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Differentiable manifolds
Exam - Solution

What to do first:

• Please stow away your mobile phone in a place where it is not distracting you and turn
it off. No cheat sheets, pocket calculators etc. are permitted.

• Check that your copy of this exam contains 6 exercises.

• Do not use the colors red or green. Write with a pen and not with a pencil.

• Put your name on top of every sheet of paper you hand in. Make an extra effort so that
we can decipher it.

• Different exercises are to be solved on different sheets of paper. Make sure we know what
you are solving.

• Hand in only one solution per exercise. If you hand in several solutions for one question we
will invariably grade the worst version and ignore all others. Cross out clearly whatever
you want us to ignore.

• Fill out the following:

Name: Surname:

Matrikelnr.: Semester:

Subject: Bachelor Mathematics o Master Mathematics o

Bachelor Physics o Master Physics o

TMP o

Other :

You have 120 Minutes.

Good luck!

1 2 3 4 5 6
∑

/6 /11 /6 /7 /10 /10 /50



Warning: Some of the following solutions of exercises contain much more detail than was
expected from you in 120 minutes.



Name:

Exercise 1. [6 Points]

Show that the map

S : CP1 × CP1 −→ CP3

([w0 : w1], [z0 : z1]) 7−→ [w0z0 : w0z1 : w1z0 : w1z1]

is well defined and smooth. It is enough verify smoothness on a neighbourhood of one point,
for example p = ([1 : 0], [1 : 0]).

By definition of CP1 at least one of the numbers w0, w1, say w0 is not zero. We may also assume
that z0 6= 0. Then w0z0 6= 0 and (w0z0, w0z1, w1z0, w1z1) represents an element of CP3.
S([w0 : w1], [z0 : z1]) does not depend on the choice of representative (w0, w1) of [w0 : w1]: If
(λw0, λw1) with λ 6= 0 is another representative, then

(λw0z0, λw0z1, λw1z0, λw1z1) = λ(w0z0, w0z1, w1z0, w1z1).

The left hand side and the right hand side represent the same element of CP3.
The same argument shows that the choice of a representative (z0, z1) of [z0 : z1] does not matter.
We fix the chart for CP1

ϕ : {[w0 : w1] ∈ CP1 |w0 6= 0} −→ C ' R2

[w0 : w1] 7−→ w1/w0.

and the corresponding product chart

ϕ̂ : {([w0 : w1], [z0 : z1]) ∈ CP1 × CP1 |w0 6= 0 6= z0} −→ C2 ' R2 × R2 = R4

([w0 : w1], [z0 : z1]) 7−→ (ϕ([w0 : w1]), ϕ([z0 : z1])).

This is surjective and the inverse map is

ϕ̂−1(ξ, η) = ([1 : ξ], [1 : η]).

The point p has the coordinates ϕ̂(p) = (0, 0) ∈ C2 (in terms of ϕ̂. The image of p is S(p) =
[1 : 0 : 0 : 0], i.e. it is contained in the chart domain of

ψ : {[a0 : a1 : a2 : a3] ∈ CP3 | a0 6= 0} −→ C3 ' R6

[a0 : a1 : a2 : a3] 7−→ (a1/a0, a2/a0, a3/a0)

Then near (0, 0) ∈ C2

(ψ ◦ S ◦ ϕ̂−1)(ξ, η) = (ψ ◦ S)([1 : ξ], [1 : η])

= ψ([1 : η : ξ : ξη])

= (η, ξ, ξη) ∈ C3.

This is smooth (and holomorphic) near (0, 0). Thus S is smooth near p.
Remark: The map S is a Segre embedding which is an embedding

CPn × CPm −→ CP(n+1)(m+1)−1.

The definition is analogous the the one above. If you know what a projective manifold/variety
is, then this shows that the product of projective manifolds/varieties is again projective.



Name:

Exercise 2. [11 Punkte]

We consider a smooth map f : S3 −→ S2 and a volume form ω on S2. Recall that H1(S3) = {0}.

