem ψ is a diffeomorphism from a neighbourhood of
0 to a neighbourhood of p. The last computation also shows that the coefficients
of g in the coordinates given by ψ are constant and coincide with the coefficients
of the standard metric.

25. Lecture on Jan. 26. – Curvature Tensors, Bianchi identities,
Examples

• Proposition: The curvature tensor of a Riemannian manifold (M, g) has the
following properties:

(i) R(X, Y )Z = −R(Y,X)Z
(ii) g(R(X, Y )Z,W ) = g(R(Y,X)W,Z)

(iii) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0
(iv) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y )

• Proof: (i) is obvious, (ii) follows from a computation using that ∇ is metric,
(iii) uses the fact that∇ is torsion free (and the Jacobi identity) and (iv) follows
from (i),(ii),(iii), cf. [M2], p.54.
• Definition: TM valued (0, 3)-tensors are called curvature tensors if they sa-

tisfy the properties in the previous proposition. (iii) is called the first Bianchi
identity.
• Proposition: The curvature tensor of a Riemannian manifold satisfies the

second Bianchi identity

(∇XR)(Y, Z)W + (∇YR)(Z,X)W + (∇ZR)(X, Y )W = 0.

• Proof: computation
• It is notoriously laborious to compute the curvature tensor unless the example

in question is very symmetric.
• Definition: Let (M, g) be a Riemannian manifold and X, Y ∈ TpM linearly

independent. Then

K(X, Y ) =
g(R(X, Y )Y,X)

g(X,X)g(Y, Y )− (g(X, Y ))2

• Warning: The lecture contained a typo, the above definition is correct. See
also (10) below.
• Example: The Levi-Civita connection on Rn with the standard Lorentzi-

an/Riemannian metric has

∇XY = (LXh
i)
∂

∂xi

where hi are the components of Y . The curvature tensor vanishes.
• Example: The orthogonal group acts by isometries on (Sn, g) (viewed as sub-

manifold of Rn+1) and using this action one can move every 2-plane on TSn to
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any other such plane. Therefore the sectional curvature of Sn is constant, and
we have seen that this determines the curvature tensor.

A curvature tensor which yields constant sectional curvature on Sn is

g(R(X, Y )Z,W ) = K (g(X,Z)g(Y,W )− g(X,W )g(Y, Z)) .

Since the sectional curvature determines the curvature tensor, this is the right
answer (you have to determine K).
• Example: Let G be a Lie-group and g a bi-invariant metric. Then ∇XY =

[X, Y ]/2 where X, Y are left-invariant vector fields. This is enough to determine
the sectional curvature on G: By the definition of R and the Jacobi identity

(10) R(X, Y )Z =
1

4
[Z, [X, Y ]].

Because g is Ad-invariant g(Adexp(tZ)∗X,Adexp(tZ)Y ) = g(X, Y ) where ϕt is the
flow of the left-invariant vector field Z and Adh : G −→ G maps g to hgh−1

(see p. 13 at the bottom). Differentiating with respect to t one gets

g([Z,X], Y ) + g(X, [Z, Y ]) = 0

where all vector fields are left invariant. Then

K(X, Y ) =
g([X, Y ], [X, Y ])

4(g(X,X)g(Y, Y )− (g(X, Y ))2)

when g is positive definite.
• Example: When (M, g) = (M1, g1)× (M2, g2) then the curvature tensor of M

decomposes accordingly.

26. Lecture on Jan. 31. – Ricci curvature, divergence, Bochner’s
theorem

• Definition: Let (M, g) be a (semi)-Riemannian manifold and∇ the Levi-Civita
connection and fix an Orthonormal basis Ei of TpM . Then

Ric(X, Y ) =
∑
i

g(R(Ei, X)Y,Ei) respectively

scal =
∑
j

Ric(Ej, Ej)

=
∑
i,j

g(R(Ei, Ej)Ej, Ei)

is the Ricci-curvature respectively the scalar curvature. The Ricci curvature is
a symmetric (0, 2)-tensor field, the scalar curvature a smooth function which
do not depend on the choice of ONB.
• Definition: Let X be a smooth vector field on (M, g) a semi Riemannian

manifold of dimension n and vol the Riemannian volume form (c.f. (9) on
p. 20). Then LXvol is a n-form, hence there is a unique function div(X) such
that

div(X) · vol = LXvol = diXvol.

