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Please note: These notes summarize the content of the lecture, many details and
examples are omitted. Sometimes, but not always, we provide a reference for proofs,
examples or further reading. I will not attempt to give the first reference where a
theorem appeared. Some proofs might take two lectures although they appear in a
single lecture in these notes. Changes to this script are made without further notice
at unpredictable times. If you find any typos or errors, please let me know.

1. Lecture on April, 12 – Hurewicz theorem on π1, H1

• Reference: [Ha], p.166–168.
• Setup: Let X be a path connected topological space, x0 a base point. If

γ : ([0, 1], {0, 1}) −→ (X, x0)

represents an element [γ] ∈ π1(X, x0), then after identifying [0, 1] with ∆1 (the
standard 1-simplex) by an affine map ψ so that 0v0 goes to 0 and v1 to 1 we
can view γ ◦ ψ as a singular 1-simplex. Since γ ◦ ψ(v0) = γ ◦ ψ(v1) we have
∂γ ◦ ψ = 0, i.e. γ ◦ ψ is a 1-cycle and represents a homology class.
• Theorem (Hurewicz): The map

hur : π1(X, x0) −→ H1(X;Z)

[γ] 7−→ [γ ◦ ψ]

is well defined, a group homomorphism, surjective and ker(hur)) = [π1(X, x0), π1(X, x0)]
is the commutator subgroup.
• Warning: The equivalence relations using to the define the two groups above

are quite different (homotopy versus homology).
• Reminder: The commutator subgroup of a group G is the smallest subgroup

containing the set

{ghg−1h−1 | g, h ∈ G}.
It is normal and if G −→ A is a group homomorphism with A Abelian, then
the kernel of this map contains [G,G]. We write Gab = G/[G,G], this is an
Abelian group.
• Remark: The equivalence relation used to define π1(X, x0)ab is generated by

the following two operations:
– Two curves which are homotopic relative endpoints are equivalent.
– If γ = α ∗ β for closed loops α, β based at x0, then γ ∼ β ∗ α.

• Proof: For well-definedness, group homorphisms, and surjectivity, see [Ha].
The kernel has to contain [π1, π1] since H1 is Abelian.

We show that the induced map

hur : (π1(X, x0))ab −→ H1(X;Z)

is injective. This then implies the Theorem.



2

Let γ : [0, 1] −→ X such that [γ] = 0 ∈ H1(X;Z). Then there is a 2-chain
σ such that ∂σ = γ. Let σ = ±σ1 . . . ± σm. We write τ ikl, i = 1, . . . ,m for the
summands of ∂σi. In C∗(X;Z)

∂σ = ±(τ 1
01 − τ 1

02 + τ 1
12) . . .± (τm01 − τm02 + τm12)

= γ
(1)

where we omit identification maps. The summands in (1), with the exception
of one summand γ, come in pairs so that a summand and its partner have
opposite signs. We form a CW-complex K as follows:

– K0 consists of vertices of σi, these points are identified when their images
under the singular 2-simplices in X coincide.

– K1 is formed by closed 1-cell for each pair of edges above. These cells
are attached to K0 using the end points of τ ikl from the pair. In addition
we add one 1-cell corresponding to γ.

– We add one 2-cell for each σi above. The are attached to the one cells
corresponding to their edges.

This is a finite CW-complex which comes with a map

F : K −→ X

which is given by σi one each two cell when the 2-cells are attached carefully
(so that the restriction of σi to an edge is independent from the 2-cell attached
to that edge).

The vertex k0 corresponding to the endpoints of γ is mapped to x0. We
homotope F as follows: Since X is path connected, we may homotope F |K0 so
that the homotopy is constant on k0 and after the homotopy K0 is mapped to
{x0}. By the homotopy extension theorem this homotopy can be extended to
a homotopy of F defined on the entire complex K.

We obtain new data homotopic to the old data: a curve γ′ homotopic to γ
rel. endpoint, a map F ′ : K −→ X, singular 2-simplices σ′i (as restrictions of F ′

to closed 2-cells), and restrictions τ ikl of F ′ to boundary segments. The singular
simplex σ′i maps vertices to x0. The edge maps corresponding to adjacent 2-
simplicies coincide. In particular, the restrictions of F ′ to edges of K1 represent
elements in π1(X, x0) (!).

The complex K is no longer useful, we only need to remember the homotoped
singular 2-simplices. We forget all primes in the notation.

Up to homology, we may replace every summand τ ikl above which has a −-
sign by the loop parametrized in the opposite sense (γ−1 is homologous to −τ
for every singular 1-simplex). Except for γ every summand in the above sum
has a partner describing the same path parametrized backwards.

In π1(X, x0)ab (with + denoting the concatination of paths).

γ = γ + path1 + path−1
1 + . . .+ pathn + path−1

n .

were pathj denotes one of the summands of (1) which appear in pairs. In the
Abelian group π1(X, x0)ab (but not in π1(X, x0)) this sum can be reordered
so that

γ =
(
τ 1

01 +
(
τ 1

02

)−1
+ τ 1

12

)±1

. . .±
(
τm01 + (τm02)−1 + τm12

)±1
.
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The singular 2-simplex σ1 provides a nullhomotopy for the fist bracket, hence
the first bracket vanishes in π1(X, x0)ab. The same is true for all other brackets.
Thus γ ∼ 0 in π1(X, x0), i.e. γ ∈ [π1(X, x0, π1(X, x0)].
• Remark: This implies that if hur(γ : S1 −→ X) = 0 ∈ H1(X;Z), then there

is an oriented surface Σ with one boundary component such that the map
γ : ∂Σ ' S1 −→ X extends to a map Γ : Σ −→ X.

Recall that if γ is nullhomotopic, then Σ can be chosen to be a disc.
• Remark: The Hurewicz theorem can be generalized to higher homotopy groups

as follows: If X is k − 1-connected, then πk(X, x0) −→ Hk(X;Z) is an isomor-
phism.

The hypothesis k− 1-connected cannot be discarded. For example, we know
that π2(T 2) = {0} (since T 2 is covered by a contractible space). Using cellular
homology is quite easy to see that H2(T 2;Z) ' Z.

2. Lecture on April, 16 – Coefficients, Borsuk-Ulam

• We defined C∗(X;Z) as the free Abelian group generated by singular simplices.
Free Abelian groups are automatically Z-modules via n · σ = σ + . . . + σ (n
summands if n > 0) and n · σ = (−σ) + . . . (−σ) (−n summands if n < 0).
• If A is an Abelian group we can define C∗(X;A) as follows: elements are formal

sums
∑

σ aσσ over all singular simplices and ai ∈ A with ai = 0A for almost all
i. The group law is(∑

σ

aσ · σ

)
+

(∑
σ

bσ · σ

)
=
∑
σ

(aσ + bσ) · σ.

If σ is a singular simplex, this is not an element of C∗(X;A). By an unspoken
convention σ ∈ C∗(X;Z) is understood as 1 · σ.

For n ∈ Z, a ∈ A and σ a singular simplex (na) · σ ∈ C∗(X;A) and

(2) na · σ = a · nσ.
Thus we can define the boundary operator ∂ : C∗(X;A) −→ Ck∗−1(X;A) as
follows:

∂

(∑
σ

aσ · σ

)
:=
∑
σ

aσ · (∂σ).

This turns (C∗(X;A), ∂) into a chain complex and one can go through all
definitions/general theorems which were discussed last semester. All of them
hold except the following:
• Theorem (coefficients): If X is a one-point space, then

Hk(X;A) '
{

0 k 6= 0
A k = 0.

• Remark: For this and the axioms one obtains as in the case A = Z and n ≥ 1:

Hk(S
n;A) '

{
A k = 0, n
0 otherwise

• Remark: Let ϕ : A1 −→ A2 be a group homomorphism. Then ϕ induces a
chain map ϕ∗ : C∗(X;A1) −→ C∗(X;A2) via

ϕ∗

(∑
σ

aσ · σ

)
=
∑
σ

ϕ∗(aσ) · σ.
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Moreover, if f : X −→ Y is continuous, then f∗ ◦ ϕ∗ = ϕ∗ ◦ f∗.
• Lemma: Let f : Sk −→ Sk, k ≥ 1, be continuous of degree m and A Abelian.

Then then f∗ : Hk(S
k, A) −→ Hk(S

k;A) is multiplication by m, i.e.

f∗(X) =


m times︷ ︸︸ ︷

X + . . .+X m ≥ 0
−X + . . .+ (−X)︸ ︷︷ ︸

m times

m < 0

• Proof: Let a ∈ A and

ϕ : Z −→ A

m 7−→ m · a.

Then the diagram

Hn(Sn;Z)
f∗

m·
//

ϕ∗
��

Hn(Sn;Z)

ϕ∗
��

Hn(Sn;A)
f∗ // Hn(Sn;A)

commutes. This proves the claim.
• The Hurewicz theorem has no direct analogue forH1(X;A) (because π1(X, x0)ab

is a Z-module, but not an A-module).
• Terminology: H∗(X;A) is called homology with coefficients in A etc.
• The cellular chain complex with coefficients in A is defined in the obvious way.

It computes H∗(X;A).
• Example: The cellular chain complex of RPn with coefficients in Z2: For the

standard CW-structure Ck(RPn;Z2) = Z2 iff 0 ≤ k ≤ n and 0 otherwise. All
differentials are zero. Then

Hk(RPn;Z2) '
{

Z2 0 ≤ k ≤ n
0 otherwise

• Proposition: Let f : Sn −→ Sn be continuous such that f(−x) = −f(x).
Then the degree of f is odd.

• Preliminaries: Let pr : X̂ −→ X be a 2-sheeted covering. This is automat-
ically normal, we denote the non-trivial deck transformation by ϕ. Consider
the short exact sequence

0 −→ Cn(X;Z2) −→τ Cn(X̂;Z2) −→pr∗ Cn(X;Z2) −→ 0

where τ is defined as follows. For a singular n-simplex in X we choose a lift

σ̂ : ∆n −→ X̂ such that pr ◦ σ̂ = σ. Then

τ(σ) = σ̂ + ϕ∗(σ̂).

This determines τ on general chains by linearity and τ is a chain map. Thus
there is an associated long exact sequence, the map induced by τ is a transfer
map, the associated long exact sequence is a transfer sequence.
• Proof of the Proposition: Consider the covering pr : Sn −→ RPn. Since

f(−x) = −f(x), f induces a map f̂ : RPn −→ RPn. We need to understand

how f̂ , f interact with the short exact sequence: Using the definition of τ , one
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can check that the diagram

0 // Ci(RPn;Z2)
τ //

f̂∗
��

Ci(S
n;Z2)

pr∗ //

f∗
��

Ci(RPn;Z2) //

f̂∗
��

0

0 // Ci(RPn;Z2)
τ // Ci(S

n;Z2)
pr∗ // Ci(RPn;Z2) // 0

commutes. By naturality of the long exact sequence there is map from the
transfer sequence to itself:

H1(Sn;Z2) //

f∗
��

H1(RPn;Z2)
∂∗ //

f̂∗
��

H0(RPn;Z2)
τ∗ //

f̂∗
��

H0(Sn;Z2)
pr∗ //

f∗
��

H0(RPn;Z2)

f̂∗
��

H1(Sn;Z2) // H1(RPn;Z2)
∂∗ // H0(RPn;Z2)

τ∗ // H0(Sn;Z2)
pr∗ // H0(RPn;Z2)

The right-most map pr∗ is an isomorphism, so the map preceding it must be
zero. Therefore, the connecting morphism H1(RPn;Z2) −→ H0(RPn;Z2) is

sujective, hence it is an isomorphism. Moreover, the map f̂∗ : H0(RPn;Z2) −→
H0(RPn;Z2) is an isomorphism. Hence f̂∗ : H1(RPn;Z2) −→ H1(RPn;Z2) is an
isomorphism.

Inductively, one obtains that f̂∗ : Hn(RPn;Z2) −→ Hn(RPn;Z2) is an iso-
morphism. Finally, look at

Hn+1(RPn;Z2) = 0 //

��

Hn(RPn;Z2) //

f̂∗
��

Hn(Sn;Z2) = Z2
//

f∗
��

Hn(RPn;Z2)

f̂∗
��

Hn+1(RPn;Z2) = 0 // Hn(RPn;Z2) // Hn(Sn;Z2) = Z2
// Hn(RPn;Z2)

The horizontal maps in the middle are injective, hence they are isomorphisms.
Hence, f∗ is an isomorphism. We have shown that it is also the multiplication
with an integer, which must be odd.

Using the morphism ϕ : Z −→ Z2 of coefficient groups we conclude that the
degree of f is odd.
• Corollary (Borsuk-Ulam): Let g : Sn −→ Rn be a continuous map. Then

there is a point x such that f(x) = f(−x).
• Proof: Assume not and consider

f : Sn −→ Sn−1

x 7−→ g(x)− g(−x)

‖g(x)− g(−x)‖
.

The restriction of this map to the equator (yet another copy of Sn−1) has the
symmetry property needed for the previous proposition. Therefore, it has odd
degree. However, this restriction is null-homotopic (shrink Sn−1 in one of the
hemispheres in Sn), so the degree would be zero. This is a contradiction.

3. Lecture on April, 19 – Coefficients

• Recall that the singular chain complex with coefficients in an Abelain group A
was defined last time.
• (2) implies, that C∗(X;A) is isomorphic to the tensor product C∗(X) ⊗Z A =
C∗(X)⊗ A.
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• Reminder: Let G,H be Abelian groups. Then there is an Abelian group
G ⊗ H and a bilinear map i : G × H −→ G ⊗ H such that for each Abelian
group B and each bilinear map f : G × H −→ B there is a unique group
homomorphism F : G⊗H −→ B such that F ◦ i = f .

(3) G×H f //

i
��

B

G⊗H
∃!F

;;

This determines G ⊗H up to canonical isomorphism. Existence of G ⊗H:
Let Z be the free Abelian group generated by elements of G × H and I ⊂ Z
the subgroup generated by elements (g, h+h′)− (g, h′)− (g, h) and (g+g′, h)−
(g, h)− (g′, h). Then G⊗H = Z/I has the desired properties.

In particular, g ⊗ (nh) = (ng)⊗ h = n(g ⊗ h) for n ∈ Z.
• Remark: i(g, h) =: g ⊗ h. Not every element of G⊗H is of this form.
• Examples:

– A⊗Z = A, Zq⊗Zp = {0} when gcd(p, q) = 1. (1 = mp+nq for suitable
integers p, q. Then q is invertible in the multiplicative group Zp.)

– A⊗B and B ⊗ A are canonically isomorphic.
– Assume that every element in A has finite order. Then A⊗Q = {0}.
– (A1 ⊕ A2) ⊗ B ' (A1 ⊗ B) ⊕ (A2 ⊗ B), the isomorphism is canoni-

cal/natural. The same holds for arbitrary direct sums.
• Reminder: An Abelian group A is free if it has a basis (i.e. there is a set
B ⊂ A such for every a ∈ A there are uniquely determined nb ∈ Z, b ∈ B, such
that almost all nb = 0 and a =

∑
nb · b.

Alternatively, for each map f : B −→ A′ into an Abelian group A′ there is a
unique homomorphism F : A −→ A′ such that

B
f //

i
��

A′

A
∃!F

>>

commutes. The set B is then a basis. Its cardinality is the rank of A.
To see that the rank well defined, note that A/2A is a Z2 vector space such

that B induces a basis.
• Fact: If G is free Abelian and H a subgroup, then H is free and rank(G) ≥

rank(H). This is non-trivial, a reference is Theorem III.B.3 in [ScS].
• Reminder: The following theorem from algebra is useful to compute tensor

products.
• Theorem: Let A be a finitely generated Abelian group. Then there are
y1, . . . , yr, z1, . . . , zp ∈ A with the following properties.

– A is the (internal) direct sum of the cyclic subgroups generated by these
elements.

– The yi have finite order ti ≥ 2 such that ti+1 is a multiple of ti. The
order of zi is infinite. Every set of elements generating A has at least
r+ p elements. The numbers p and the torsion coefficients) t1, . . . , tp are
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independent from the choice of generators. In particular

A ' Zp ⊕
⊕
i

Z/(tiZ)︸ ︷︷ ︸
'T (A)

.

Here the torsion subgroup T (A) ⊂ A is the subgroup (!) consisting of all
elements of finite order in A.
• Consider the exact sequence 0 −→ Z −→ Z −→ Zm −→ 0. Tensoring with
Zm we obtain a sequence 0 −→ Zm −→ Zm −→ Zm −→ 0 which is no longer
exact. Since homology measures the failure of a chain complex of being exact
we need to better understand the effect of tensoring with a group G on exact
sequences.
• A useful Lemma when dealing with exact sequences is the following:
• Five Lemma: Assume that the rows in the following commutative diagram of

Abelian groups and homomorphisms are exact, and that f2, f4 are isomorphism
while f1 is surjective and f5 is injective. Then f3 is an isomorphism.

A1
//

f1
��

A2
//

f2
��

A3
//

f3
��

A4
//

f4
��

A5

f5
��

B1
// B2

// B3
// B4

// B5

• Definition: A short exact sequence

(4) 0 // A
f // B

h // C // 0

splits if there is homomorphism r : C −→ B such that h ◦ r = idC . (r is a right
inverse of h).
• Lemma: The short exact sequence (4) splits if and only if either of the following

conditions hold.
– There is an isomorphism ϕ : A⊕ C −→ B such that f(a) = ϕ(a, 0) and
g(ϕ(0, c)) = c.

– f has a left inverse, i.e. there is a homomorphism l : B −→ A such that
l ◦ f = idA.

• Example: When C is free, then the exact sequence (4) splits. The sequence
0 −→ Z −→ Z −→ Zm −→ 0 does not split.

4. Lecture on April, 23 – Coefficients, Tor

• Theorem: If the sequence

A
f // B

h // C // 0

is exact, then the same is true after tensoring with an Abelian group G. When

0 // A
f // B

h // C // 0

is exact and splits, then the same is true after tensoring with an Abelian group
G.
• Proof: The second part is obvious: If r is a right inverse of h, then r ⊗ idG :
C⊗G −→ B⊗G is a right inverse of h⊗ idG. The exactness then follows from
general properties of ⊕,⊗ (distributive).
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Let U be the image of f ⊗ id. This is contained in ker(h ⊗ id). Therefore
h⊗ id descends to a map

h′ :
B ⊗G
U

−→ C ⊗G.

In order to prove that U = ker(h⊗ id) we define an inverse for h′ using (3) and
the surjectivity of h: Let

ϕ : C ×G −→ B ⊗G
U

(c, g) 7−→ [b⊗ g] if h(b) = c.

This is a well defined bilinear map. There is a unique morphism

(5) Φ : C ⊗G −→ B ⊗G
U

such that Φ◦i = ϕ. The composition h′◦ϕ is the standard map C×G −→ C⊗G.
Therefore (by uniqueness in (3)), h′ ◦ Φ = idC⊗G. Moreover,

Φ ◦ h′([b⊗ g]) = Φ(h(b)⊗ g) = [b⊗ g].