1. Formulate Stokes theorem for a general compact, orientable manifold with boundary.

2. Show (using methods from the lecture, for example using Hodge ∗) that H2(S3) = {0}.

3. Conclude that there is a 1-form λ on S3 such that f ∗ω = dλ.

4. Let λ, λ̂ be two 1-forms on S3 such that dλ = f ∗ω = dλ̂. Prove∫
S3

λ ∧ dλ =

∫
S3

λ̂ ∧ dλ̂.

1. Theorem (Stokes): Let M be an oriented, compact, smooth manifold of dimension n with
boundary and ω ∈ Ωn−1(M) a smooth form. Then∫

∂M

ω =

∫
M

dω.

The boundary is oriented by the outward normal first convention.

2. We equip M with a Riemannian metric. It was explained in the lecture (January 10,
2017), that ∗ defines an isomorphism

∗ : Harmk(M) −→ Harmn−k(M)

between spaces of harmonic forms when M is closed, smooth and oriented for all k. By
the Hodge decomposition theorem this corresponds to an isomorphism

PD : Hk(M) −→ Hn−k(M).

In the case M = S3 and k = 1 we obtain H2(S3) = {0} from H1(S3) = {0}.

3. f ∗ω is closed since df ∗ω = F ∗dω and every 2-form on a 2-manifold is closed. Since

H2(S3) =
ker(d : Ω2(S3) −→ Ω3(S3))

im(d : Ω1(S3) −→ Ω2(S3))
= {0}

it follows that f ∗ω is exact, i.e. there is a 1-form λ on S3 such that dλ = F ∗ω.

4. If dλ = F ∗ω = dλ̂, then the difference λ̂− λ is a closed 1-form. Because of H1(S3) = {0}
it is exact, i.e. there is a smooth function g such that dg = λ̂−λ. Then by Stokes theorem
and ∂S3 = ∅ ∫

S3

λ̂ ∧ dλ̂−
∫
S3

λ ∧ dλ =

∫ 3

S

(λ̂− λ) ∧ F ∗ω

=

∫
S3

dg ∧ F ∗ω

=

∫
S3

d(g · F ∗ω) = 0.



Name:

Exercise 3. [6 Points]

1. Let M,N be closed, oriented, connected manifold of the same dimension n. Define the
mapping degree of a smooth map f : M −→ N .

2. Consider the case M = N = T 2 = S1×S1. As oriented coordinates on T 2 we use pairs of

numbers

(
ϕ
ψ

)
∈ R2. Two such pairs represent the same point in T 2 if and only if their

difference lies in 2πZ2. Finally, note
∫
S1 dϕ = 2π =

∫
S1 dψ.

Compute the mapping degree of the map

f : T 2 −→ T 2(
ϕ
ψ

)
7−→

(
3 1
0 1

)(
ϕ
ψ

)
.

1. According to the lecture Hn(M) ' R for closed, connected and oriented manifolds of
dimension n. Let ω ∈ Ωn(N) represent a non-trivial cohomology class (i.e.

∫
N
ω 6= 0).

Then the degree of f is

deg(f) =

∫
M
f ∗ω∫
N
ω

.

2. We pick ω = dϕ ∧ dψ. Then
∫ 2

T
ω =

∫
S1 dϕ

∫
S1 dψ = 4π2 6= 0. Moreover

f ∗ω = d(3ϕ− ψ) ∧ dψ = 3dϕ ∧ ψ.

Hence

deg(f) =

∫
T 2 f

∗ω∫
T 2 ω

= 3.

Alternatively one can argue as follows: Since T 2×S1×S1 and a basis of T(ϕ,ψ)T
2 is given

by ∂
∂ϕ
, ∂
∂ψ

. With respect to this basis the differential of f is

Df(ϕ,ψ) : T(ϕ,ψ)T
2 = R⊕ R −→ Tf(ϕ,ψ)T

2 = R⊕ R

is represented by the matrix

(
3 1
0 1

)
. This matrix is non-degenerate and has positive

determinant, i.e. every point is a regular value. Therefore Df is orientation preserving
everywhere. Finally, f−1(0, 0) = {(0, 0), (2π/3, 0), (4π/3, 0)} has three elements. Hence
deg(f) = 3 by a theorem in the lecture.