This is the divergence of X.
• Lemma: With the notation from above div(X) =

∑
i g(∇EiX,Ei).
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• Proof: This follows from the definitions and the fact that vol is parallel. This
means that ∇Zvol0 for all Z: This can be seen from the definition of vol by
extending Z to a local vector field and Ei to a local framing which is parallel
along flow lines of Z. (Note that g is parallel because it is metric.)
• Lemma: Let X be as above and α(·) = g(X, ·) the dual 1-form of X. Then
δα = div(X).
• Proof: Although this is a local statement, it is convenient to assume that M

is closed, oriented. Then for every smooth function f

(δα, f) =

∫
M

g(α, df)vol =

∫
M

(LXf)vol

= −
∫
M

f(LXvol) =

∫
M

fdiv(X)vol

by Stokes theorem. This implies the claim.
• Lemma: In the situation above, α is closed if and only if V 7−→ ∇VX is

symmetric.
• Proof: Computation using the fact dα(X, Y ) = LX(α(Y )) − LY (α(X)) −
α([X, Y ]).
• Lemma: Let X ∈ χ(M) so that g(X, ·) = α is closed and f = ‖X‖2/2 Then

1. grad(f) = ∇XX.
2. ∇V (grad(f)) = R(V,X)X + (∇XS)(V ) + S(S(V )) with S(V ) = ∇VX.

• Proof: Recall g(grad(f), ·) = df . Part 1 is elementary. For part 2 compute
using the fact that ∇ is torsion free.
• Lemma: In the situation from the previous Lemma:

(11) −∆f = ‖∇X‖2 + g(X, grad(div(X))) + Ric(X,X).

• Poof: Take traces of the summands in the second part of the previous lemma.
Use trace(∇XS) = ∇X(traceS). This is proved as follows using orthonormal
frames (E1, . . . , En) defined on the neighbourhood of a point.

trace(∇XS) =
∑
i

g((∇XS)Ei, Ei)

=
∑
i

(LX(g(S(Ei), Ei))− g(S(Ei),∇XEi)− g(S(∇XEi), Ei))

= ∇X

(∑
i

g(S(Ei), Ei)

)
−
∑
i

(g(S(Ei),∇XEi) + g(S(∇XEi), Ei))

= ∇X(trace(S))− 2
∑
i

g(S(Ei),∇XEi)

= ∇X(trace(S))− 2
∑
i

(
g

(∑
j

g(S(Ei), Ej)Ej,∇XEi

))
= ∇X(trace(S))− 2

∑
i,j

g(S(Ei), Ej)g(Ej,∇XEi)

= ∇X(trace(S)).

TO get to the second line use the definition of ∇S, rearrange to the third,
use symmetry of S to get to the fourth. To get to the fifth line write S(Ei)
in terms of the orthonormal basis Ej, rearrange to get to the sixth. The last
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equality follows from the symmetry of S on the one hand, and the fact that
0 = LX(g(Ei, Ej)) = g(∇XEi, Ej) + g(Ei,∇XEj) (symmetric matrices are or-
thogonal to antisymmetric matrices).
• Theorem (S. Bochner, 1946): Let (M, g) be a connected positive definite

Riemmanian manifold such that Ric(V, V ) ≥ 0 for all V ∈ TM .
If α is a harmonic 1-form, then the vector field dual to it is parallel. There

are at most n linearly independent harmonic 1-forms.
If there is a point p where Ric(V, V ) > 0 for all 0 6= V ∈ TpM , then all

harmonic 1-forms vanish.
• Proof: Let α be harmonic, hence closed and coclosed. Use (11). Note that∫

M
(∆f) · 1vol = 0 because ∆ is symmetric. div(X) vanishes because δα = 0 by

a previous lemma. Therefore

0 =

∫
M

∆fvol

=

∫
M

(
‖∇X‖2 + Ric(X,X)

)
vol.

Hence ∇X ≡ 0, i.e. X is parallel. Because M is connected X is determined
by its value at one point. The space of parallel vector fields is at most n-
dimensional. If Ric(V, V ) > 0 for all 0 6= V ∈ TpM , then X has to vanish at
that point and X vanishes every where. Then there is no non-trivial harmonic
1-form.
• Example: The sphere satisfies the assumptions of the theorem and we know
H1(Sn) = 0 when n ≥ 2. The torus T n = S1 × . . . S1 shows that n linearly
independent 1-forms can indeed arise. T n has no metric with Ric ≥ 0 such that
the inequality is strict in one point.
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