• Terminology: ⊗G is said to be right-exact.
• Remark: If (4) is exact, and we tensor withG, then the result is not necessarily

exact. The potential non-exactness is due to the possibility that f × id :
A⊗G −→ B ⊗G has a non-trivial kernel. The smaller the kernel, the better.
• Definition: Let A be Abelian. An exact sequence 0 −→ R −→ F −→ A −→ 0

is a free resolution of A if F is free and Abelian.
• Remark: Subgroups of free Abelian groups are free, hence R is also free when
R −→ F −→ A is a free resolution of A.
• Examples:

– 0 −→ Z −→ Z −→ Zm −→ 0 is a free resolution of Zm.
– Let F (A) be the (abstract) free group generated by the elements of A (if
A = Zm, then F (A) ' Zm). There is a canonical map p : F (A) −→ A.
Let R(A) = ker(p). Then

(6) 0 −→ R(A) −→i F (A) −→ A −→ 0

is a free resolution of A. This shows that every Abelian group has a free
resolution.

• Definition: Let Tor(A,G) = ker(i× id : R(A)⊗G −→ F (A)⊗G).
• Up to isomorphism Tor(A,G) does not depend on the choice of the free resolu-

tion above. Moreover, Tor(A,G) is functorial in A for fixed G (more is true),
i.e. from A −→ Ã we obtain a map Tor(A,G) −→ Tor(A′, G) in a way that is
consistent with composition of maps.
• Lemma: Let A, Ã be Abelian groups, f : A −→ Ã a homomorphism and two

free resolutions:

(7) S : 0 // R
i //

f ′′
��

F
p //

f ′
��

α

��

A //

f
��

0

S̃ : 0 // R̃
ĩ

// F̃
p̃
// Ã // 0

Then the following holds:
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1. There are homomorphisms f ′, f ′′ such that the diagram commutes. If
f ′1, f

′′
1 are two other such homomorphisms, then there is a map α : F −→

R̃ such that f ′ − f ′1 = ĩ ◦ α and f ′′ − f ′′1 = α ◦ i.
2. f ′′⊗ id : R⊗G −→ R̃⊗G maps ker(i⊗ id) to ker(̃i⊗ id). The restriction

Φ(f,S, S̃) to this kernel is independent of choices.

3. If g : Ã −→ ˜̃A and
˜̃S is a free resolution of ˜̃A, then

Φ(g ◦ f,S, ˜̃S) = Φ(g, S̃, ˜̃S) ◦ Φ(f,S, S̃).

4. Φ(idA,S,S) = id.
• Proof:

1. Existence of f ′ follows from the fact that F is free. Once f ′ is defined,
f ′′ = ĩ−1 ◦ f ′ ◦ i. In particular, f ′′ is completely determined by f ′.
Let f ′1 be another map as f ′. Then (p̃ ◦ (f ′ − f ′1))(x) = 0, so there is
a (unique) α(x) ∈ R̃ such that ĩ(α(x)) = (f ′ − f ′1)(x). The equality
f ′′ − f ′′1 = α ◦ i follows.

2. After tensoring, the above diagram still commutes. If i⊗ id(ρ ∈ R⊗G) =
0, then

(̃i⊗ id) ◦ (f ′′ ⊗ id)(ρ) = f ′ ⊗ id(0) = 0.

Moreover, (f ′′ − f ′′1 )⊗ id = (α ◦ i)⊗ id = (α⊗ id) ◦ (i⊗ id).
3. Follows since one can choose g′′ ◦ f ′′ for (g ◦ f)′′.
4. Choose f ′′ = id.

• If f is an isomorphism, then Φ(f,S, S̃) has an inverse: Φ(f−1, S̃,S).
• Theorem: For every free resolution S there is a canonical isomorphism

Φ(S) : ker(i⊗ id) −→ Tor(A,G).

• Examples:
– If A is free, then Tor(A,G) = 0 for all G.
– For n ≥ 1, Tor(Zn, G) ' {g ∈ G |ng = 0}. For this use the free

resolution 0 −→ Z −→ Z −→ Zn −→ 0 (the second map is multiplication
by n).

– Tor(Zn,Zm) ' Zgcd(m,n) = ker(n · ⊗id : Z⊗ Zm −→ Z⊗ Zm = Zm).
– Tor(A1 ⊕ A2, G) ' Tor(A1, G)⊕ Tor(A2, G).

• We now study the effect on H∗ of tensoring a chain complex (C, ∂) of free
Abelian groups with a group G. Note that the singular chain complex is free.
• Let Zn = ker(∂n) ⊂ Cn, Bn = im(∂n+1) ⊂ Cn. Then there is a short exact

sequence of chain complexes

0 // Zn //

∂n
��

Cn
∂n //

∂n
��

Bn−1
//

∂n−1

��

0

0 // Zn−1
// Cn−1

∂n // Bn−2
// 0
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The differentials of the outer complex are actually trivial. Because all groups
are free, the sequences split and remain exact after ⊗G.

0 // Zn ⊗G //

∂n⊗id
��

Cn ⊗G
∂n⊗id //

∂n⊗id
��

Bn−1 ⊗G //

∂n−1⊗id

��

0

0 // Zn−1 ⊗G // Cn−1 ⊗G
∂n⊗id // Bn−2 ⊗G // 0

This gives rise to a long exact sequences of the form

. . . −→ Bn ⊗G −→ Zn ⊗G −→ Hn(C;G) −→ Bn−1 ⊗G −→ Zn−1 ⊗G −→ . . .

The connecting homomorphisms in this sequence are

(in ⊗ id) : Bn ⊗G −→ Zn ⊗G

where in : Bn −→ Zn is the inclusion. From the long exact sequence we get
short exact sequences

0 −→ coker(in ⊗ id) =
Zn ⊗G

im(in ⊗ id)
−→ Hn(C;G) −→ ker(in−1 ⊗G) −→ 0.

Interpretation of ker(in−1 ⊗ id): This fits into an exact sequence

0 // Bn−1 ⊗G
in−1⊗id

// Zn−1 ⊗G // Hn−1(C;Z)⊗G −→ 0

This is a free resolution of Hn−1(C;Z) after tensoring with G. Thus, ker(in−1⊗
id) is canonically isomorphic to Tor(Hn−1(C;Z), G).

Interpretation of coker(i⊗G): The map defined in (5) applied to the present
setting Bn −→ Zn −→ Hn(C;Z) −→ 0 defines a natural isomorphism

(8) Hn(C;Z)⊗G −→ coker(in ⊗ id) =
Zn ⊗G

im(in ⊗ id)

• Theorem (universal coefficient theorem for homology): There is a nat-
ural short exact sequence

0 −→ Hn(C;Z)⊗G −→ Hn(C;G) −→ Tor(Hn−1(C;Z), G) −→ 0.

The sequence splits (but not naturally).
• Proof: We still have to show that the sequence splits. Recall that this is true

for 0 −→ Zn −→in Cn −→∂n Bn−1 −→ 0 since Bn−1 is free. Thus, we can choose
a left inverse pn : Cn −→ Zn for in, and we get maps

Pn = quotient map ◦ pn : Cn −→ Hn(C;Z)

for all n. When one views Hn(C;Z) as a chain complex with trivial differential
this collection of maps is a chain map. (The homology of the chain complex
(H∗(C;Z), 0) is H∗(C;Z).) After tensoring with G, we get maps

Hn(C;G) −→ Hn(C;Z)⊗G[∑
σ

gσ · σ

]
7−→

∑
σ

P∗(σ)︸ ︷︷ ︸
∈Hn(C;Z)

⊗gσ.
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Precomposing this with the map

Hn(C;Z)⊗G −→ Hn(C;G)∑
i

[ σi︸︷︷︸
∈Zn

]⊗ gi 7−→
∑
i

gi · σi.

we get the identity of Hn(C;Z) ⊗ G since p∗ is a left inverse of the inclusion
i∗ : Zn −→ Cn.
• C was a chain complex, for example the singular chain complex of a pair (X,A)

of spaces.
• Reality check: Recall that for even n

Hk(RPn;Z) '

 Z k = 0
Z2 0 < k < n odd

0 otherwise.

Using the universal coefficient theorem we get

Hk(RPn;Z2) '
{

Z2 0 ≤ k ≤ n
0 otherwise.

• Remark: The universal coefficient sequence does not split naturally, i.e. one
can not choose the isomorphismH∗(C;G) ' (H∗(C;Z)⊗G)⊕Tor(H∗−1(C;Z), G)
for all chain complexes such that for every chain map f : C −→ D the following
diagram commutes:

H∗(C;G) //

f∗
��

(H∗(C;Z)⊗G)⊕ Tor(H∗−1(C;Z), G)

f∗⊕(Tor(f∗−1)⊗id)
��

H∗(D;G) // (H∗(D;Z)⊗G)⊕ Tor(H∗−1(D;Z), G)

The exercises provide an example illustrating this by a map of a Moore space
M(Zm, n) −→ Sn+1 ([Ha], Example 2.51) in singular/cellular homology.

5. Lecture on April, 26. More on Tor

• For computations of the torsion product Tor(·, ·) the following facts are useful.
• Fact: Tor(A,F ) = 0 is F is free (since tensoring with a free group preserves

exactness).
• Proposition: For a short exact sequence 0 −→ B −→ C −→ D −→ 0 and A

Abelian there is a natural exact sequence

0 −→ Tor(A,B) −→ Tor(A,C) −→ Tor(A,D) . . .

. . . −→ A⊗B −→ A⊗ C −→ A⊗D −→ 0.

• Proof: Let 0 −→ R −→ F0 −→ A −→ 0 be a free resolution of A. Consider
the following exact sequence of chain complexes (the chain complexes are rows
and extended by zero). Tensoring with free groups does not affect exactness.

0 // R⊗B //

��

R⊗ C

��

// R⊗D

��

// 0

0 // F ⊗B // F ⊗ C // F ⊗D // 0

The long exact sequence induced by this is what we want to prove (since F/R =
A and R,F are free).
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• Proposition: Tor(A,B) ' Tor(B,A).
• Proof: Pick a free resolution 0 −→ R −→ F −→ B −→ 0 of B and apply the

previous proposition to obtain

0 // Tor(A,B) // A⊗R //

'
��

A⊗ F //

'
��

A⊗B //

'
��

0

0 // Tor(B,A) // R⊗ A // F ⊗ A // B ⊗ A // 0

The lower row is the definition of Tor(B,A), the vertical arrows are all iso-
morphisms coming from interchanging factors. Therefore there is a natural iso.
Tor(A,B) −→ Tor(B,A).
• Proposition: If B has no torsion, then Tor(A,B) = 0.
• This is of interest for B = Q,R.
• Proof: Let 0 −→ R −→ F −→ A −→ 0 be a free resolution of A. If B is

finitely generated and torsionfree, then B is free and the statement follows.
The general case reduces to the finitely generated case as follows:

Assume
∑

i ri⊗bi is trivial in F⊗B. Then this sum can be reduced in finitely
many steps using the defining relations of tensor products (like r ⊗ (b + b′) =
r⊗ b+ r⊗ b′). Only finitely many elements of B appear in this process and all
these elements lie in a finitely generated subgroup of B.
• Corollary: Hn(X;Q) = Hn(X;Z)⊗Q and rank(Hn(X;Z)) = dimQ(X;Q).

• Corollary: H̃∗(X;Z) = 0 if and only if H̃∗(X;Zp) = 0 for all primes and

H̃∗(X;Q).
• Reminder: Reduced homology is obtained from the singular chain complex

by replacing ∂0 : C0(X) −→ 0 with ε : C0(X) −→ Z,
∑
niσi 7−→

∑
i ni.

• Proof: One direction is clear. For the other: Assume A = H̃∗(X,Z) such that
the homology groups with Zp and Q-coefficients vanishes. We want to show
A = 0.

From the six-term exact sequence above applied to 0 −→ Z −→ Z −→
Zp −→ 0 (the second arrow is multiplication with p) we get

0 −→ Tor(A;Zp) −→p· A −→ A⊗ Z ' A −→ A⊗ Zp −→ 0

The assumptions imply Tor(A,Zp) = 0, so A is torsion free since multiplication
by p is injective. The assumption also implies, that A⊗Q = 0.

Now consider 0 −→ Z −→ Q −→ Q/Z −→ 0. Since A is torsion free,
Tor(A, ·) = 0. Hence the six term sequence is

0 −→ Tor(A,Q/Z) = 0 −→ A −→ A⊗Q −→ A⊗Q/Z −→ 0.

Therefore A −→ A⊗Q = 0 is injective. Hence A = 0.
• Corollary: Let f : X −→ Y be continuous. Then f is an isomorphism in

integral homology iff the same is true for rational and Zp-homology (for all
primes p).
• Proof: Let C(f) = X × [0, 1] ∪ Y/ ∼ with (x, 0) ∼ f(x) and (x, 1) (x′, 1)

for all x, x′ ∈ X be the mapping cone of f . From the Mayer-Vietoris sequence
(applied to A = C(f) \ [X × 1] and B the image of X × (0, 1] in C(f)) one gets
a long exact sequence

Hn(X) −→f∗ Hn(Y ) −→ Hn(C(f)) −→ . . .

The reduced homology of C(f) vanishes if and only if f is an isomorphism.



13

• Reminder: Assume H∗(X,Z) is finitely generated. Then we have defined the
Euler characteristic

χ(X) =
∑
i

(−1)irank(Hi(X;Z)).

Using the universal coefficient theorem it follows that

χ(X) =
∑
i

(−1)idimF (Hi(X;F ))

for all fields F = Zp with p prime or F = Q,R,C.
• Break for an important application of homology: One of the most im-

portant applications of homology and invariants in the spirit of the Euler char-
acteristic is the Lefschetz fixed point theorem. We discuss it for simplicial
complexes in Rn which we first review. We omit proofs and explain only the
vocabulary. For details see Chapter 3 of [StZ].
• Simplices in Rn: Let x0, . . . , xq ∈ Rn. Then

T =

{
x ∈ Rn |x =

∑
i

λixi, λi ∈ R and
∑
i

λi = 1

}
is the affine space spanned of x0, . . . , xq. The following are equivalent:

1. dim(T ) = q
2. x1 − x0, . . . , xq − x0 are linearly independent.
3. There is no affine subspace S containing x0, . . . , xq and S 6= T .
4. If

∑
i λixi =

∑
i λ
′
ixi, then λi = λ′i. Then, λ0, . . . , λq are the barycentric

coordinates of x in σ.
If any of these conditions is satisfied, then x0, . . . , xq are in general position and

σ =

{
x ∈ T

∣∣∣∣∣x =
∑
i

λixi with λi > 0

}
is the open simplex with vertices x0, . . . , xq (not open as subset of Rn when
q 6= n). The boundary of σ is

σ̇ = σ \ σ.
Then (σ, σ̇) is homeomorphic to (Dq, Sq−1). Let σ be a simplex and τ the
simplex spanned by a subset of {x0, . . . , xq}. Then τ ⊂ σ̇ is a face of σ, we
write τ ≤ σ.
• Definition: A simplicial complex in Rn is a finite collection K of (open) sim-

plices in Rn such that
1. If σ ∈ K and τ ≤ σ, then τ ∈ K.
2. If σ, τ ∈ K and σ 6= τ , then σ ∩ τ = ∅.

The simplices with dimension 0 are the vertices of the complex. The space

|K| =
⋃
σ∈K

σ

with the subset topology is the space underlying the simplicial complex. As a
subset of Rn it is metric and it is compact. A subset L ⊂ K is a subcomplex
if it is a simplicial complex in Rn. For each x ∈ |K| there is a unique (open)
simplex σ(x) ∈ K containing x.
• Definition: Let L,K be two simplicial complexes in (maybe different) Eu-

clidean spaces. A simplicial map is a map f : K −→ L such that
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1. f maps vertices to vertices.
2. f maps the simplex σ onto the simplex in L whose vertices are images of

the vertices of σ. The restriction of f to σ is affine.
Given a simplicial map f : K −→ L there is a unique map |f | : |K| −→ |L|
which coincides with f on vertices and is affine on each simplex of K. The
map |f | is continuous. Finally, two simplicial complexes K,L are isomorphic if
there is simplicial map f : K −→ L which is bijective on vertices. One has to
show that if f is a simplicial isomorphism, then

– the map induced by the restriction of f−1 to vertices induces a simplicial
map f−1 such that |f−1| = |f |−1, and

– |f | is a homeomorphism.
• Remark: One may think of a simplicial complex as some special CW-complex.

However, simplicial maps are much more rigid than cellular maps: For two
simplicial complexes K,L there are only finitely many simplicial maps f :
K −→ L. If for example |K| = |L|(' Sk), then only finitely many maps are
homotopic to simplicial maps. Since there are infinitely many homotopy classes
of maps Sk −→ Sk, not every map f : |K| −→ |L| is homotopic to map which
can be realized by a simplicial map g : K −→ L.
• Reminder: Barycentric subdivision of a simplex σ, this was discussed last

semester for the standard simplex ∆k ⊂ Rk+1 but works analogously for all
simplices in Euclidean space.
• Theorem: Let K be a simplicial complex (in Euclidean space). Then there is

a simplicial complex K(1) such that
– the vertices of K(1) are the barycenters of simplices of K (this means in

particular that for each vertex y of K(1) there is a unique open simplex
σ(y) of K containing it),

– |K| = |K(1)|,
– vertices y0, . . . , yq span a simplex of K(1) if and only if σ(y0) < σ(y1) . . . <
σ(yq) (after renumbering).

K(1) is the barycentric subdivision ofK. This can be iterated, K(n) :=
(
K(n−1)

)(1)
.

If m is the maximal dimension of simplices in K (a finite set). Then the diam-
eter of a simplex σ1of K(1) is at most

m

m+ 1
· ( diameter of the simplex of K containing σ1).

• Theorem (simplicial approximation theorem): Let f : |K| −→ |L| be
a continuous map. f is homotopic to a simplicial map after sufficiently many
barycentric subdivisions of K.
• Remark: the proof of this can be found in [StZ], Section 3.2–3.3. One part is

similar to the cellular approximation theorem (which does not require subdivi-
sion): One homotopes the map pushing images of low dimensional simplices out
of higher dimensional ones. The other (first) part uses the following definition:
• Definition: Let K be a simplicial complex and p a vertex (i.e. a 0-dimensional

simplex in K). The star of p in K is

St(p) = {x ∈ τ | p ≤ σ(x)} ⊂ |K|.

• Lemma: (St(p))p a vertex of K is an open cover of |K|. If U is any open cover,
then after finitely many barycentric subdivisions, the open cover by stars is
subordinate to U.
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• Startegy for Proof of simplicial approximation: Let f : |K| −→ |L| be
continuous. After sufficiently many subdivisions of K the open cover of |K| by
stars of vertices of K(n) is subordinate to the open cover(

f−1(St(y))
)
, y a vertex of L.

Thus, for each vertex x of K(n) we can choose a vertex yx of L such that
f(St(x)) ⊂ St(yx).
• Lemma: The assignment x 7−→ yx defines a simplicial map ϕ : K(n) −→ L. ϕ

is homotopic to f .
• Fact: Throughout the homotopy St(x) is mapped to St(yx). When one sub-

divides L sufficiently often, then one can arrange that the simplicial approxi-
mation ϕ of f is C0-close to f . This is essential in the proof of the Lefschetz
fixed point theorem.
• Definition: Let f : |K| −→ |K| be a continuous map of a simplicial complex.