Name:

Exercise 4. [7 points]

Let M be a smooth manifold and ∇ a connection on TM .

1. Define the curvature tensor R of ∇.

2. Assume that M has dimension 1. Prove that R ≡ 0.

3. How does the Levi-Civita connection and the associated curvature tensor of a semi-
Riemannian metric (M, g) change when g is replaced by c · g with 0 < c ∈ R a constant.
What happens to the scalar curvature?

1. R(X, Y )Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y ]Z where X, Y, Z are smooth vector fields on M .

2. R is a tensor, i.e. the value of R(X, Y )Z at p ∈M depends only on the values of X, Y, Z
at that point. It is antisymmetric in the first two variables R(X, Y )Z = −R(Y,X)Z. If
M is one dimensional then for all X, Y ∈ TpM there is λ ∈ R such that λX(p) = Y (p).
Then at p and by linearity and antisymmetry

R(X, Y )Z = R(X(p), Y (p))Z(p) = λR(X(p), X(p))Z(p) = 0.

3. The Levi-Civita connection ∇ is uniquely determined by the requirements

(i) ∇ is torsion free, i.e. ∇XY −∇YX − [X, Y ] ≡ 0 for all vector fields X, Y on M , and

(ii) ∇ is metric, i.e. LX(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

The first condition is verified when g is multiplied with a constant and the same is true
for the second. Thus the Levi-Civita connection does not change when g is replaced by
c · g. By definition, the same is true for the associated curvature tensor.

Finally, let ei be an orthonormal basis of TpM with respect to g. Then

scal(p) =
∑
i,j

g(R(ei, ej)ej, ei).

An orthonormal basis with respect to c · g is ei/
√
c. The scalar curvature ŝcal of c · g is

then

ŝcal(p) =
∑
i,j

(c · g)
(
R(ei/

√
c, ej/

√
c)ej/

√
c, ei/

√
c
)

=
scal(p)

c



Name:

Exercise 5. [10 Points]

1. Let G be a group and a smooth manifold at the same time. When is G a Lie-group? What
is the Lie-algebra g of a Lie-group G?

2. Consider the group

G =

{(
a b
0 a−1

) ∣∣∣∣ a > 0 and b ∈ R
}
.

Define a smooth structure on G so that G is a Lie-group (with respect to matrix multi-
plication).

3. Choose a basis X, Y of g and compute [X, Y ].

1. G is a Lie-group when the multiplication µ : G×G −→ G and the inversion inv : G −→ G
are smooth maps. The Lie-algebra is the space of left invariant vector fields on G, the
commutator of two left invariant vector fields is again left invariant. This determines the
Lie-algebra structure on g.

2. G can be covered with one single chart. Define

ϕ : G −→ {(x, y) ∈ R2 |x > 0}(
a b
0 a−1

)
7−→ (a, b).

We write ϕ× ϕ for the product chart on G×G. Then

ϕ ◦ µ ◦ (ϕ× ϕ)−1(x1, y1, x2, y2) = ϕ ◦ µ
((

x1 y1

0 x−1
1

)
,

(
x2 y2

0 x−1
2

))
= ϕ

((
x1x2 x1y2 + y1x

−1
2

0 x−1
1 x−1

2

))
= (x1y1, x1y2 + y1x

−1
2 )

ϕ ◦ inv ◦ ϕ−1(x, y) = ϕ ◦ inv

((
x y
0 x−1

))
= ϕ

((
x−1 −y
0 x

))
= (x−1,−y).

Thus µ and inv are both smooth, G is a Lie-group.

3. G is a subgroup of Gl(2,R). A basis X, Y of g is

X =

(
1 0
0 −1

)
Y =

(
0 1
0 0

)



(see below for a more pedestrian way). The commutator is

[X, Y ] =

(
1 0
0 −1

)(
0 1
0 0

)
−
(

0 1
0 0

)(
1 0
0 −1

)
=

(
0 2
0 0

)
= 2Y.