The Lefschetz-number of f is

λ(f) =
∑
i

(−1)itrace(fi : Hi(|K|;R) −→ Hi(|K|;R)).

The cellular chain complex is finitely generated, so the same is true for H∗ and
the sum above is defined. Note that χ(|K|) = λ(id|K|).
• Theorem (Lefschetz fixed point theorem): If λ(f) 6= 0, then f has a fixed

point.
• Proof: Let f : |K| −→ |K| be continuous without fixed points. Since |K| is

metric and compact, there is ε > 0 such that d(x, f(x)) > ε. After subdivision
of K we can assume that the diameter of stars of vertices in K(n) is smaller than
ε/2. After subdivision of K(n) and homotopy we find a map ϕ : |K| −→ |K|
which is simplicial with respect to K(m) and ε/2-close to f . Therefore, f does
not map a simplex to itself. That implies that the trace of

fi : CCW
i (|K|;R) −→ CCW

i (|K|;R)

vanishes for all i (we use the CW-decomposition induced by K(m) on |K|). To
conclude we use the Hopf trace formula:
• Lemma:∑

i

(−1)i·trace
(
fi : CCW

i (|K|;R) −→ CCW
i (|K|;R)

)
=
∑
i

(−1)i · (trace (fi : Hi(|K|;R) −→ Hi(|K|;R))
(9)

• Proof: exercise.
• Applications:

– The closed disc is homeomorphic to the standard simplex, all maps are
homotopic and χ(∆k) = 1. Thus the Lefschetz theorem generalizes the
Brouwer fixed point theorem.

– If f : Sk −→ Sk for k even has degree 6= −1, then f has a fixed point.
The antipodal map has degree −1 and no fixed point.

– Assume f : |K| −→ |K| 6= ∅ is null homotopic. Then λ(f) > 0 and f
has a fixed point.

– Every continuous map RPn −→ RPn for n even has a fixed point. (Com-
pute the homology of RPn with real/rational coefficients). If n = 2k − 1
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is odd, then

RPn −→ RPn

[x1 : x2 : . . . : x2k−1 : x2k] 7−→ [x2 : −x1 : . . . : x2k : −x2k−1]

has no fixed point.
– The same is true for CPn with even n, but we do not yet have the

technology to prove that. For odd n

CPn −→ CPn

[z1 : z2 : . . . : z2k−1 : z2k] 7−→ [z2 : −z1 : . . . : z2k : −z2k−1]

has no fixed point.
– If f : |K| −→ |K| is homotopic to the identity and χ(|K|) 6= 0, then f

has a fixed point.

6. Lecture on May 3 – Eilenberg-Zilber equivalences

• Reference: Mostly [StZ], Chapter 12
• Goal: Describe the homology of a product space X × Y . For products of

CW-complexes this would be easy using the cellular chain complex provided
that X×Y is actually a CW-complex. However, this is not true in general and
there is a different method using singular chains and a technology that is used
elsewhere.
• Definition: Let A = (An), B = (Bn) be chain complexes. Then A ⊗ B is

defined via

(A⊗B)n =
⊕
i

Ai ⊗Bn−i and

∂(a⊗ b) = (∂a)⊗ b+ (−1)pa⊗ (∂b) when a ∈ Ap.
(10)

This is a chain complex and the construction is functorial with respect to chain
maps of A,B.
• Remark: If An, Bk are all free Abelian, then the same is true for all (A⊗B)l.
• We will first state what we would like to do. The proofs will be more indi-

rect/less explicit.
Let ∆k be the standard k-simplex.

• Definition: A singular p+ q-chain mp,q on ∆p ×∆q is a model product chain
if mp,q is a cycle relative to ∂(∆p ×∆q) which generates

Hp+q(∆
p ×∆q, ∂(∆p ×∆q);Z) ' Z.

• Example: If p = q = 0, then ∆0 is a single point and there is only one possible
choice for

m0,0 : ∆0 −→ ∆0 ×∆0.

• Definition: Assume that mp,q were chosen. Let σ : ∆p −→ X and τ : ∆q −→
Y be singular simplices. The product chain σ × τ : ∆p × ∆q −→ X × Y is
defined as

(11) σ × τ = (σ × τ)∗(mp,q) ∈ Cp+q(X × Y ).

On the right hand side, σ × τ is viewed as a map, on the left hand side it is a
singular chain.
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For singular chains c =
∑

i ciσi ∈ C∗(X), ci ∈ Z, and d =
∑

j djτi ∈ C∗(Y )
set

c× d =
∑
i,j

cidjσi × τj ∈ C∗(X × Y ).

• Remark: Here we use the ring structure on Z. Any other commutative coef-
ficient ring would be fine.
• Lemma (product boundary operator): There is a choice of model product

chains such that for c ∈ Cp(X)

(12) ∂(c× d) = (∂c)× d+ (−1)pc× (∂d).

• Theorem: (11) defines a chain map

P : C∗(X)⊗ C∗(Y ) −→ C∗(X × Y )

c⊗ d 7−→ c× d.

For continuous maps f : X −→ X ′, g : Y −→ Y ′ the diagram

C∗(X)⊗ C∗(Y )
P //

f∗⊗g∗
��

C∗(X × Y )

(f×g)∗
��

C∗(X
′)⊗ C∗(Y ′)

P ′ // C∗(X
′ × Y ′)

commutes and P is normalized, i.e. P is defined on C0(X)⊗C0(Y ) = (C∗(X)⊗
C∗(Y ))0 via P (x⊗ y) = (x, y).
• Remarks: (10) and (12) together imply that P is a chain map. That the

diagram commutes is immediate from the definition: For σ a singular p-simplex
in X and τ a singular q-simplex in Y we have

(f × g)∗P (σ ⊗ τ) = (f × g)∗(σ × τ)∗(mp,q) =
(
(f ◦ σ)× (g ◦ τ)

)
∗(mp,q)

= P
(
(f∗ ⊗ g∗)(σ ⊗ τ)

)
The normalization is obvious. What is still missing is the proof that there is a
choice mp,q.
• Theorem: P : C∗(X)⊗C∗(Y ) −→ C∗(X×Y ) is a chain homotopy equivalence.
• This is what we want. For this one has to find a chain homotopy inverse of P

and proof all auxiliary statements. This is the content of the Eilenberg-Zilber
Lemma/Theorem.
• Moreover, we need to understand how to compute the homology of a tensor

product of chain complexes whose chain groups are free Abelian (and vanish
for negative degrees). That yields the Künneth formula. One instance of this
formula goes into the proof of the Eilenberg-Zilber Lemma.
• Lemma: Let C,C ′ be chain complexes with Cn free Abelian for all n such that

(i) Cn = C ′n = 0 for n < 0 and
(ii) Hn(C ′) = 0 for n > 0.

Then
1. Any two chain maps f, g : C −→ C ′ with f |C0 = g|C0 are chain homo-

topic.
2. For every homomorphism ϕ : C0 −→ C ′0 which maps boundaries to

boundaries there is a chain map f : C −→ C ′ such that f |C0 = ϕ.
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• Proof of (1): We seek Dn : Cn −→ C ′n+1 such that fn − gn = ∂′n+1 ◦ Dn +
Dn−1 ◦ ∂n. Set Dn = 0 for n ≤ 0 and assume Di is defined for i ≤ n− 1. Pick a
basis of Cn and x an element of the basis. Then for z(x) = fnx−gnx−Dn−1∂nx

∂′nz(x) = fn−1∂nx− gn−1∂nx− ∂′nDn−1∂nx

= fn−1∂nx− gn−1∂nx− (−Dn−2∂n−1 + fn−1 − gn−1)∂nx

= 0,

so z(x) ∈ C ′n, n ≥ 1 is a cycle. Because of Hn(C ′) = 0 for n ≥ 1 we can choose
b(x) ∈ C ′n+1 such that ∂b(x) = z(x) and define Dnx = b(x). This defines Dn.
• Proof of (2): Set f0 = ϕ0. Assume that fi is defined for i ≤ n− 1 such that
fi−1 ◦ ∂i = ∂′i ◦ fi. Pick a basis for Cn and let x be a basis element. Then
fn−1∂nx is a cycle in C ′n−1. Then by Hn−1(C ′) = 0 if n > 1 and by assumption
if n = 1 there is b(x) ∈ C ′n such that ∂′nb(x) = fn−1∂x. Thus one finds the
desired f .
• Theorem: Any two normalized chain maps P, P ′ : C∗(X)⊗C∗(Y ) −→ C∗(X×
Y ) which are natural in X, Y are chain homotopic.
• Proof: The model case: Let X = ∆p, Y = ∆q for fixed p, q. Since ∆p ×∆q is

contractible, C∗(∆
p) ⊗ C∗(∆q) has free Abelian chain groups, and P = P ′ in

degree 0 (and Ck = 0 for k < 0) we can apply part 1 of the Lemma to obtain
the chain homotopy D∆

n : [C∗(∆
p)⊗ C∗(∆q)]n −→ Cn+1(∆p ×∆q).

The general case: Define D via

D : [C∗(X)⊗ C∗(Y )]n −→ Cn+1(X × Y )

σ ⊗ τ 7−→ (σ × τ)∗D
∆(idp × idq)

for σ : ∆p −→ X, τ : ∆q −→ Y with p + q = n. First, we show that this is
natural:

(f × g)∗D(σ ⊗ τ) = (f × g)∗(σ × τ)∗D
∆(idp × idq)

= (f ◦ σ × g ◦ τ)∗D
∆(idp × idq)

= D(f ◦ σ ⊗ g ◦ τ)

= D(f∗ ⊗ g∗)(σ ⊗ τ).

(13)

This is used in the following computation:

∂D(σ ⊗ τ) = ∂(σ × τ)∗D
∆(idp × idq)

= (σ × τ)∗∂D
∆(idp × idq)

= (σ × τ)∗
(
(P − P ′ −D∆∂)(idp × idq)

)
= (P − P ′ −D∂) (σ∗ ⊗ τ∗)(idp ⊗ idq)

= (P − P ′ −D∂)(σ ⊗ τ).

This shows that D is the desired chain homotopy.

7. Lecture on May, 7 – Acyclic model method, again

• Theorem: There are natural normalized chain maps P : C∗(X)⊗ C∗(Y ) −→
C∗(X × Y ).
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• Proof: model case: X = ∆p, Y = ∆q. Set

ϕ0 : [C∗(∆
p)⊗ C∗(∆q)]0 −→ C0(X × Y )

(x⊗ y) 7−→ (x, y)

for all x ∈ C0(∆p), y ∈ C0(∆q). By part (2) of the Lemma there is a chain map

P∆ : C∗(∆
p)⊗ C∗(∆q) −→ C∗(∆

p ×∆q)

such that P∆|C0(∆p)⊗C0(∆q) = ϕ0.
General spaces: Let σ : ∆p −→ X and τ : ∆q −→ Y be singular simplices.

Set

P (σ ⊗ τ) = (σ × τ)∗ P
∆(idp ⊗ idq)︸ ︷︷ ︸

model product chain

.

P is normalized and natural (computation similar to (13)).
• We want to show that P defines a chain homotopy equivalence, i.e. we want

to use a similar approach to find a natural chain homotopy inverse to P . For
this we need know something about H∗(C∗(∆

p)⊗ C∗(∆q)) for all p, q.
• Fact: Hn(C∗(∆

p)⊗ C∗(∆q)) = 0 for n > 0.
• This is the content of the corollary of the Künneth Formula on p. 22
• Theorem: There are chain maps

Q : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

with the following properties
1. Q is natural in X, Y .
2. Q is normalized, i.e. Q(x, y) = x⊗ y for x ∈ X and y ∈ Y .
3. Q is a chain homotopy inverse of P .
4. Any two maps Q′, Q with these properties are chain homotopic.

• Proof: Again, we first consider the case X = ∆p, Y = ∆q. Define

ϕ0 : C0(∆p ×∆q) −→ C0(∆p)⊗ C0(∆q) = [C∗(∆
p)⊗ C∗(∆q)]0

(x, y) −→ x⊗ y.
The following computation shows by linearity that ϕ0 maps boundaries to
boundaries. Let (γp, γq) be a 1-simplex ∆1 ⊂ R2 to ∆p×∆q. Then by the sign
convention for the boundary operator in a tensor product of chain complexes

γp((0, 1))⊗ γq((0, 1))− γp((1, 0))⊗ γq((1, 0)) = γp((0, 1))⊗ γq((0, 1))− γp((1, 0))⊗ γq((0, 1))

+ γp((1, 0))⊗ γq((0, 1))− γp((1, 0))⊗ γq((1, 0))

= (∂γp)⊗ γq((0, 1)) + γp((1, 0))⊗ (∂γq)

= ∂(γp ⊗ γq((0, 1))) + ∂(γp((1, 0))⊗ γq).

By the Lemma there is a chain map Q∆ : C∗(∆
p ×∆q) −→ C∗(∆

p) ⊗ C∗(∆q)
extending ϕ0.

For the general case set

Q : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

σ 7−→ ((prX ◦ σ)∗ ⊗ (prY ◦ σ)∗)
(
Q∆(dn)

)
where σ : ∆n −→ X × Y is a n-simplex and dn : ∆n −→ ∆n × ∆n is the
diagonal map u 7−→ (u, u).

One can check that Q is a natural (and normalized) chain map.
• Theorem: P,Q are mutually inverse chain equivalences.
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• Proof: By definition P ◦ Q and Q ◦ P are the respective identities in degree
zero. By the first part of the lemma, both these maps are chain homotopic to
the identity in the model case. The general case follows by naturality.
• This concludes the proofs of the Lemmas/Theorems from the beginning. It also

shows that all choices in the construction lead to naturally chain equivalent
results.
• One can describe a map Q : C∗(X×Y ) −→ C∗(X)⊗C∗(Y ) explicitly. For this

one does not have to choose model product chains.
• Definition: For 0 ≤ q ≤ n consider the following maps between standard

simplices

[v0, . . . , vq] : ∆q −→ ∆n

[vq, . . . , vn] : ∆n−q −→ ∆n

For a singular simplex σ : ∆n −→ Z the compositions

σ ◦ [v0, . . . , vq] : ∆q −→ Z

σ ◦ [vq, . . . , vn] : ∆n−q −→ Z

are the front/back side of the simplex.
• Theorem: Let σ be a n-simplex in X × Y and

(14) Q(σ) =
n∑
q=0

(pr1 ◦ σ ◦ [v0, . . . , vq])⊗ (pr2 ◦ σ ◦ [vq, . . . , vn]) ∈ [C∗(X)⊗ C∗(Y )]n.

This defines a natural and normalized equivalence of chain complexes

C∗(X × Y ) −→ C∗(X)⊗ C∗(Y ).

8. Lecture on May, 14 – Künneth formula, Homology cross product

• We have shown that C∗(X) ⊗ C∗(Y ) and C∗(X × Y ) are naturally chain ho-
motopy equivalent. In order to compute the homology of a product in terms of
the homologies of the factors we want to understand the homology of a tensor
product of chain complexes.
• In the last section, every coefficient ring instead of Z would have been fine.

In this section, one has to require that R is a principal ideal domain. Then
C∗(·;R) is a free R-module. The assumption that R is a principal ideal domain
ensures that submodules of free modules are again free. Recall that a principal
ideal domain is a ring without zero divisors such that every ideal is generated
by one element.

An example is Z, of course. The submodule {0, 2} ⊂ Z4 of the free Z4-module
Z4 is not free.
• One first proves an auxiliary result:
• Lemma: Let C,C ′ be free chain complexes such that ∂ ≡ 0, i.e. Hp(C) = Cp,

then

λ : [C ⊗H(C ′)]n −→ Hn(C ⊗ C ′)
c⊗ [d] 7−→ [c⊗ d]

(15)

is an isomorphism.
• Note: This map is well defined since cycle⊗boundary is a boundary, etc.
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• Proof: By definition

[C ⊗ C ′]n =
⊕
p+q=n

Cp ⊗ Cp

and

∂⊗ : Cp ⊗ Cq −→ Cp ⊗ Cq−1

c⊗ c′ 7−→ (−1)pc⊗ ∂′c′.

The sign can be ignored when computing homology. Hence Hn(C ⊗ C ′) =⊕
p+q=nHq(Kp) whereKp is the chain complex (with boundary map (−1)pidCp⊗

∂′)

. . . −→ Cp ⊗ C ′n−p −→ Cp ⊗ C ′n−p−1 −→ . . .

This is the chain complex C ′ after tensoring with Cp and a degree shift. By
the universal coefficient theorem (and since Cp is free Abelian)

λ : Cp ⊗Hq(C
′) −→ Hq(Kp)

c⊗ [c′] 7−→ [c⊗ c′]
is an isomorphism.
• Theorem (Künneth Formula): Let C,C ′ be free chain complexes. Then for

all n there is natural exact sequence

0 −→ [H∗(C)⊗H∗(C ′)]n −→λ Hn(C ⊗ C ′) −→µ
⊕
p+q=n

Tor(Hp−1(C), Hq(C
′)) −→ 0

which splits (not naturally).
• Proof: The proof strategy is similar to the proof of the univ. coefficient

theorem. Consider the exact sequence 0 −→ Z −→ C −→ B− −→ 0 of chain
complexes

0 // Zp //

∂
��

Cp
∂ //

∂
��

Bp−1
//

∂
��

0

0 // Zp−1
// Cp−1

∂ // Bp−2
// 0.

Here B−p = Bp−1 and all horizontal maps are chain maps. Because all groups
involved are free the sequence splits, and tensoring with C ′ (i.e. tensoring with
C ′q, direct summing over p+ q = n) does not affect exactness. Thus we obtain
an exact sequence

0 −→ Z ⊗ C ′ −→ C ⊗ C ′ −→ B− ⊗ C ′ −→ 0.

Hence, there is a long exact sequence

(16) . . . Hn(Z ⊗ C ′) j⊗id′ // Hn(C ⊗ C ′) ∂⊗id′// Hn(B− ⊗ C ′) ∂∗ // Hn−1(Z ⊗ C ′) . . .

The connecting homomorphism is induced by the inclusion B− ↪→ Z, i.e. it fits
into a commutative diagram

[B− ⊗H∗(C ′)]n
λ
��

i⊗id // [Z ⊗H∗(C ′)]n
λ
��

Hn(B− ⊗ C ′) ∂∗ // Hn(Z ⊗ C ′)
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whose vertical maps are isomorphisms by the previous Lemma. Hence, ker(∂∗) '
λ−1(ker(i⊗ id)) where i is part of a free resolution of Hp−1(C):

B−p −→i Zp−1 −→ Hp−1(C) −→ 0.

(again tensor with C ′q and sum over p + q = n). Therefore, there is a natural
isomorphism

φ : ker(i⊗ id) −→
⊕
p+q=n

Tor(Hp−1(C), Hq(C
′))

Thus from (16) we get an exact sequence

Hn(Z ⊗ C ′)

��

j⊗id′ // Hn(C ⊗ C ′)
(∂⊗id′)◦φ−1

//
⊕

p+q Tor(Hp−1(C), Hq(C
′)) // 0

⊕
p+q=nHp(C)⊗Hq(C

′)

λ

55

The image of λ coincides with the image of j ⊗ id′. We construct a left inverse
for λ. This will conclude the proof. Recall that

0 −→ Zp −→r Cp −→ Bp−1 −→ 0

is free and exact, i.e. it splits. Hence there is l : Cp −→ Zp such that l ◦ j =
id. Moreover, this also induces a map into H∗(C), and the map l ⊗ l′ sends
boundaries in C ⊗ C ′ to zero. Thus there is a well-defined map

Hn(C ⊗ C ′) −→
⊕
p+q=n

Hp(C)⊗Hq(C
′)

[c⊗ c′] −→ [l(c)]⊗ [l′(c′)]

which is a left-inverse to λ. In particular, λ is injective.
• This can be used to prove a statement we used to show that P has a chain

homotopy inverse:
• Corollary: If C,C ′ satisfy Hi(C) 6= 0 6= Hi(C

′) only if i = 0, then the same is
true for C ⊗ C ′.
• Let X, Y be topological spaces and P : C∗(X) ⊗ C∗(Y ) −→ C∗(X × Y ) an

Eilenberg-Zilber equivalence, i.e. a natural, normalized chain equivalence. The
particular choice of P is irrelevant as any two such maps are naturally chain
equivalent.
• Definition: The homology cross product is

Hp(X)×Hq(Y ) −→ Hp+q(X × Y )

([a], [b]) 7−→ [P (a⊗ b)] =: [a]× [b].

• This is well defined since P is a chain map.
• Theorem: The homology cross product has the following properties:

1. Naturality: (f × g)∗(a× b) = (f∗a)× (g∗b)
2. Bilinear: (a+ a′)× b = a× b+ a′ × b, a× (b+ b′) = a× b+ a× b′.
3. (Skew)Commutativity: Let t : X×Y −→ Y ×X be the map interchang-

ing the factors. Then b× a = (−1)pqt∗(b× a).
4. Associativity: (a× b)× c = a× (b× c) where c ∈ H∗(Z).
5. Unit: Let x ∈ X. Then [x] ∈ H0(X) and [x] × b = jx∗(b) where jx :
Y −→ X × Y is the inclusion jx(y) = (x, y).

• Proof:
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1. Follows immediately from the naturality of P .
2. by definition of P and ⊗.
3. Let τ : C∗(X)×C∗(τ) −→ C∗(Y )⊗C∗(X) be the map defined by α⊗β =

(−1)pqβ ⊗ α where α ∈ Cp(X) and β ∈ C∗(Y ). Checking that this is a
natural chain map is an exercise.
Consider the commutative diagram

C∗(X)⊗ C∗(Y )
P //

τ

��

C∗(X × Y )

t∗
��

C∗(Y )⊗ C∗(X)
P // C∗(Y ×X)

We will conclude that this diagram commutes up to chain homotopy.
Both maps C∗(X) ⊗ C∗(Y ) −→ C∗(Y × X) are chain maps and they
coincide in degree zero. When X = ∆p and Y = ∆q, the resulting two
maps are chain thus homotopic. By naturality, they are chain homotopic
in general.

4. This is done using the same type of argument as for commutativity using
the diagram (and the associativity of ⊗ up to natural isomorphism)

C∗(X)⊗ C∗(Y )⊗ C∗(Z)

id⊗P
��

P⊗id // C∗(X × Y )⊗ C∗(Z)

P
��

C∗(X)⊗ C∗(Y × Z)
P // C∗(X × Y × Z).

5. Assume first that X = ∆0 is an one-point space. Let χ : C∗(Y ) −→
C∗(X) ⊗ C∗(Y ) be the chain map (natural in Y ) τ 7−→ x ⊗ τ with
x ∈ C0(X). Then P ◦ χ = jx∗ up to chain homotopy (do it first for
Y = ∆p, then the general case by naturality).

9. Lecture on May, 17 – Künneth formula for spaces, with field
coefficients

• Together, the Eilenberg-Zilber Theorem and the Künneth theorem yield the
following:
• Künneth formula for spaces: The homology cross product defines an injec-

tive map ⊕
p+q=n

Hp(X)⊗Hq(Y ) −→ Hn(X × Y ).

The cokernel is isomorphic to
⊕

p+q=n Tor(Hp−1(X), Hq(Y )).

• Example: Let X, Y be spaces such that Hp(X) ' Zm (let [σ] be a generator)
and Hq(X) ' Zn (let [τ ] be a generator). Let r = gcd(m,n) and pick chains
x ∈ Cp+1(X), y ∈ Cq+1(Y ) such that ∂x = mσ and ∂y = nτ . Then

c =
n

r
(x⊗ τ)− (−1)p

m

r
(σ ⊗ y)

is a cycle. The chain P (c) ∈ Hp+q+1(X × Y ) is a cycle such that rP (c) is a
boundary:

rc = x⊗ (∂y)− (−1)p(∂x)⊗ y = −(−1)p∂(x⊗ y).
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• There are two instances which are particularly useful for computations: One
can use coefficients in a field, and one can use the cellular chain complex for a
product of CW-complexes (provided that the product cellular structure is the
CW-structure).
• Definition: Let V,W be vector spaces of a field K, V ⊗W the tensor product

of the underlying Abelian groups, and U the subgroup generated by

(kv)⊗ w − v ⊗ (kw) for all k ∈ K, v ∈ V,w ∈ W.

The factor group V ⊗W/U is V ⊗K W , it is naturally a K-vector space. The
following universal property characterizes ⊗K .
• Theorem: Let V,W be K-vector spaces. There is a vector space V ⊗K W

and a bilinear map i : V ×W −→ (V ⊗KW ) such that for all K-bilinear maps
f : V × W −→ X there is a unique K-linear map ψ : V ⊗ W −→ X with
ψ ◦ i = f . V ⊗K W is unique up to isomorphism.
• The analogous discussion works for R-modules (R a commutative ring).
• In the above discussions one can use chain complexes whose chain groups are K-

vector spaces, like Q⊗C∗(X,Z) with K = Q. The Eilenberg-Zilber discussion
remains unchanged, the only assumption there was that the coefficients form a
commutative ring

For the remainder, one assumes that R is a principal ideal domain, in partic-
ular there are no zero-divisors. This ensures that submodules of free modules
are free.

One defines the torsion modules Tor(A,B) for R-modules as before as kernel
of i⊗R idB using a map i associated to a resolution of A through free R-modules.
In the case when K is a field, the homology groups will be again vector spaces.
• Theorem (Künneth theorem with coefficients in a field): Let C,C ′ be

chain complexes whose chain groups are K-vector spaces and the boundary
operator is K linear. Then the product map

λ : H∗(C)⊗K H∗(C ′) −→ H∗(C ⊗K C ′)
[c]⊗K [c′] 7−→ [c⊗K c′]

is a well defined isomorphism.
• Proof: The proof consists of four steps.

1. Observation: If V −→ V ′ and g : W −→ W ′ are injective, linear maps
of K-vector spaces, then f ⊗ g : V ⊗K V −→ V ′ ⊗K W ′ is injective
(construct a left inverse of f, g to get a left inverse of f ⊗ g).

2. Universal coefficient theorem in the present situation: Let (Cn, ∂n)
be a chain complex whose chain groups are K-vector spaces, ∂n is K-
linear, and V a K-vector space. Then (Cn ⊗K V, ∂n ⊗ idV ) is again
a chain complex whose chain groups are vector spaces, etc. The map
[c]⊗ v 7−→ [c⊗ v] defines a map

H∗(C)⊗K V −→ H∗(C ⊗K V ).

The proof is analogous to the proof of the universal coefficient theorem,
but easier since iq ⊗ idV is injective by the observation above.

3. The auxiliary lemma (p. 20) used in the proof of remains the same, one
replaces the univerlas coefficient theorem with the version discussed in
the last step.
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4. The proof of the Künneth theorem works again, iq ⊗ id is still injective.
Therefore, no torsion products appear.

• Combining this with the Eilenberg-Zilber theorem one obtains the following
theorem.
• Theorem: Let X, Y be topological spaces and a = [

∑
σ⊗kσ] ∈ H∗(X;K), b =

[
∑
τ ⊗ kτ ]. The homology cross product defined via

H∗(X;K)⊗K H∗(Y ;K) −→ H∗(X × Y ;K)

a⊗K b 7−→
[∑

P (σ ⊗ τ)⊗ kσkτ
](17)

is an isomorphism.
• Note that the chain complex computing H∗(X×Y ;K) is C∗(X×Y )⊗K. Then

there are obvious maps

(C∗(X)⊗K)⊗K (C∗(Y )⊗K) −→ϕ (C∗(X)⊗ C∗(Y ))⊗K −→P⊗id C∗(X × Y )⊗K

re-explaining the definition (17), the first map is an isomorphism.
• In the following we assume that X, Y are CW-complexes such that the product

topology on X × Y is the weak topology of the induced cellular structures.
Like we did for the cellular chain complex we use information about homology
groups to express the Künneth theorem for spaces in terms of the cellular chain
complexes.
• Fact: If X, Y are CW-complexes and one of these to spaces is locally compact

(i.e. locally finite), then X × Y is a CW-complex ([StZ], 4.2.9).
• Fact (established in the exercises): Let a = [α] ∈ Hp(X,A) and b = [β] ∈
Hq(Y,B). One can form the relative cross product

a× b = [P (α⊗ β)] ∈ Hp+q(X × Y,X ×B ∪ A× Y )

where P : C∗(X)⊗ C∗(X) −→ C∗(X × Y ). By naturality of the chain map P
one gets a well defined natural chain map

C∗(A)⊗ C∗(Y )⊕ C∗(X)⊗ C∗(B) −→ C∗(A× Y ∪X ⊗B).

• Lemma: [Dk] ∈ Hk(D
k, ∂Dk), [Dl] ∈ Hl(D

l, ∂Dl) are generators, then

(18) [Dk]× [Dl] ∈ Hk+l(D
k ×Dl, ∂Dk ×Dl ∪Dk × ∂Dl)

is a generator.
• Proof: For k = 0 or l = 0 the claim follows from the unit-property of the

cross product. Recall that a pair (X,A) of spaces is good if A ⊂ X is closed
and there is a neighborhood U of A in X such that A −→ U is a deformation
equivalence. For good pairs, the quotient map induces an isomorphism (see
Jan. 22 of Topology 1).

H∗(X,A) −→ H̃∗(X/A)

Let [Dp] ∈ Hp(D
p, Sp−1) and [Dq] ∈ Hq(D

q, Sq−1) be generators. Fix relative
homeomorphisms fk : (Dk, Sk−1) −→ Sk and let fk([D

k]) = [Sk] ∈ Hk(S
k).
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Now consider the diagram

Hp(D
p, Sp−1)×Hq(D

q, Sq−1)

fp∗×fq∗'
��

× // Hp+q(D
p+q, Dp × Sq−1 ∪ Sp−1 ∪Dq)

fp+q∗'
��

H̃p(S
p)× H̃q(S

q)
× // H̃p+q(S

q × Sq) q∗ // H̃p+q(S
p × Sq/Sp ∨ Sq ' Sp+q)

[Sp], [Sq] � // [Sp]× [Sq] � // [Sp × Sq]

The first lower horizontal map maps generators to generators by the Künneth
formula, the same is true for the second map (induced by the quotient map)
by cellular homology. The diagram commutes up to sign. Thus [Dp] × [Dq] is
a generator of Hp+q(D

p+q, Dp × Sq−1 ∪ Sp−1 ∪Dq).

10. Lecture on May, 24 – Künneth formula for CW-complexes,
Cohomology

• Definition: Let α ∈ CCW
p (X) = Hp(X

p, Xp−1) and β ∈ CCW
q (Y ) = Hp(Y

p, Y p−1).

Then α × β is defined as element of Hp+q(X
p × Y q, Xp−1 × Y q ∪Xp × Y q−1).

The image of this element under the inclusion

Xp × Y q, Xp−1 × Y q ∪Xp × Y q−1 −→ Hp+1((X × Y )p+q, (X × Y )p+q−1)

is still denoted by α× β. It defines the cellular product chain of α, β.
Recall also, that the cellular boundary operator ∂CWk : CCW

k (X) −→ CCW
k−1 (X)

is the composition jk ◦ ∂∗ where

∂∗ : Hk(X
k, Xk−1) −→ Hk−1(Xk−1) is the connecting homomorphism of the long

exact sequence of the pair (Xk, Xk−1)

jk−1 : (Xk−1, ∅) −→ (Xk−1, Xk−2) is the inclusion.

Finally, since CCW
k (X) = Hk(X

k, Xk−1) is a free Abelian group generated by
so-called fundamental classes of oriented cells: Recall that an orientation of
a cell e in X is F∗([D

p]) where is a choice of a characteristic map F and
[Dp] ∈ Hp(D

p, Sp−1) is a chosen generator.
• Lemma: ∂CW,×(α× β) = (∂CW,Xα)× β + (−1)pα× (∂CW,Y β).
• Proof: One translates into singular homology. Let x ∈ Cp(Xp) respectively y

be singular chains representing α respectively β. Then

α = [x] in Hp(X
p, Xp−1)

β = [y] in Hp(Y
q, Y q−1)

∂CW,Xα = [∂x] in Hp−1(Xp−1, Xp−2)

∂CW,Y β = [∂y] in Hq−1(Xq−1, Xq−2)

(∂CW,Xα)× β = [P (∂x⊗ y)] in Hp+q−1((X × Y )p+q−1, (X × Y )p+q−2)

α× ∂CW,Y β = [P (x⊗ ∂y)] in Hp+q−1((X × Y )p+q−1, (X × Y )p+q−2)

α× β = [P (x⊗ y)] in Hp+q((X × Y )p+q, (X × Y )p+q−1)

∂CW,×(α× β) = [∂P (x⊗ y)] in Hp+q−1((X × Y )p+q−1, (X × Y )p+q−2).
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The claim follows since P is a chain map (and by the definition of the boundary
operator on tensor products). The boundary operator in question here is the
one from singular homology (not ∂CW ).
• Lemma: If α ∈ Cp(X), β ∈ Cq(Y ) are oriented cells e, d in X, Y (i.e. represent

a generator of Hp(X
p, Xp−1∪ (Xp \ e)) etc.) then α×β is an orientation of the

cell e× d in X × Y .
• Proof: There are characteristic maps

F : (Dp, Sp−1) −→ (Xp, Xp−1)

G : (Dq, Sq−1) −→ (Y q, Y q−1)

such that F∗([D
p]) = α and G∗([D

q]) = β. For a chosen homeomorphism h
consider

(Dp+q, Sp+q−1)
h // (Dp ×Dq, Sp−1 ×Dq ∪Dp × Sq−1)

F×G

rr
(Xp × Y q, Xp ∪ Y q−1 ∪Xp−1 ∪ Y q)

i // ((X × Y )p+q, (X × Y )p+q−1).

The composition H of these maps is a characteristic map for e×d. Let [Dp+q] =
h−1([Dp]× [Dq]). This is a generator of Hp+q(D

p+q, Sp+q−1), see (18). Then

H∗([D
p+q]) = i∗ ((F ×G)∗([D

p ×Dq]) = i∗(α× β)

defines an orientation of e× d.
• Summary/Theorem: A basis of CCW

n (X × Y ) is formed by e × d with the
product orientation where e, d denotes p, q cells of X, Y such that p + q = n.
The boundary operator ∂CW,× : Cn(X × Y ) −→ Cn−1(X × Y ) is given by

∂CW,×(e× d) =
(
∂CW,Xe

)
× d+ (−1)pe×

(
∂CW,Y d

)
.

The map

CCW
∗ (X)⊗ CCW

∗ (Y ) −→ CCW
∗ (X × Y )

e⊗ d 7−→ e× d(= oriented cell, i.e. at the same time a relative homology class)

is an isomorphism of chain complexes.
• Example: Consider RP2 with the standard CW-decomposition, RP2 = e0 ∪
e1 ∪ e2. For a choice of orientations

∂e0 = 0 ∂e1 = 0 ∂e2 = 2e1.

Then the cellular complex of RP2 × RP2 is generated by

e0 × e0 in degree 0

e1 × e0, e0 × e1 in degree 1

e2 × e0, e1 × e1, e0 × e2 in degree 2

e2 × e1, e1 × e2 in degree 3

e2 × e2 in degree 4.
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The boundary operator is given by

∂(e0 × e0) = 0

∂(e1 × e0) = ∂(e0 × e1) = 0

∂(e2 × e0) = 2e1 × e0, ∂(e0 × e2) = 2e0 × e1, ∂(e1 × e1) = 0

∂(e2 × e1) = 2(e1 × e1) = −∂(e1 × e2)

∂(e2 × e2) = 2e1 × e2 + 2e2 × e1

The homology of RP2 × RP2 with coefficients in Z is

H0(RP2 × RP2) = Z generated by e0 × e0

H1(RP2 × RP2) = Z2 ⊕ Z2 generated by e1 × e0, e0 × e1

H2(RP2 × RP2) = Z2 generated by e1 × e1

H3(RP2 × RP2) = Z2 generated by e2 × e1 + e1 × e2

H4(RP2 × RP2) = 0

• Reference: [Ha], early parts of Chapter 3.
• For Abelian groups A,G we denote the Abelian group of homomorphisms A −→
G by Hom(A,G). Let Ai, i ∈ I be a family of Abelian groups. Then

Hom (⊕iAi, G) =
∏
i

Hom(Ai, G).

If f : A −→ B is a homomorphism, then f ∗ : Hom(B,G) −→ Hom(A,G) is
defined via f ∗ϕ(a) = ϕ(f(a)). Note (f ◦ g)∗ = g∗ ◦ f ∗.
• Example: When A is free of rank k and a1, . . . , ak i a basis, then Hom(A,Z)

is free of rank k with the dual basis ãi(aj) = δi,j.
• Definition: Let (Cn, ∂n), n ∈ Z, be a chain complex and G an Abelian group.

Then

Cn := Hom(Cn, G)

δn : Cn −→ Cn+1 = Hom(Cn+1, G)

ϕ 7−→
(
c 7−→ ϕ(∂n+1c)

)
.

This defines the dual chain complex C∗

. . . Cn−1
δn−1 // Cn δn // Cn+1

δn+1// Cn+2 . . .

and δn◦δn−1 = 0 for all n, since δ = ∂∗. The maps δn are coboundary operators,
elements of C∗ are cochains, elements of ker(δ) are cocycles (who vanish on
boundaries), elements of image(δ) are coboundaries (who vanish on cycles),
and

Hn(C;G) := ker(δn : Cn −→ Cn+1)/image(δn−1 : Cn−1 −→ Cn)

are the cohomology groups.
• One can define cochain complexes without referring to chain complexes as a

chain complex where the boundary operator increases the degree. However, if
(Cn, δ) is a cochain complex where the boundary operator increases the degree,
then (Dn := C−n, δ) is a standard chain complex. In particular, as in the case
of chain complexes, a short exact sequence of cochain complexes induces a long
exact sequences of cohomology groups.
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• Definition: A chain map f : C∗ −→ D∗ between two cochain complexes is
a map f such that δD ◦ f = f ◦ δC . If f : C −→ C ′ is a chain map between
chain complexes, then f ∗ : C ′∗ −→ C∗ is a chain map between the dual chain
complexes. In particular, (f ◦ g)∗ = g∗ ◦ f ∗.
• Notation: There is a bilinear pairing

〈·, ·〉 : Cq(C;G)× Cq(C) −→ G

(ϕ, x) 7−→ ϕ(x).