The more pedestrian way in terms of coordinates: A path in G at the unit matrix repre-
senting the tangent vector ∂

∂x
in terms of the above coordinates is

γ : (−1, 1) −→ G

t 7−→
(

1 + t 0
0 (1 + t)−1

)
.

Let X be the left-invariant vector field X which equals ∂
∂x

. Then X(g) is represented by
g · γ for g = ϕ−1(x, y), hence

X(x, y) =
d

dt

∣∣∣∣
t=0

ϕ

(((
x y
0 x−1

)(
1 + t 0

0 (1 + t)−1

)))
=

d

dt

∣∣∣∣
t=0

ϕ

((
x(1 + t) y(1 + t)−1

0 x−1(1 + t)−1

))
=

d

dt

∣∣∣∣
t=0

((1 + t)x, y/(1 + t))

= x
∂

∂x
− y ∂

∂y

We now compute [X, Y ]

[X, Y ] =

[
x
∂

∂x
− y y

∂y
, x

∂

∂y

]
= x

∂

∂y
−
(
−x ∂

∂y

)
= 2x

∂

∂y
= 2Y.



Name:

Exercise 6. [10 Points]

On R3 \ {0} consider the 2-form

ω =
1
2
εijkx

idxj ∧ dxk

‖x‖3

and the 2-sphere S2 = {(x1, x2, x3 | (x1)2 + (x2)2 + (x3)2 = 1} in R3.

1. Verify that ω is closed.

2. Let η denote the restriction of ω to S2. Compute
∫
S2 η.

3. Let Σ be a sphere of radius 3 around the point (3, 2, 5). Compute
∫

Σ
η′ where η′ is the

restriction of ω to Σ.

1. For closedness, we can first write

ω =
xdy ∧ dz + ydz ∧ dz + zdx ∧ dy

(x2 + y2 + z2)3/2

and compute

dω =
3dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2
− 3 · 2

2

(xdx+ ydy + zdz) ∧ (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

(x2 + y2 + z2)5/2

=
3dx ∧ dy ∧ dz

(x2 + y2 + z2)3/2
− 3(x2 + y2 + z2)(dx ∧ dy ∧ dz)

(x2 + y2 + z2)5/2
= 0.

2. For this computation, it is useful to parametrize the S2 using the spherical coordinates

x = sinϑ cosϕ

y = sinϑ sinϕ

z = cosϑ

where ϑ ∈ (0, π) and ϕ ∈ (0, 2π). These coordinates do not cover the whole S2 but the
subset that is not covered by these coordinates is measure zero, so for the integration we
can still work only in this patch. To express η = i∗ω where i is the embedding S2 → R3

we compute

i∗dx = cosϑ cosϕdϑ− sinϑ sinϕdϕ

i∗dy = cosϑ sinϕdϑ+ sinϑ cosϕdϕ

i∗dz = − sinϑdϑ

and

i∗(xdy ∧ dz) = sinϑ cosϕ(sin2 ϑ cosϕdϑ ∧ dϕ)

i∗(ydz ∧ dx) = sinϑ sinϕ(sin2 ϑ sinϕdϑ ∧ dϕ)

i∗(zdx ∧ dy) = cosϑ(cosϑ sinϑ cos2 ϕ+ cosϑ sinϑ sin2 ϕ)dϑ ∧ dϕ

so
η = i∗ω = (sin3 ϑ+ sinϑ cos2 ϑ)dϑ ∧ dϕ = sinϑdϑ ∧ dϕ



which is the standard volume form on S2. The integral is now∫
S2

η =

∫ π

0

dϑ

∫ 2π

0

dϕ sinϑ = 2π

∫ π

0

sinϑdϑ = 2π

∫ 1

−1

dy = 4π.

where we changed the variable to y = − cosϑ. The result agrees with the area of S2 of
unit radius in R3.

3. We can use the Stokes theorem. ω is well-defined smooth 2-form in the closed ball B
around the point (3, 2, 5) with radius 3 (because the origin of R3 where ω is not well-
defined is outside of this ball). We thus have∫

Σ

η′ =

∫
∂B

η′ =

∫
∂B

i′∗ω =

∫
B

di′∗ω =

∫
B

i′∗dω = 0