It has the following property for ϕ a q-cochain and x a q + 1-chain.

〈δϕ, x〉 = 〈ϕ, ∂x〉.
If f∗ is a chain map with dual f ∗, then 〈f ∗ϕ, x〉 = 〈ϕ, f∗x〉 by definition.
• This induces a bilinear pairing on Hn(C;G) × Hn(C) −→ G. Moreover, a

chain map induces a homomomorphism between cohomology groups (opposite
direction).
• When α : G −→ G′ is a group homomorphism and C a chain complex, then α

induces a chain map Hom(C;G) −→ Hom(C,G′).
• If 0 −→ G′ −→ G′ −→ G′′ −→ 0 is exact, then the same is true for the induced

sequence of cochain complexes.
• We want to relate Hn(C) and Hn(C;G) via the a map

h : Hn(C;G) −→ Hom(Hn(C), G)

[ϕ] 7−→ ([c] 7−→ ϕ(c))
(19)

This is well defined and linear.
• Lemma: h is surjective and the exact sequence

0 −→ ker(h) ↪→ Hn(C;G) −→h Hom(Hn(C), G) −→ 0

splits.
• Proof: Consider the split-exact sequence (Bn−1 is free)

0 −→ Zn −→ Cn −→ Bn−1 = ∂Cn −→ 0

and fix splitting p : Cn −→ Zn such that p(z) = z for z ∈ Zn ⊂ Cn. Let
α : Hn(C) −→ G be a homomorphism. Then α ◦ p : Cn −→ G is a cocycle
since

(δn(α ◦ p))) (cn+1) = α ◦ p(∂n+1cn+1) = α(∂n+1cn+1) = 0.

It represents a cohomology class ϕ such that h(ϕ) = α. Moreover, if α is of the
form h(ϕ), then (h(ϕ)) ◦ p = ϕ on cycles.
• Goal: We want to analyze ker(h).
• Example: Consider the exact sequence 0 −→ Z −→ Z −→ Z2 −→ 0. Then

the dual sequence (G = Z)

0 −→ Hom(Z2,Z) = 0 −→ Hom(Z,Z) −→(·2)∗ Hom(Z,Z) −→ 0.

is not exact (since (·2)∗ is not surjective).
• Theorem: When A −→f B −→g C −→ 0 is exact, then the same is true for

0 −→ Hom(C,G) −→g∗ Hom(B,G) −→f∗ Hom(A,G).

• When 0 −→ A −→f B −→g C −→ 0 is exact and split, then the same is true for

0 −→ Hom(C,G) −→g∗ Hom(B,G) −→f∗ Hom(A,G) −→ 0.
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• Proof: Assume g∗(ϕ) = 0, then ϕ ≡ 0 on the image of g(B) = C. Hence
ϕ = 0. Since 0 = g ◦ f , the composition f ∗ ◦ g∗ is trivial. Now assume f ∗ψ = 0.
Then ψ ≡ 0 on the image of f , i.e. on the kernel of g. Thus φ(c) = ψ(g−1(c))
is well defined and g∗φ = ψ.
• Let 0 −→ R −→ F −→ A −→ 0 be a free resolution of A and G Abelian. Then

0 −→ Hom(A,G) −→ Hom(F,G) −→ Hom(R,A) is exact, and the last map is
not surjective in general.

11. Lecture on May, 28 – Ext, Universal coefficient theorem for
cohomology

• Definition: Let 0 −→ R(A) −→ F (A) −→ A −→ 0 be the standard resolution
of A. Then let i∗ : Hom(F (A), G) −→ Hom(R(A), G) be the dual of the
inclusion R(A) −→ F (A). The group

Ext(A,G) = Hom(R(A), G)/image(i∗)

is the Ext-product of A,G.
• Let A, Ã be Abelian groups, f : A −→ Ã a homomorphism and two free

resolutions:

S : 0 −→ R −→ F −→ A −→ 0

S̃ : 0 −→ R̃ −→ F̃ −→ Ã −→ 0

Dualizing the diagram (7) from the case of the torsion product (April, 23) we
obtain

0 // Hom(A,G)
p∗ // Hom(F,G)

i∗ // Hom(R,G)

0 // Hom(Ã, G)
p̃∗ //

f∗

OO

Hom(F̃ , G)
ĩ∗ //

f ′∗

OO

Hom(R̃, G)

f ′′∗

OO
α∗

gg

The maps f ′, f ′′ exist since F,R are free. f ′′∗ maps the image of ĩ∗ to the image
of i∗. Hence we get a well defined map

ψ(f,S, S̃) : Hom(R̃, G)/image(̃i∗) −→ Hom(R,G)/image(i∗).

Moreover, ψ(f̃ ◦ f,S, ˜̃S) = ψ(f,S, S̃) ◦ ψ(f̃ , S̃, ˜̃S) and ψ(id,S,S) = id.
• Theorem: For every free resolution 0 −→ R −→i F −→ A −→ 0 there is a

natural isomorphism

Ext(A,G) −→ Hom(R,G)/image(i∗)

• Fact: In particular, if f : A −→ A′ is a group homomorphism, then we obtain
a map

f ∗ : Ext(A′, G) −→ Ext(A,G).

• Example:
1. A free Abelian, then one can choose R = 0 and Ext(A,G) = 0 for all

Abelian G.
2. A = Zn, consider that the resolution 0 −→ Z −→·n Z −→ Zn −→ 0.

Then image(i∗) consists of those homomorphisms which are divisible by
n, i.e. Ext(Zn, G) = G/nG.
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3. Ext(Zn, G) = 0 if every element of G is divisible by n. For example
G = Q,R,Q/Z.

4. Ext(Zn,Zm) ' Z/gcd(m,n)Z.
5. Ext(A1 ⊕ A2, G) ' Ext(A1, G)⊕ Ext(A2, G)

• Returning to our topic: Notice that

0 −→ Zq −→jq Cq −→∂
′
q Bq−1 −→ 0

is free, exact and split, so the same is true for

(20) 0 −→ Hom(Bq−1, G) −→ Hom(Cq, G) −→ Hom(Zq, G) −→ 0.

Moreover,
0 −→ Bq−1 −→iq−1 Zq−1 −→ Hq−1(C) −→ 0

is a free resolution of Hq−1(C). By the Theorem above, there is a natural
isomorphism

ψ : Ext(Hq−1(C), G) −→ Hom(Bq−1)/image(i∗q−1)

• Lemma: The map

b : Hom(Bq−1(C), G)/image(i∗q−1) −→ Hq(C;G)

[ϕ] 7−→

 c 7−→ ϕ(∂′qc)︸ ︷︷ ︸
not a coboundary, in gen.

(21)

is well defined. Note that ϕ is defined only on Bq−1, not on Cq−1 (in the latter
case the image would be zero).
• Proof: (

δq(b(ϕ))
)
(c) = ϕ(∂q ◦ ∂q−1(c)) = 0.

The representative of b(ϕ) above vanishes on boundaries, it is therefore a cocy-
cle. If ϕ ∈ image(i∗q−1), i.e. ϕ extends to all cycles, then ϕ even extends to Cq−1

since there is a there is a map r : Cq−1 −→ Zq−1 such that r ◦ iq−1 = idZq−1 .
Then ϕ ◦ ∂′q coincides with a coboundary.
• Theorem (Universal coefficient theorem for cohomology): For free

chain complexes C, all q ∈ Z
0 −→ Ext(Hq−1(C), G) −→ρ Hq(C,G) −→h Hom(Hq(C), G) −→ 0

is split exact. It is also natural (but the splitting is not). Here ρ = b ◦ ψ.
• Proof:

1. ρ is injective: ψ is an isomorphism, so we have to show that b defined in
(21) is injective. Assume ϕ ◦ ∂′q = δq−1χ, i.e.

ϕ ◦ ∂′q = χ ◦ ∂q = χ ◦ jq−1 ◦ iq−1 ◦ ∂′q.
∂′q : Cq −→ Bq−1 is surjective by definition, hence ϕ = χ ◦ jq−1 ◦ iq−1 =
i∗q−1(χ ◦ jq−1). Hence ϕ ∈ image(i∗q−1).

2. h◦ρ = 0: Trivial, since (ρ(ϕ))([cq]) = ϕ(∂′qcq) = 0 since homology classes
are represented by cycles.

3. ker(h) ⊂ image(ρ): Assume that [ψ] is a cocylce (with values in G) in
ker(h). Then 〈ψ, z〉 = 0 for all cycles. Therefore, ψ◦jq ≡ 0 so ψ ∈ ker(j∗q ).
By the exactness of (20) ψ is in the image of ∂′∗q .

4. h is surjective. We know that already and we have also constructed a
right inverse of h establishing that the sequence splits.
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5. The naturality of the sequence is a formal exercise. As in the case of the
universal coefficient theorem, the splitting is not natural.

• Corollary: Let f∗ : (C, ∂) −→ (C ′, ∂′) be a chain map between chain com-
plexes whose chain groups are free Abelian such that

f∗ : Hq(C) −→ Hq(C
′)

is an isomorphism for all q. Then f∗ also induces isomorphisms

(f∗)
∗ : Hq(C ′, G) −→ Hq(C,G)

for all Abelian groups G and all q ∈ Z.
• Proof: This follows from the five-Lemma and the universal coefficient theorem

for cohomology:

0 // Ext(Hq−1(C ′), G)
ρ //

(f∗)∗

��

Hq(C ′, G)
h //

(f∗)∗

��

Hom(Hq(C
′), G) //

(f∗)∗

��

0

0 // Ext(Hq−1(C), G)
ρ // Hq(C,G)

h // Hom(Hq(C), G) // 0

Because the outer vertical maps are isomorphisms by assumption, the same is
true for the vertical map in the middle.
• There is yet another object we could compareHq(C,G) with, namely HomG(Hq(C⊗
G), G) where HomG(·, ·) denotes G linear maps. We state the facts when G = K
is a field.
• Then C ⊗K is a chain complex whose chain groups are vector spaces over K

with K-linear boundary operator. The scalar product (only a K-bilinear form,
but the terminology is standard)

〈·, ·, 〉 : Hq(C,K)×Hq(C,K) −→ K(
ϕ,

[
c =

∑
i

ci ⊗ ki

])
7−→

∑
i

ϕ(ci)ki

is well defined.
• Theorem: In this situation,

Hq(C,K) −→ HomK(Hq(C ⊗K), K)

[ϕ] 7−→ (c 7−→ 〈ϕ, v〉)

is an isomorphism of K-vector spaces.
• More generally, one can consider chain complexes whose chain groups are free
R-modules, and fix an R-module G. If R is a principal ideal domain, then is
an analogue to the version of the universal coefficient theorem for cohomology
stated above:

0 −→ ExtR(Hq−1(C), G) −→ρ Hq(C,G) −→h HomR(Hq(C), G) −→ 0

Here R denotes R-linear maps and ExtR is defined using resolutions of R-
modules in terms of free R-modules. The key fact is again that if R is a
principal ideal domain, then submodules of free r-modules are again free.

When R is not a principal ideal domain, then one can define a sequence of
groups ExtnR(·, ·), n ≥ 1. Our Ext(·, ·) corresponds to the case n = 1.
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12. Lecture on June, 4 – Properties of cohomology

• We return to topology and translate many statements about homology into
cohomoplogy.
• Coboundary operator for singular cohomology: Let ϕ ∈ Cn(X,G) and
σ a n+ 1-simplex. By definition of δn

(δnϕ)(σ) =
n+1∑
i=1

(−1)iϕ(σ ◦ [v0, . . . , v̂i, . . . , vn+1]).

The singular cochain complex computes the singular cohomology H∗(X;G)
with values in G.
• H0(X;G): Since H−1(·; ·) = 0 it follows H0(X;G) = Hom(H0(X), G).

Singular 0-simplices are points, so a singular 0-cochain can be described using
an arbitrary (not necessarily continuous) function X −→ G. In this description,
0-cocyle are functions which are constant on path connected components, i.e.

H0(X;G) '
{
{path components of X} −→ G

}
.

• H1(X;G): Since H0(X) is free, the universal coefficient theorem for cohomol-
ogy implies

H1(X;G) = Hom(H1(X), G) = Hom(π1(X), G).

The last equality follows from the Hurewicz theorem and the fact that G is
Abelian.
• Reduced cohomology: Is defined by dualizing the augmented singular chain

complex of a space. This implies H̃ i(·; ·) = H i(·; ·) for i > 0. By the univ.

coeff. theorem H̃0(X;G) ' Hom(H̃0(X;G)). This can be interpreted as

{G−valued functions, constant on path components}/{constant G−valued functions}.
• Relative cohomology: Let (X,A) be a pair of spaces. Since Cn(X,A) is free

(it isomorphic to the subgroup of C∗(X) which is generated by simplices which
are not contained in A), the exact sequence

0 −→ Cn(A) −→ Cn(X) −→ Cn(X,A) −→ 0

splits and its dual sequence

0←− Cn(A,G) = Hom(Cn(A), G)←− Cn(X,G)←− Cn(X,A;G)←− 0

is also exact. The dual of the inclusion map i : A −→ X is the restriction
of a cochain to chains in A. Conversely, a cochain Cn(A,G) extends to a
cochain in Cn(X,G) by assigning 0 to all singular simplices which are not in
A. This provides a splitting of the above sequence. The kernel of i∗ consists
of cochains on X which vanish on singular simplices in A. Thus ker(i∗) =
Hom(Cn(X,A), G) = Cn(X,A;G).
• Long exact sequence of a pair/triple: Any exact sequence of cochain com-

plexes induces a long exact sequence in cohomology. This applies to singular
cochains on a pair (X,A) of spaces

−→ Hn(X,A;G) −→ Hn(X;G) −→ Hn(A;G) −→δ∗ Hn+1(X,A;G) −→ . . .

The connecting homomorphism δ∗ is defined as follows. Let α ∈ Hn(A;G)
and σ a relative n + 1-cycle. Then δ∗α(σ) = α(∂σ). Note, that one extends
α to a cochain on X (by zero on singular simplices not entirely contained
in A) ∂σ is a boundary in X but not necessarily in A. In particular, the
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connecting homomorphisms in the long exact sequence of a pair for homology
and cohomology are compatible in the sense that

(22) Hn(A;G)
δ∗ //

h
��

Hn(X,A;G)

h
��

Hom(Hn(A);G)
(∂∗)∗// Hom(Hn+1(X,A);G)

commutes (here h is the map defined in (19)).
An analogous long exact sequence for a triple of spaces X ⊃ A ⊃ B is

obtained by dualizing the split exact sequence

0 −→ Cn(A,B) −→ Cn(X,B) −→ Cn(X,A) −→ 0.

• Induced maps: Maps between pairs of spaces induces maps (in the opposite
direction) between cohomology groups. The long exact sequence is natural with
respect to this. Note (g ◦ f)∗ = f ∗ ◦ g∗ and id∗X = idH∗(X;G).
• Homotopy invariance: If f, g : (X,A) −→ (Y,B) are homotopic, then f ∗ =
g∗ on cohomology and the maps f ∗, g∗ are chain homotopic, i.e. there is P :
C∗(Y,B) −→ C∗−1(X,A) such that

f ∗ − g∗ = P ◦ δ + δ ◦ P.

The proof is dual to the proof for homology.
• Excision: Assume that Z ⊂ A ⊂ X such that Z ⊂ Å. Then the inclusion

i : (X \ Z,A \ Z) −→ (X,A)

induces an isomorphism

i∗ : H∗(X,A) −→ H∗(X \ Z,A \ Z).

The proof is by the universal coefficient theorem and the five lemma, or one
can dualize the proof of excision for homology.
• Mayer-Vietoris sequence for cohomology: We give the relative version:

Let (X, Y ), (A,C), (B,D) be pairs of spaces such thatX = Å∪B̊ and Y = C̊∪D̊
(in the relative topology).

We denote the open cover {A,B} (resp. {C,D}) of X (resp. Y ) by U (resp.
V). The chain complex CU

∗ (X) is generated by singular simplices contained in
A or B, etc. We showed last semester that the inclusion

CU
∗ (X) −→ C∗(X)

is a chain homotopy equivalence. We dualize this notation and define

Cn
U,V(X, Y ;G) = ker(i∗ : Cn

U(X;G) −→ Cn
V(Y ;G).

The following diagram commutes and the rows are exact.

0 // Cn(X, Y ;G) //

��

Cn(X;G) //

��

Cn(Y ;G) //

��

0

0 // Cn
U,V(X, Y ;G) // Cn

U(X;G) // Cn
V(Y ;G) // 0

and the associated pair of long exact sequences in cohomology. By the five
Lemma, the first vertical map induces an isomorphism on cohomology. The
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relative Mayer-Vietoris sequence for cohomology is the long exact sequence of
the short exact sequence

0 −→ Cn
U,V(X, Y ;G) −→ Cn(A,C;G)⊕Cn(B,D;G) −→ Cn(A∩B,C ∩D;G) −→ 0

obtained by dualizing

0 −→ Cn(A ∩B,C ∩D) −→ Cn(A,C)⊕ Cn(B,D) −→ CU,V
n (X, Y ) −→ 0.

• Cellular cohomology: As for homology, the cohomology of a CW-complex
can be computed from A CW-decomposition. This is very similar to the case
of homology. Consider the diagram

0 = Hn−1(Xn−2;G)

Hn−1(Xn−1;G)

OO

δn−1

**
// Hn−1(Xn−1, Xn−2;G)

dn−1
//

jn−1

OO

Hn(Xn, Xn−1;G)
dn //

jn **

Hn+1(Xn+1, Xn;G) //

Hn(Xn;G)

δn

OO

Hn(Xn+1;G) ' Hn(X;G)

in

OO

0 = Hn(Xn+1, Xn;G)

OO

where the maps dn, dn−1 are defined as the obvious composition. The vertical
sequences are exact sequences of pairs. dn ◦dn−1 = 0 since jn ◦ δn−1 is a compo-
sition of two consecutive maps from the long exact cohomology sequence of the
pair (Xn, Xn−1). The row forms the cellular cochain complex, its homology is
isomorphic to the cohomology of X, i.e.

Hn(X;G) =
ker(dn)

image(in)

1. H i(Xn, Xn−1;G) = 0 for i 6= n by the universal coefficient theorem.
2. Therefore, H i(Xn;G) −→ H i(Xn−1;G) is an isomorphism unless i =
n, n− 1.

3. In particular, H i(Xn;G) = 0 for i ≥ n+ 1.
4. H i(X,Xn;G) = 0 for i ≤ n by the universal coefficient theorem.
5. Therefore, Hn(X;G) ' Hn(Xn+1;G).
6. jn is surjective, by the univ. coefficient theorem and the fact that
Hn−1(Xn−1) is free. Hn(Xn, Xn−1;G) −→jn Hn(Xn;G) −→ Hn(Xn−1;G)
is a segment of the long exact sequence in cohomology of (Xn, Xn−1).
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We can conclude:

Hn(X;G) = Hn(Xn+1;G) = image(in)

= ker(δn) =
ker(dn)

ker(jn)

=
ker(dn)

image(δn−1)

=
ker(dn)

image(dn−1)

• The cellular cochain complex could have been obtain by dualizing the cellular
chain complex. The cellular coboundary operator is the composition in the
upper row

Hk(Xk, Xk−1;G)
jk //

h
��

Hk(Xk;G)
δk //

h
��

Hk+1(Xk+1, Xk;G)

h
��

Hom(Hk(X
k, Xk−1), G) // Hom(Hk(X

k), G)
(∂∗)∗// Hom(Hk+1(Xk+1), Xk, G)

The outer vertical maps are isomorphisms by the universal coefficient theorem,
the horizontal map on the lower left (like the one in the upper left corner) is
the dual of a map induced by the inclusion Xk −→ (Xk, Xk−1). Both small
diagrams commute. For the right one, see (22), for the left one use the the
naturality of the universal coefficient theorem.

Lecture on June, 7 – Products for cohomology, cross-prod.

• Cohomology cross product: We assume that G is commutative ring with
unit and X a space. For ϕ ∈ Hom(Cp(X), G) = Cp(X;G) and σ ∈ Cr(X) we
define ϕ(σ) = 0 if r 6= p. For ψ ∈ Cq(X;G) define ϕ × ψ ∈ Hom(C∗(X) ⊗
C∗(Y ), G) by

(23) (ϕ× ψ)(c⊗ d) = ϕ(c) · ψ(d).

• Lemma: δ(ϕ× ψ) = (δϕ)× ψ + (−1)pϕ× δ(ψ)
by the definition of δ and the tensor product of chain complexes. If ϕ, ψ are

cocycles and ϕ′ = ϕ+ δα, then

ϕ′ × ψ = (ϕ+ δα)× ψ
= ϕ× ψ + δ(α× ψ)

because ψ is a cocyle. This shows that [ϕ] × [ψ] ∈ Hp+q(C∗(X) ⊗ C∗(Y )) is
well defined.
• Simple Fact: If A,B be Abelian groups and G a commutative ring (with unit,

see below). Then there is a natural map

Hom(A,G)⊗ Hom(B,G) −→ Hom(A⊗B,G)

α⊗ β 7−→
(
a⊗ b 7−→ α(a) ·G β(b)

)
.

(24)

This is not an isomorphism, in general. The following example can be found at
https://mathoverflow.net/questions/56255/duals-and-tensor-products.

https://mathoverflow.net/questions/56255/duals-and-tensor-products
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• Example: Let A = B =
⊕

i∈N0
Z, G ∈ Z, with standard generators ei, i ∈ N0.

Define

ξ : A⊗ A −→ Z

ei ⊗ ej 7−→
{

1 if i = j
0 if i 6= j.

This is not in the image of the map (24). Let ϕ ∈ (A⊗ A)∗ Consider

∆ϕ : A −→ A∗

b 7−→ (a 7−→ ϕ(a⊗ b))

If ξ is of the form
∑r

m=0 αi⊗α′i for suitable αi, α
′
i, then the dimension of the

image of ∆ξ is ≤ r. However, ∆ξ(ei) is the dual of ei. Thus the map in (24) is
not surjective even when A,B are free.
• Simple fact: If A is a finitely generated and free Abelian group (finitely gen.

free G-module of a ring G), then A = Zr and

(Zr ⊗B)∗ '
⊕
r

B∗

' (Zr)∗ ⊗B∗.

Thus the map in (24) is an isomorphism if one of the factors A,B is free and
finitely generated.

There are examples which show that (24) is not injective for finitely generated
A,B.
• Definition: Fix an Eilenberg-Zilber equivalence

Q : C∗(X × Y ) −→ C∗(X)⊗ C∗(Y )

and consider its dual Q∗ : C∗(X;G) ⊗ C∗(Y ;G) −→ C∗(X × Y ;G). The
cohomology cross product of [ϕ]× [ψ] ∈ Hp+q(X × Y ;G) is defined by

[ϕ]× [ψ] = [Q∗(ϕ⊗ ψ)].

• Remark: This is independent of the choice of Q.
• Properties: The cohomology cross product satisfies

1. bilinear: (α + α′)× β = α× β + α′ × β
2. homogeneous: (g · α)× β = g(α× β) for all g ∈ G.
3. (skew-)commutuative: α×β = (−1)pqt∗(β×α) with t : X×Y −→ Y ×X

interchanging the factors and α ∈ Hp(X;G), β ∈ Hq(Y ;G).
4. associative: α× (β × γ) = (α× β)× γ.
5. natural: f ∗α× g∗β = (f × g)∗(α× β) for continuous maps f : X −→ X ′

and g : Y −→ Y ′.
6. unit: Let 1X ∈ H0(X;G) be the cocylce which assigns the unit element

of the ring G to every 0-simplex. Then 1X × β = pr∗Y β where prY :
X × Y −→ Y is the projection.

These properties follow quite directly from the analogous properties of the
homology cross product.
• There is the following simple relationship between the homology and cohomol-

ogy cross product:

(25) 〈α× β, a× b〉 = 〈α, a〉 · 〈β, b〉
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• Proof: Q is a chain homotopy inverse of P . Hence,

〈α× β, a× b〉 = 〈Q∗(α⊗ β), P (a⊗ b)〉
= 〈α⊗ β,QP (a⊗ b)〉
= 〈α⊗ β, (a⊗ b)〉
= α(a) · β(b).

• Theorem: If one of the following assumptions holds,
(a) G = Z and Hi(X), Hi(Y ) is free Abelian of finite rank for all 0 ≤ i ≤ n.
(b) G is a field and the G-vector spaces Hi(X;G) has finite dimension for all

0 ≤ i ≤ n.
then the cross product induces an isomorphism

λ :
⊕
i+j=n

H i(X;G)⊗G Hj(Y ;G) −→ Hn(X × Y ;G)

α⊗ β 7−→ α× β.
(26)

• Proof:

Hn(X × Y ;G)
f //

⊕
HomG(Hi(X;G)⊗G Hj(Y ;G), G)

⊕
H i(X;G)⊗Hj(Y ;G)

f ′//

λ

OO

⊕
HomG(Hi(X;G), G)⊗G HomG(Hj(Y ;G), G)

µ

OO

Here λ is the map from the statement, µ(ϕ ⊗ ψ)(a ⊗ b) = ϕ(a) · ψ(b). This
map is an isomomorphism by the assumption (finite rank, free). The map λ is
injective by the universal coefficient theorem and the assumptions.
f is defined using the Künneth theorem for homology, after dualizing. This

is an isomorphism.
f ′ is a sum of tensor products of maps from the universal coefficient theorem

in homology. Again, this is an isomorphism by the assumptions.
• Remark: The following fact is supposed to illustrate how the cross product in

cohomology works.
For arbitrary (X,A), Y and G the following square commutes:

(27) Hk(A;G)×H l(Y ;G)
δ∗×id//

×
��

Hk+1(X,A;G)×H l(Y ;G)

×
��

Hk+l(A× Y ;G)
δ∗ // Hk+l+1(X × Y,A× Y ;G)

This can be checked directly, start with [ϕ] ∈ Hk(A;G), [ψ] ∈ H l(Y ;G), i.e. ϕ
is a G-valued cocylce ϕ on Ck(A). Extend somehow to a G-valued cochain ϕ
on Ck(X). Then

([ϕ], [ψ]) � // ([δϕ], [ψ])
_

��
[Q∗(δϕ⊗ ψ)]

Since ψ is a cocylce, δψ = 0, Q∗(ϕ ⊗ ψ) is an extension of Q∗(ϕ ⊗ ψ) by
naturality of Q, and Q∗ is a chain map. Therefore,

[Q∗(δϕ⊗ ψ)] = δ∗[Q∗(ϕ⊗ ψ)].
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This shows that the diagram commutes.

Lecture on June, 11 – Products for cohomology, cup-prod.

• Cup-product: We consider a topological space X and the diagonal map

d : X −→ X ×X
x 7−→ (x, x).

• Definition: The cup-product of α ∈ Hp(X;G) and β ∈ Hq(X;G) is

α ∪ β = d∗( α× β︸ ︷︷ ︸
cohom. cross prod.

) ∈ Hp+q(X;G).

• Properties: From the properties of the cross product we obtain properties of
the cup-product:

1. bilinear: (α + α′) ∪ β = α ∪ β + α′ ∪ β
2. homogeneous: (g · α) ∪ β = g(α ∪ β) for all g ∈ G.
3. (skew-)commutative: α ∪ β = (−1)pqβ ∪ α with α ∈ Hp(X;G), β ∈
Hq(Y ;G).

4. associative: α ∪ (β ∪ γ) = (α ∪ β) ∪ γ.
5. natural: f ∗α ∪ f ∗β = f ∗(α ∪ β) for continuous maps f : X −→ X ′

6. unit: Let 1X ∈ H0(X;G) be the cocylce which assigns the unit element
of the ring G to every 0-simplex. Then 1X ∪ β = β.

• Remark: This is one of the justification for introducing cohomology. The
cup-product turns the cohomology of a space into a graded ring.
• Remark: There is an explicit formula describing an Eilenberg Zilber equiva-

lence:

Q : Cn(X ×X) −→
⊕
p+q=n

[C∗(X)⊗ C∗(X)]n

σ 7−→
n∑
q=0

(pr1 ◦ σ ◦ [v0, . . . , vq])⊗ (pr2 ◦ σ ◦ [vq, . . . , vn]) ∈ [C∗(X)⊗ C∗(Y )]n.

This leads to an explicit formula for the representative of [α] ∪ [β]: If [α] ∈
Hp(X) and [β] ∈ Hq(X), then the cup product is represented by the cochain χ
with

(28) 〈χ, σ〉 =

p+q∑
q=0

〈α, σ ◦ [v0, . . . , vi]〉〈β, σ ◦ [vi, . . . , vp+q]〉

for all singular p+ q simplices σ.
• Remark: By the naturality of Q, one also obtains cup products

H∗(X;G)×H∗(X,A;G) −→ H∗(X,A;G)

H∗(X,A;G)×H∗(X;G) −→ H∗(X,A;G)

H∗(X,A;G)×H∗(X,A;G) −→ H∗(X,A;G).

• Remark: If A,B are open (or subcomplexes of a CW-complex), then the cup
product

H∗(X,A;G)×H∗(X,B;G) −→ H∗(X,A ∪B;G).

is defined. On the cochain level

C∗(X,A;G)× C∗(X,B;G) −→ {cochains vanishing on sums of chains in A or B}.
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By the 5-Lemma and the fact that C∗(A ∪ B) −→ C
{A,B}
∗ (A ∪ B) is a chain

homotopy equivalence we get that

C∗(X,A ∪B;G) −→ {cochains vanishing on sums of chains in A or B}

induces an isomorphism on cohomology.
• Remark: The definition we used for the cup-product is difficult to use for

explicit computations, and it is generally difficult to compute cup-products.
The following two facts are useful:

1. If Hn = 0, then all cup products which land in degree n vanish.
2. Let n be odd, and u ∈ Hn(X). Then u2 = (−1)n

2
u2 = −u2. Thus u2 is

part of the 2-torsion of H2n(X).
• Remark: Cup products in X × Y can be computed once the cup product in
H i(X;G), H i(Y ;G) are known:
• Lemma:

(29) (α× β) ∪ (α′ × β′) = (−1)qr(α ∪ α′)× (β ∪ β′).

• Proof: Let dX , dY , d be the diagonal map for X, Y,X × Y and t : Y ×X −→
X × Y be the map interchanging the factors. Then

(α× β) ∪ (α′ × β′) = d∗Q∗((α× β)× (α′ × β′))
= (−1)qrd∗Q∗(α× t∗(α′ × β)× β′)
= (−1)qrd∗(id× t× id)∗Q∗(α× α′ × β × β′)
= (−1)qr(dx × dY )∗Q∗(α× α′ × β × β′)
= (−1)qr(α ∪ α′)× (β ∪ β′).

• Definition: The tensor product of graded rings (Ai), (Bj) is
(⊕

i+j=nAi ⊗Bj

)
with the product

(a⊗ b) · (a′ ⊗ b′) = (−1)qr(a · a′)⊗ (b · b′)

when b resp. a′ has degree q resp. r. In particular, it is associative.
• Theorem: Under one of the assumptions for (26) the map

λ : H∗(X;G)⊗G H∗(Y ;G) −→ H∗(X × Y ;G)

α⊗ β 7−→ pr∗Xα ∪ pr∗Y β.

is an isomorphism of rings.
• Proof: This follows from the corresponding theorem for the cross product, and

the previous lemma since

pr∗Xα ∪ pr∗Y β = (α× 1Y ) ∪ (1X × β)

= (α ∪ 1X)× (1Y ∪ β)

= α× β.
(30)

• Remark: By the identity it is possible to construct the cohomology cross
product from the cup product. This is the approach taken in [Ha] where the
cup product is defined via (28).
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Lecture on June, 14 – Products for cohomology, Examples

• Example: The cohomology of the n-torus (with integer coefficients) is an
exterior algebra on rank(H1(T n;Z)) = n generators of degree 1.
• Fundamental Example 1: Let Rn = Ri×Rj. The product of two generators

on the left in

H i(Rn,Rn \ Rj;Z)×Hj(Rn,Rn \ Ri;Z) −→ Hn(Rn,Rn \ 0;Z)

is a generator on the right.
• Proof: This is based on (18) on p. 25 and follows then from (29) (this formula

also works in relative cohomology, with the same proof).
• Example: Let X = Sn × Sm. Then the cohomology ring has two generators,
α in degree n, the other, β, in degree m. Their product α∪ β is a generator of
Hn+m(X;Z), and α2 = 0 and β2 = 0 by naturality of the cup product and the
ring structure of the individual factors.
• Exercise: Let X, Y be path connected CW-complexes and x, y base points.

Then

H∗(X ∨ Y ;G) ' H∗(X;G)⊕H∗(Y ;G) outside of degree 0

as rings.
• Consequence: Sn ∨ Sm ∨ Sn+m and Sn × Sm have isomorphic (co-)homology

groups, if n,m > 1 then both spaces are simply connected. However, they are
not homotopy equivalent because the ring structures of the cohomology are not
isomorphic.

In particular, the attaching map of the n+m-cell in Sn × Sm to Sn ∨ Sm is
not null homotopic. There is no map from Sn∨Sm∨Sn+m to Sn×Sm inducing
an isomorphism in cohomology.
• Fundamental Example 2: H∗(RPn;Z2) = Z[α]/αn+1 (as ring) where α ∈
H1(RPn;Z2) is a generator.
• Proof: Z2-coefficients all over the place. For i+ j = n, i ≥ 0

RPi = {[x0 : . . . : xi : 0 . . . 0]} ⊂ RPn

RPj = {[0 . . . : xi : . . . : xn]} ⊂ RPn

U = {[x0 . . . : xi−1 : xi : xi+1 : . . . : xn] |xi 6= 0}

Then RPi ∩ RPj = [0 : . . . : 0 : xi = 1 : 0 : . . . : 0] = p, and (U, p) is
homeomorphic to (Rn, 0) via a homeomorphism h. We identify Rn = Ri × Rj

where the coordinates of Ri are x0, . . . , xi−1. Consider the diagram

H i(RPn)×Hj(RPn)
∪ // Hn(RPn)

H i(RPn,RPn \ RPj)×Hj(RPn,RPn \ RPi)∪ //

OO

��

Hn(RPn,RPn \ {p})

OO

��
H i(Rn,Rn \ Rj)×Hj(Rn,Rn \ Ri)

∪ // Hn(Rn,Rn \ 0)

whose upward pointing arrows are induced by inclusions while the downward
pointing arrows are induced by h. The diagram commutes by naturality of the
cup-product.
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By the Fundamental Example 1, the cup-product of the generators of the
groups in the lower left is a generator of Hn(Rn,Rn \ 0). We will show that the
vertical maps in the diagram above are isomorphisms. This implies the claim.

1. The map Hn(RPn,RPn \ {p}) −→ Hn(Rn,Rn \ 0) is an isomorphism by
excision (remove RPn−1 = {xi = 0} form RPn).

2. RPn−1 is a deformation retract of RPn \ p. Hence H i(RPn,RPn \ p) '
H i(RPn,RPn−1). The vertical map on the upper right is an isomor-
phism by the long exact sequence of the pair (RPn,RPn−1), note that
Hn−1(RPn) −→ Hn−1(RPn−1) is injective.

3. We now look at the left column and consider

H i(RPn)

'cell. hom.
��

H i(RPn,RPi−1)'
cell. hom.oo

'cell. hom.
��

H i(RPn,RPn \ RPj)'
hom. equ.oo //

��

H i(Rn,Rn \ Rj)

'contract Rj

��
H i(RPi) H i(RPi,RPi−1)'

cell. hom.oo H i(RPi,RPi \ p) '

exc.RPi−1
//

'
def. equ.oo H i(Ri,Ri \ 0)

The inclusion (RPn,RPi−1) −→ (RPn,RPn \ RPj) is a homotopy equiv-
alence: Note that RPn \ RPj consists of points one of whose first i − 1
coordinates is non-zero. Thus

[x0 : . . . : xi−1 : xi : . . . : xn] 7−→ [x0 : . . . : xi−1 : txi : . . . : txn]

is well defined for t ∈ [0, 1].
The same arguments work when i, j are interchanged. (Multiply the first
coordinate entries 0, . . . , i− 1 by t).

• Fundamental Example 3: H∗(RP∞;Z2) ' Z2[α] with α ∈ H1 the generator.
• Fundamental Example 4: The analogous statements with analogous proofs

hold for H∗(CPn;Z) respectively H∗(HPn;Z), except that the generator has
degree 2 respectively 4 and similarly for CP∞,HP∞.

Lecture on June, 18 – Products for cohomology, Applications and
cap product.

• Observation: Hn(RPn;Z2) ' Z2 ' Hn(Sn;Z2) and H2n(CPn;Z) ' Z '
H2n(S2n;Z). One can hence define degrees between these manifolds (with val-
ues in Z2 or Z depending on the case). We will see later that this is a property
of closed connected manifolds (depending on their orientability).
• Corollary: Every map S2n −→ CPn has Z-degree zero.
• Corollary: Every map S2n −→ RPn has Z2-degree zero.
• Corollary: A continuous map f : CPn −→ CPn has degree an with a ∈ Z. In

particular, all continuous maps have non-negative degree if n is even.
• Proof: The generator of H2n(CPn;Z) is a n-th power.
• Corollary: Every map CPn −→ CPn has a fixed point when n is even.
• Proof: Let ω ∈ H2(CPn;Z) be a generator. By the naturality of the cup-

product

f ∗(ωk) = (f ∗ω)k,
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hence f 2k : H2k(CPn;Z) −→ H2k(CPn;Z) is the multiplication with ak where
f ∗(ω) = aω. Then

L(f) =
n∑
k=0

(
trace

(
f ∗ : H2k(CPn;Z) −→ H2k(CPn;Z)

))
=

n∑
k=0

ak.

If |a| > 1, then this is always non-zero, the same is true if |a| = 0 and a = 1. If
a = −1, then L(f) has an odd number of summands ±1, hence it is odd and
non-vanishing. The claim follows from the Lefschetz fixed point theorem.
• Reminder: There are maps from CPn to itself without fixed points when n is

odd, c.f. 16.
• Fact: Let X, Y be connected and x, y be basepoints. Then the cohomolgy ring

of X ∨ Y is the direct sum of the cohomology rings of X, Y .
• Consequence: The attaching map of the the 4-cell e4 to the 3-skeleton CP1 '
S2 is not nullhomotopic, i.e. there are maps ∂e4 ' S3 −→ S2 which are not
homotopic to the constant map. In this case, the map in question is the Hopf
map

S3 ⊂ C2 −→ CP1

(z0, z1) 7−→ [z0 : z1].

If this were null-homotopic, then the cohomology ring of CP2 would be isomor-
phic to the cohomology ring of S2 ∨ S4 (as Abelian groups H∗(S2 ∨ S4;Z) '
H∗(CP2;Z)).

Considering HP2 with its standard CW-decomposition one finds a map h :
S7 −→ S4 which is not null-homotopic. Thus we showed π3(S2) 6= 0 and
π7(S4) 6= 0.
• Definition: Fix a PID G with unit. Let α ∈ Cp(X;G) and c ∈ Cm(X;G).

Then the cap-product α ∩ c is the image of (c, α) under the composition

Cm(X;G)× Cp(X;G)
d∗×id // Cm(X ×X;G)× Cp(X;G)

Q×idss(⊕
i+j=mCi(X;G)⊗ Cj(X;G)

)
× Cp(X;G) // Cm−p(X;G).

The last arrow is evaluation of the cochain on the first factor. Alternatively,
the cap product can be described using (14) as follows (c a singular m-simplex):

(31) c ∩ α = 〈α, c ◦ [v0, . . . , vp]〉 · c ◦ [vp, . . . , vm].

• Properties:
1. If G = Z, c ∩ 1 = c.
2. The cap product is natural in the sense that the diagram

Cm(X;G)

f∗
��

⊗ Cp(X;G)
∩ // Cm−p(X;G)

f∗
��

Cm(Y ;G) ⊗ Cp(Y ;G)
∩ //

f∗

OO

Cm−p(Y ;G).

commutes, i.e. f∗(c ∩ f ∗(α)) = (f∗c) ∩ α.
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3. Using (31) (or the fact that d∗ and Q are chain maps) one obtains

(∂c) ∩ α =
m∑
i=0

(−1)ic ◦ [v0, . . . , v̂i, . . . vm] ∩ α

=

p∑
i=0

(−1)i〈α, c ◦ [v0, . . . , v̂i, . . . , vp+1]〉 · c ◦ [vp+1, . . . , vm]

+
m∑

i=p+1

(−1)i〈α, c ◦ [v0, . . . , vp]〉 · c ◦ [vp, . . . , v̂i, . . . , vm]

=

p+1∑
i=0

(−1)i〈α, c ◦ [v0, . . . , v̂i, . . . , vp+1]〉 · c ◦ [vp+1, . . . , vm]

+
m∑
i=p

(−1)i〈α, c ◦ [v0, . . . , vp]〉 · c ◦ [vp, . . . , v̂i, . . . , vm]

= 〈α, ∂(c ◦ [v0, . . . , vp+1])〉 · c ◦ [vp+1, . . . , vm]

+ (−1)p〈α, c ◦ [v0, . . . , vp]〉 · ∂(c ◦ [vp, . . . , vm])

= c ∩ (δα) + (−1)p∂(c ∩ α).

This means

(32) (c ∩ α) = (−1)p((∂c) ∩ α− c ∩ δα).

4. The cap-product gives rise to a well defined operation

Hm(X;G)×Hp(X;G) −→ Hm−p(X;G).

If X is path-connected, then the case m = p is the evaluation of the
cocycle on the cycle yielding an element in G = H0(X;G).

5. As in the case of the cup-product, there are relative versions of the cap-
product.

Hm(X,A;G)×H l(X;G) −→ Hm(X,A;G)

Hm(X,A;G)×H l(X,A;G) −→ Hm(X;G).

Recall that classes in H l(X,A;G) are represented by cochains vanishing
on simplices in A. The cap product

Ck(X;G)⊗ C l(X;G) −→ Ck−l(X;G)

restricts to zero on Ck(A;G)⊗C l(X,A;G). Recall that C∗(X,A;G) can
be identified with those cochains in C∗(X;G) which vanish on C∗(A).)
Therefore, there is a cap-product on

Ck(X;G)

Ck(A;G)
⊗ C l(X,A;G) −→ Ck−l(X;G).

(32) still holds, so we obtain a cap-product

(33) Hk(X,A;G)⊗G H l(X,A;G) −→ Hk−l(X;G)

If A,B are open, then one also has

Hm(X,A ∪B;G)×H l(X,B;G) −→ Hm(X,A;G).
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6. If one defines the cup product using (28) and the cap product in terms
of (31), then one can express a compatibility relation between cap and
cup product on the level of (co-)chains.
Let σ be a singular k + l-simplex, ϕ ∈ C l(X;G), α ∈ Ck(X;G)

〈ϕ, σ ∩ α〉 = 〈α, σ ◦ [v0, . . . , vk]〉〈ϕ, σ ◦ [vk, . . . , vk+l]〉
= 〈α ∪ ϕ, σ〉

(34)

This formula means that the map α∪ : C l(X;G) −→ Ck+l(X;G) coin-
cides with the dual (∩α)∗ of

∩α : Ck+l(X;G) −→ Cl(X;G).

Passing to homology and cohomology, we obtain the commutative dia-
gram

H l(X;G)

α∪
��

h // HomG(Hl(X;G), G)

(∩α)∗

��
Hk+l(X;G)

h// HomG(Hk+l(X;G), G)

7. If h is an isomorphism, for example when G is a field, then the cap
product is completely determined in terms of the cup product.

Lecture on June, 21 – Topological manifolds, orientations,
fundamental class

• Reference: Appendix A of [Mi2], Section 3.3 in [Ha]. The approach to
Poincaré-duality taken in [StZ] is slightly more geometric since it relies on
simplicial homology and requires manifolds to be simplicial complexes.
• Definition: A topological manifold of dimension n is a topological Hausdorff

space M which is paracompact and locally Euclidian, i.e. for every point p ∈M
there a neighborhood U and an homeomorphism h : U −→ Rn (with h(p) = 0).
• One can assume Z-coefficients all over the place. For K ⊂ L ⊂ M compact

subsets in a manifold M we write

iL,K : (M,M \ L) −→ (M,M \K).

• Reminder:

Hi(M,M \ x) = Hi(Rn,Rn \ 0) '
{

Z i = n
0 i 6= n

• Lemma: Let M be a n-manifold and K ⊂M compact. Then Hi(M,M \K) =
0 for i > n. α ∈ Hn(M,M \K) is zero iff iK,x∗α = 0 ∈ Hn(M,M \ x) for all
x ∈ K.
• Proof:

1. M = Rn, K ⊂ M a convex set. Fix B ⊂ Rn be a large ball containing
K. Then ∂B is a deformation retract of M \ x and M \K. Thus

ρK,y : Hi(Rn,Rn \K) −→ Hi(Rn,Rn \ x)

is an isomorphism.
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2. Assume K = K1∪K2 such that the lemma is known for K1, K2, K1∩K2.
From the long exact exact sequence

−→ Hi+1(M,M\(K1∩K2)) −→ Hi(M,M\K) −→ Hi(M,M\K1)⊕Hi(M,M\K2) −→

This implies the claim (α maps to trivial classes in Hi(M,M \K1), . . .)
By induction, this proves the claim for K a finite union of convex subsets
of Rn.

3. K an arbitrary compact subset of M = Rn. Let α = [γ] ∈ Hi(M,M \K).
Choose N ⊃ K such that N is the finite union of compact convex sets
and iN,K∗(α

′) = α. This is possible since ∂γ is supported in a compact
set in the complement of K. Cover K by finitely many balls Bj which are
disjoint from the support of ∂γ. Then α′ = [γ] ∈ Hi(M,M \N). If i > n,
then the claim is clear. If iK,x∗α vanishes for x ∈ Bj, then iN,yα

′ = 0 for
all y ∈ Bj. Thus α′ vanishes by what we know, so α = iN,Kα

′ vanishes,
too.

4. M arbitrary, K ⊂M contained in the domain U of a coordinate system.
Then H∗(U,U \K) ' Hi(M,M \K) is an isomorphism by excision. The
claim follows from the previous step.

5. M arbitrary, K arbitrary: Cover K by finitely many compact pieces
contained in charts. The claim follows by induction on the number of
pieces, step 2 and 3.

• Definition: A local orientation [µx] is a generator of Hn(M,M \ x).
• Let Bx be a ball around x. If Bx small enough, µx is a cycle in C∗(M,M \
Bx) and represents a generator of Hi(M,M \ Bx). Thus µx represents a local
orientation for y ∈ Bx via the isomorphisms

H∗(M,M \ y)←− H∗(M,M \Bx) −→ H∗(M,M \ x)

induced by inclusions iBx,x∗ : (M,M \ Bx) −→ (M,M \ x), iBx,y∗ : (M,M \
Bx) −→ (M,M \ y). Let ρx,y = iBx,y∗ ◦ i−1

Bx,x∗.
• Definition: An orientation ofM is a function x 7−→ µx = local orientation at x

such that for each x there is a neighborhood Bx such that µy = ρx,y(µx) for all
y ∈ Bx. An oriented manifold is a manifold with the choice of an orientation.
• Theorem: Let M be an oriented n-manifold and K ⊂ M compact. Then

there is a unique class µK ∈ Hn(M,M \ K) such that iK,x∗µK = µx with
iK,x : (M,M \K) −→ (M,M \ x) the inclusion.
• Definition: If M is compact and oriented, then µM = [M ] is the fundamental

class of the oriented manifold M .
• Proof: Uniqueness follows from the previous Lemma.

Existence: If K ⊂ Bx for x ∈ M then i−1
x∗ µx is the desired class. If K =

K1 ∪ K2 such that µ1 resp. µ2 is the desired class for K1 resp. K2 then the
Mayer Vietoris sequence in homology implies the existence of µK :

0 // Hn(M,M \K)
s // Hn(M,M \K1)⊕Hn(M,M \K2)

tss
Hn(M,M \ (K1 ∩K2)) // 0 = Hn+1(M,M \K)

where s is induced by inclusion, and t is the difference of the inclusions (M,M \
Ki) −→ (M,M \ (K1 ∩K2)). Finally, every compact set is covered by finitely
many closed balls Bx as above.



47

• Consequence: Let M be a connected manifold with Hn(M ;Z) 6= 0. Then
M is Z-orientable: Take a non-zero element in Hn(M ;Z). Restricting it to
Hn(M,M \ x) ' Z we obtain a class which cannot vanish everywhere (by the
Lemma on p. 45). But non-vanishing in Z is independent of x be connectedness,
and allows to define a ”positive” generator of Hn(M,M \ x) ' Z. This orients
M . , and this shows that every element in Hn(M ;Z) is a multiple of the
fundamental class.

Moreover, if M is not compact, then Hn(M ;Z) = 0 since otherwise one
obtains a class in M which restricts to a non-zero class in Hn(M,M \ x) = Z.
But every homology class is represented by a singular cycle lying in a compact
subset K. This cycle is trivial in Hn(M,M \ x) when x 6∈ K. This works for
all coefficient groups.

Thus for connected n-manifolds, n > 0 and M 6= ∅

Hn(M ;Z) '
{

Z M is Z− orientable and closed
0 otherwise

Hn(M ;Z2) =

{
Z2 M is closed

0 otherwise

• Definition: Let γ ∈ Ci(M,G) be a cochain. It has compact support if the
is a compact set K such that γ ∈ Ci(M,M \ K;G), i.e. γ vanishes on all
chains in M \ K. The cochains with compact support form a subcomplex
C∗comp(M ;G) of C∗(M ;G) whose homology is H∗comp(M ;G). If M is compact,
then H∗comp(M ;G) = H∗(M ;G).
• Remark: Cohomology with compact support is obtained as a direct limit.
• Definition/Theorem: Let I be a directed set, i.e. there is a partial order
≤ on I such that for all α, β ∈ I there is γ ∈ I such that α ≤ γ and β ≤ γ.
Assume that to each α in I one associates a group Gα and to each pair α ≤ β
one associates a map fαβ such that fαγ = fβγ ◦ fαβ when α ≤ β ≤ γ and
fαα = id. For this directed system of groups one can define the direct limit as
follows:

lim−→
α

Gα =

(⊕
α

Gα

)/
〈gα − fαβ(gα) | gα ∈ Gα, α ≤ β〉.

Here we view Gα as subgroup of ⊕αGα.
For all α there is a map iα : Gα −→ lim−→α

Gα. The direct limit has the
following universal property:

Let A be a group and hα : Gα −→ A homomorphisms such that hα = hβ ◦fαβ
for α ≤ β. Then there is a unique map ψ : lim−→α

Gα −→ A such that ψ◦iα = hα.

• Fact: Let G′α be a second directed system of groups with morphisms f ′αβ :
Gα −→ Gβ. If hα : Gα −→ G′α are group homomorphisms such that fαβ ◦hα =
hβ◦, then there is a group homomorphism h : lim−→α

Gα −→ lim−→α
G′α such that

h ◦ iα = i′α ◦ hα.
• Example: Let X be a topological space. Then I = {compact subsets of X}

is a directed set (with the partial order given by inclusions, the union of two
compact sets is compact). For any coefficient group K 7−→ GK = Hi(K;G)
with the maps induced by inclusion is a directed set of groups.
• Lemma: The inclusions K −→ X induce an isomorphism lim−→K

Hi(K;G) =

Hi(X;G).
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• Proof: Surjectivity: Every class in X is represented by a sing. cycle which is
contained in a compact set (as a finite sum of singular simplices). Injectivity:
similar argument.
• Remark: For K ⊂ L recall the inclusion of pairs iL,K : (M,M \ K) −→

(M,M \ L). With the same proof as in the previous lemma:
• Lemma: The maps K −→ X induce an isomorphism

lim−→
K

H i(X,X \K) −→ H i
comp(X).

• Example: We want to compute H∗comp(Rn;Z). It is enough to consider the
closed balls Bk around the origin with integer radius k. Note that

H i(Rn,Rn \Bk) −→ H i(Rn,Rn \Bk+1)

is an isomorphism for all k. Thus

H i
comp(Rn;Z) '

{
Z i = n
0 i 6= n.

• Warning: Let X −→ Y be continuous. This does not induce a map f ∗ :
H∗comp(Y ) −→ H∗comp(X), in general. However, this is the case if f is proper, i.e.
preimages of compact sets are compact. Also, compactly supported cohomology
is not a homotopy invariant. It is only invariant under proper homotopies.
• Definition: If M is an oriented, closed manifold, then

Hn
comp(M ;G) −→ G

[ϕ] 7−→ 〈ϕ, [M ]〉
is defined directly. To generalize this to noncompact manifolds, pick a represen-
tative ϕ with support in H∗(M,M \K;G) and evaluate it on the fundamental
class [M ] ∈ Hn(M,M \ K). This is well defined: Let L,L′ be compact sets
such that [ϕ] ∈ Hn(M,M \ (L ∩ L′)) and iL : (L ∩ L′) −→ L the inclusion etc.
Then

〈i∗L[ϕ], µL〉 = 〈[ϕ], iL∗µL〉
= 〈[ϕ], µL∩L′〉 = 〈i∗L′ [ϕ], µL′〉

(35)

by the uniqueness of the fundamental class.
• Definition: Let X be a space and G a commutative ring with unit. Then
G-orientablity and the fundamental classes [M,M \K] ∈ Hn(M,M \K;G) are
defined as in the case G = Z. Details can be found in [Ha], p. 234ff.

The case G = Z2 is particularly important: Every manifold is Z2-orientable
since Z2 is generated by the only non-zero element.

Lecture on June, 25 – Poincaré duality

• Propaganda: It is difficult to overstate the importance of the following the-
orem (and its non-compact analogue). The proof we will give requires passing
through non-compact manifiolds.
• Theorem (Poincaré Duality, compact case): If M is a closed G-orientable
n-manifold with fundamental class [M ] ∈ Hn(M ;G), then the map

D : Hk(M ;G) −→ Hn−k(M ;G)

[α] 7−→ [M ] ∩ [α]

is an isomorphism for all k.
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• This can be generalized to non-compact manifolds. For this one has to extend
the definition of the map D.

For compact sets K ⊂ L ⊂ M and coefficients in G (a PID with unit)
consider the commutative diagram

Hn(M,M \ L)

i∗
��

× Hk(M,M \ L)
∩ // Hn−k(M)

Hn(M,M \K) × Hk(M,M \K)

i∗

OO

∩ // Hn−k(M)

We use the system of orientation classes µK ∈ Hn(M,M \K). Then i∗µL = µK
by uniqueness, and i∗(µL) ∩ α = µL ∩ i∗α.

If [α] ∈ H∗comp(M), then one fixes a representative α whose support is con-
tained in a fixed compact set K and iL : (M,M \ L) −→ (M,M \K) for all L
which contains K.

The cochain α represents the class αL = i∗L[α] ∈ H∗(M,M \ L).
This class is independent from L: Let L′ be another compact set. Then the

above diagram implies

µK ∩ α = i∗µL ∩ α = µL ∩ i∗(α) = µL ∩ α

This is very similar to (35).
Thus µL ∩ αL represents a well defined element in Hn−k(M). For [α] ∈

Hk
comp(M), this defines D(α) = µL ∩ αL.

• Theorem (Poincaré Duality): If M is a G-oriented n-manifold with funda-
mental classes µK ∈ Hn(M,M \K;G), then the map

D : Hk
comp(M ;G) −→ Hn−k(M ;G)

[α] 7−→ µsupport(α) ∩ [α]

is an isomorphism for all k.
• The technical heart of the proof is the following lemma. We suppress the

coefficients in the notation.
• Lemma: Let M = U ∪ V be the union of two open sets. Then there are

Mayer-Vietoris sequences such that the diagram

. . . Hk
comp(U ∩ V ) //

DU∩V
��

Hk
comp(U)⊕Hk

comp(V ) //

DU⊕DV

��

Hk
comp(M)

δ∗ //

DM

��

Hk+1
comp(U ∩ V ) . . .

DU∩V
��

. . . Hn−k(U ∩ V ) // Hn−k(U)⊕Hn−k(V ) // Hn−k(M)
∂∗//// Hn−k−1(U ∩ V ) . . .

commutes up to sign depending only on k. (The lower part is the standard
Mayer Vietoris sequence in homology. The map Hk

comp(U ∩ V ) −→ Hk
com(U) is

induced be extending cochains to homomorphisms C∗(U) which do vanish on
all singular simplices which are not contained in U∩V , etc. To see exactness use

compactly supported cochains in Hom(C
{U,V }
∗ (M);G) to compute H∗(M ;G).)

• Proof: Let K ⊂ U and L ⊂ V be compact. Then the Mayer-Vietoris sequence
of the open covering (M,M \K), (M,M \ L) of (M,M \ (K ∪ L)) is the top
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row of the following diagram

Hk(M,M \ (L ∩K)) //

'exc.
��

Hk(M,M \K)⊕Hk(M,M \ L) //

'exc.
��

Hk(M,M \ (K ∪ L))

µK∪L∩

��

Hk(U ∩ V, (U ∩ V ) \ (K ∩ L))

µK∩L∩
��

// Hk(U,U \K)⊕Hk(V, V \ L)

µK∩⊕µL∩
��

Hn−k(U ∩ V ) // Hk(U)⊕Hn−k(V ) // Hn−k(M)

The diagram extends further to the left and right. The two smaller squares on
the left clearly commute, the same is true for the larger square on the right.
Here is the square to the right of the above diagram:

Hk(M,M \ (K ∪ L))

µK∪L∩

��

δ

M.V.conn.homo
// Hk+1(M,M \ (K ∩ L))

'exc.
��

Hk(U ∩ V, (U ∩ V ) \ (K ∩ L))

µK∩L∩
��

Hn−k(M)
∂

M.V.−conn.homo.
// Hn−k−1(U ∩ V )

1. Description of δ: The top sequence comes from the short exact sequence

0 −→ C∗(M, (M \K) + (M \ L))︸ ︷︷ ︸
cochains vanishing on simpl.

in M \K,M \ L

−→
C∗(M,M \K)

⊕
C∗(M,M \ L)

−→ C∗(M, (M \K) ∩ (M \ L)︸ ︷︷ ︸
=M\(K∪L)

) −→ 0.

This is exact, the first chain complex computes H∗(M, (U \K)∩ (V \L))
(five lemma, subdivision) To find δ[ϕ] write ϕ = ϕM\K − ϕM\L, then
δϕM\K represents δ[ϕ].

2. Description of ∂: This is a connecting homo. Decompose
3. How to obtain µK , µK∩L from µK∪L: U \ L(!), U ∩ V, V \ K is an open

cover of M = U ∪ V (U \K, ... is not). By subdivision, one can choose

αU\L ∈ Cn(U \ L), αV \K ∈ Cn(V \K), αU∩V ∈ Cn(U ∩ V )

such that the sum α represents µK∪L.
3.1 αU\L, αV \K lie in the complement of K ∩ L. Hence, by uniqueness

(p. 46) of the fundamental class in Hn(M,M \ (K ∩ L)), αU∩V
represents µK∩L.

3.2 αU\L + αU∩V represents µK ∈ Hn(M,M \K), again by uniqueness
of the fundamental classes.

We now check the commutativity (up to sign) of the diagram above. Let
[ϕ] ∈ Hk(M,M \ (K ∩ L)).

– First right, then down: Let ϕ = ϕM\K − ϕM\L. Then the composition
of the first two arrows is [the restriction of δϕM\K to chains in U ∩ V ].
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Thus we get as final result

ϕ 7−→ µK∩L ∩ [δϕM\K ]

= [αU∩V ∩ δϕM\K ]

= [(∂αU∩V ) ∩ ϕM\K − ∂(αU∩V ∩ ϕM\K︸ ︷︷ ︸
∈C∗(U∩V )

)]

= [(∂αU∩V ) ∩ ϕM\K ].

– First down, then right: The downward arrow maps [ϕ] to [α ∩ ϕ]. Then

∂[α ∩ ϕ] = ∂[

∈C∗(M,M\U)︷ ︸︸ ︷
αU\L︸︷︷︸

∈C∗(M,M\L∪M\(K∪L))

∩ ϕ︸︷︷︸
∈Ck(M,M\(K∪L))

+

∈C∗(M,M\L)︷ ︸︸ ︷
(αV \K + αU∩V )︸ ︷︷ ︸

repr. µK∈Hn(M,M\(K∪L)∪M\L)

∩ ϕ︸︷︷︸
∈Ck(M,M\(K∪L))

]

= [∂
(
αU\L ∩ ϕ

)
]

= (−1)k[∂αU\L ∩ ϕ] since δϕ = 0

= (−1)k[∂αU\L ∩ (ϕM\K − ϕM\L)]

= (−1)k[∂αU\L ∩ ϕM\K ] since ϕM\L vanishes on chains in U \ L
= (−1)k[∂((αU\L + αU∩V )︸ ︷︷ ︸

repr.µK

−αU∩V ) ∩ ϕM\K ] since ϕM\K vanishes on chains in M \K,

like ∂(αU∩V + αU\L)

= (−1)k+1[αU\L ∩ ϕM\K ], finally !

So the diagram commutes up to sign depending only on k.
• Proof of Poincaré-duality: We use various forms of induction.

1. By the previous lemma and the five lemma: If the theorem holds for
open sets U, V, U ∩ V , then it holds for U ∪ V .

2. Assume that M = ∪i∈NUi where Ui ⊂ Ui+1 are open subsets for which
Poincare duality holds, i.e. Di : Hk

comp(Ui) −→ Hn−k(Ui) is an isomor-
phism. Then DM is an isomorphism as direct limit of Di:
By excision:

Hk
comp(Ui) = lim−→

K⊂Uicompact

Hk(Ui, Ui \K)

= lim−→
K⊂Uicompact

Hk(M,M \K)

Therefore, there are maps Hk
comp(Ui) −→ Hk

comp(Ui+1) for all i and we
can form the direct limit

lim−→
i

Hk
comp(Ui) = Hk

comp(M)

since the direct limit on the right goes over all compact sets in M .

Hk
comp(Ui) //

' Di

��

Hk
comp(Ui+1) //

' Di+1

��

. . . lim−→i
Hk
comp(Ui)

' lim−→i
Di

��

Hk
comp(M)

DM

��
Hn−k(Ui) // Hn−k(Ui+1) // . . . lim−→i

Hn−k(Ui) Hn−k(M)

These are the tools, now we want to conclude:
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1. M = Rn: Rn is non-compact, but topologically tame, i.e. it is the inte-
rior of a manifold with boundary, this makes this case relatively simple.
Identify Rn ' Dn (the interior of D

n
), and look at

Hn(Dn, Dn \K)

��

× Hk(Dn, Dn \K)
∩ // Hn−k(D

n)

��

Hn(D
n
, D

n \K) × Hk(D
n
, D

n \K)
∩ //

OO

Hn−k(D
n
).

Coefficients are suppressed, vertical maps are induced by inclusions, and
K is a compact ball in the interior Dn (deviating from the convention
that Dn denotes a closed ball) of the closed ball. (It suffices to consider
compact balls because every compact set in Dn is contained in such a
ball.) Vertical maps are isomorphisms by excision (or homotopy invari-
ance).
Moreover, the left-most map maps µK onto the generator [D

n
, ∂D

n
] be-

cause this class has the defining property of fundamental classes.
The only interesting case in the bottom line is k = n, in this case the
cap product reduces to evaluation and α 7−→ 〈α, [Dn

, ∂D
n
]〉 defines an

isomorphism

Hk(Dn, Dn \K) −→ H0(Dn) = G

2. M an arbitrary open set in Rn: M not topologically tame in general.
However, M is the countable union of open (metric) balls. The intersec-
tion of a finite collection of such balls is either empty or convex and open
(hence it is homeomorphic to a ball). By the first tool, Poincaré-duality
holds for all finite unions of the balls. By the second tool, Poincaré-
duality holds for M .

3. M arbitrary: M can be covered by countably many charts (manifolds are
paracompact/second countable). By the previous step, Poincaré-duality
holds for all open sets in chart domains. Hence it holds for M (use the
second tool).
As is observed in [Ha], one can drop the paracompactness assumption
and use Zorn’s Lemma to prove Poincaré duality even in that case.

Lecture on June, 28 – Applications of Poincaré duality

• Reference: A good source for applications of duality is [Br].
• Consequence: Let M be a (path-)connected, closed Z-oriented manifold of

dimension n. ThenHn(M) ' H0(M) = Z. The fundamental class is a preferred
generator when an orientation of M is fixed.
• Consequence: For every closed n-manifold Hn(M ;Z2) = Z2.
• Consequence: RPk is not orientable for k even. Viewing RPn as quotient of

an oriented sphere by the orientation preserving antipodal map, one obtains
orientations on RPk for k odd.
• Consequence: Take coefficients in Q or any other field. Then bk(M) =
bn−k(M). In particular, many finite CW-complexes are not homotopy equiva-
lent to compact manifolds.
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• Consequence: Let M be a closed manifold. Then χ(M) = 0. One uses Z2-
coefficients to compute χ(M), since every manifold admits a Z2-orientation. A
reminder on χ is on p. 13.
• Consequence/sketch: This requires that you know what a manifold with

boundary is. Assume that RP2 is the boundary of a compact manifold X with
boundary. Gluing two copies of X one obtains a closed topological 3-manifold
M with

χ(M) = 2χ(X)− χ(RP2) = 2χ(X)− 1.

using Z2-coefficients. Thus χ(M) is odd, but it should be zero. This works for
all RPk with k even.
• Consequence: IfM is closed and Z-oriented, thenHn(M ;Z) = Z by Poincaré-

duality and connectedness.
If M is non-orientable, then Hn−1(M ;Z) must contain 2-torsion by the uni-

versal coefficient theorem for homology andHn(M ;Z2) = Z2. ThenHn−1(M,Z2) 6=
0 and hence H1(M ;Z2) 6= 0. By the Hurewicz theorem, π1(M) must contain
a (normal) subgroup of index 2 since Hom(π1(M),Z2) = H1(M ;Z2). This can
be seen more geometrically using the orientation cover M −→M , where

M = {(x, generator of Hn(M,M \ x)} −→M

is the map forgetting the second entry. The topology on M is the coarsest
topology so that the map is continuous. Then M is a two fold covering and it
is trivial iff M is Z-orientable.
• Duality in manifolds with boundary: Let V be a manifold with boundary
M .

1. In a n-manifold with boundary, every point has a coordinate chart which
is homeomorphic to a relative open set in {x0 ≤ 0} ⊂ Rn.

2. The boundary of a manifold is well defined, and a closed subset. The
boundary of a manifold of dimension n is a n − 1-manifold. This is
consistent with the convention that ∅ is a manifold of any dimension.

3. ∂V has a neighbourhood which is homeomorphic to ∂V × (−ε, 0] (when
∂V is paracompact). Such a neighbourhood is a collar, it deformation
retracts onto ∂V .

4. V is orientable if and only if V \ ∂V is orientable.
5. If M is compact with boundary and x ∈ V \ ∂V , then there is a com-

pact set containing x which is disjoint from the boundary, for example
V \ ×[−ε/N, 0] for N big enough. Moreover, the inclusion (V, ∂V ×
(−ε, 0]) −→ (V, ∂V = ∂V × {0}) induces an isomorphism on relative
homology.

6. In particular, one can define and construct fundamental classes as on
p. 45ff. with respect to points in the interior of M .

7. One can check that H i
comp(V \ ∂V ) ' H i(V, ∂V ) for all coefficients.

8. From the Poincaré-duality theorem, one obtains that the cap product
with the relative fundamental class [V ] ∈ Hn(V, ∂V ) is a natural (with
respect to orientation preserving maps) isomorphism

Hk(V, ∂V ) −→ Hn−k(V ).

9. More generally, assume that ∂V = A∪B is the union of two submanifolds
with boundary such that ∂A = ∂B = A ∩ B. By the existence of collar
neighbourhoods there are rel. open neighbourhoods U,W ⊂ ∂V of A,B
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which deformation retract on A,B and A∩B is a deformation retract of
U ∩W .

10. The following diagram commutes:

. . . Hk(V, ∂V ) //

[V ]∩'

��

Hk(V,A) ////

[V ]∩

��

Hk(∂V,A)
δ∗ //

exc.'
��

Hk+1(V, ∂V ) . . .

[V ]∩'

��

Hk(B, ∂B)

[B]∩'
��

. . . Hn−k(V ) // Hn−k(V,B)
∂∗ // Hn−k−1(B) // Hn−k−1(M) . . .

The top row is the exact sequence of the triple (V, ∂V,A). The bottom
corresponds to the pair (V,B). The second vertical arrow from the left
is an isomorphism by the five-Lemma.

• Theorem: Let M be a closed 2k-manifold, F a field, and V an F -oriented
2n+ 1-manifold with boundary such that ∂V = M . Then

dim(ker(i∗ : Hk(M) −→ Hk(V ))) = dim(im(i∗ : Hk(V ) −→ Hk(M))) =
dim(Hk(M))

2
.

In particular, Hk(M) has even dimension. Moreover, the cup product of classes
in im(i∗) vanishes provided that M is connected.
• Proof: the diagram

Hk(V )
i∗ // Hk(M)

δ∗ //

[M ]∩
��

Hk+1(V,M)

[V ]∩
��

Hk(M)
i∗ // Hk(V )

commutes. This follows from (32) (and interpreting i∗). The upper row is part
of the exact cohomology sequence of (V,M), the lower part is the homology
exact sequence of (V,M). Then ker(δ∗) = im(i∗) ' ker(i∗), the isomorphism
comes from Poincaré duality.

Note that i∗ is the dual of i∗, so these maps have the same rank (if A is a
matrix of rank r, then so is AT ). Therefore,

rank(i∗) = dim(ker(δ∗)) = dim(Hk)− dim(im(i∗))

= dim(Hk(M))− rank(i∗)

This implies the second equality above. The first also follows since ker(i∗) '
ker(δ∗). Now consider two classes i∗α, i∗β in the image if i∗ : Hk(V ) −→
Hk(M). Then

δ∗(i∗(α) ∪ i∗(β)) = δ∗i∗(α ∪ β) = 0.

Moreover, δ∗ : Hn(M) −→ Hn+1(V,M) is injective, because

Hn(M)
δ∗ //

[M ]∩
��

Hn+1(V,M)

[V ]∩
��

H0(M)
i∗ // H0(V )

commutes and the lower horizontal map is an isomorphism.
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• Corollary: If the closed, connected manifold M2k bounds a compact manifold,
then χ(M) is even (take coefficients in Z2 to compute the Euler characteristic).
• Example: RP2k,CP2k,HP2k do not bound compact manifolds.
• Definition: Let M be a closed oriented manifold of dimension n = 2k. Then

the cup-product induces a bilinear form

Hk(M ;Z)×Hk(M ;Z) −→ Z
([α], [β]) 7−→ 〈α ∪ β, [M ]〉.

It is symmetric when k is even, and antisymmetric when k is odd.
We now replace Z by coefficients in a field (e.g. Q or Z2). Then the above

bilinear form takes values in the field, and it is non-degenerate by Poincaré
duality since

– 〈α ∪ β, [M ]〉 = 〈α, [M ] ∩ β〉 by (34), and
– Hk(M ;F ) = HomF (Hk(M ;F ), F ) by the universal coefficient theorem

for cohomology.
This bilinear form is the intersection form.
• Consequence: Non-degenerate, anti symmetric bilinear form exist only on

even dimensional Q-vector spaces. Hence, the Euler characteristic of Z-orientable
closed manifolds in dimension 4l + 2 is even.
• Reminder: If the characteristic of a field is 6= 2, then the set of quadratic and

bilinear forms are isomorphic via polarization. Symmetric bilinear form over
R are classified up to isomorphism by the dimension of the underlying vector
spacet, the nullity (=dimension of kernel), and the signature σ

σ = (dim. of maximal subspace where the form is positive definite)

− (dim. of maximal subspace where the form is negative definite)

Recall that symmetric real matrices can be diagonalized (over R).
• Definition: Let M be a closed oriented 4k-dimensional oriented manifold. The

signature σ(M) of M is the signature of its intersection form.
• Remark: If one changes the orientation of M , i.e. replacing [M ] by −[M ], then

positive and negative definite subspaces of H2k(M ;Z) are interchanged and the
signature changes its sign: σ(M) = −σ(M). M is the same manifold but has
the opposite orientation. The signature is an invariant of oriented manifolds.
• Example: CP2 has two orientations and if ω ∈ H2(CP2;Z) is a generator, then
ω∪ω is a generator ofH4(CP2;Z). The question is which one. If 〈ω∪ω, [CP2]〉 =
1, then the signature is 1 and −1 otherwise. In the second case it is common

to denote the manfold by CP2.
The signature of S2 × S2 is 0. Unlike CP2, S2 × S2 admits an orientation

reversing homeomorphism.
• Theorem (Thom): If M4k = ∂V 4k+1 is connected, V is compact, and ori-

entable, then

σ(M) = 0.

• Proof: We use real coefficients. Then there are subspacesW+,W− ⊂ H2k(M ;R)
on which the intersection form is definite and W+ ⊕W− = H2k(M ;R). Let
r = dim(W+). If dim(H2n(M)) = 2n, then dim(W−) = 2n− r. By the Theo-
rem, there is a subspace L ⊂ H2n(M) of dimension n such that the restriction
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of the intersection form to U vanishes. Therefore,

dim(U ∩W+) = {0} ⇒ 2n ≤ dim(U +W−) ≤ n+ 2n− r ⇒ r ≤ n.

dim(U ∩W−) = {0} ⇒ 2n ≤ dim(U +W+) ≤ n+ r ⇒ n ≤ r.

Hence, r = n and σ(M) = 0.
• Examples: I assume that you know what the connected sum of two (oriented,

connected) manifolds of equal dimension is. (If not, think of a manifold version
of the one-point union).

– CP2#CP2 has signature 2, so it does not bound an oriented manifold.
Note χ(CP2#CP2) = 4.

– CP2#CP2
has signature 0 and Euler characteristic 4. It bounds a 5-

manifold: Take (CP2 \ Bε(x)) × [0, 1]. This shows that M#M always
bounds when M is oriented.

– M = CP2#CP2 bounds a non-orientable manifold. Let (M×[0, 1])#RP2×
S3 take an orientation reversing arc connecting the two boundary com-
ponents and drill out a tubular neighborhood of this arc. The result is
a manifold V which bounds M . This had nothing to do with the precise
form of CP2. or dimension 4.

• Application of non-compact Poincaré duality: Let U be an open set in
R3. Then H1(U);Z) has no torsion.
• Proof:

H1(U ;Z) ' H2
comp(U ;Z) Poincaré-duality

= lim−→
K

H2(U,U \K;Z) definition

= lim−→
K

H2(R3,R3 \K;Z) excision of R3 \ U

= lim−→
K

H1(R3 \K;Z) long exact sequence of (R3,R3 \K).

The direct limit of torsion free groups (like H1(·;Z)) is again torsionfree. We
will see later, that open sets on R4 can have torsion in H1.
• Poincaré-Alexander-Lefschetz duality generalizes Poincaré-duality. It is useful

in the study of complements of compact sets in manifolds.
• Reference:[Br], section VI.8. and Appendix D.
• Definition: Let L ⊂ K ⊂M be compact subsets of a manifold. Then

Ȟp(K,L;G) := lim−→{H
p(U, V ;G) | (K,L) ⊂ (U, V ), U, V open}.

The partial order is given by (U, V ) ≥ (U ′, V ′) ⇔ (U ′, V ′) ⊃ (U, V ), the maps
for the directed system are induced by inclusions.

This group is well defined, i.e. it does actually not depend on how K is
embedded in the manifold M . Moreover, if K,L are CW -complexes, then
Ȟ∗(K,L) coincides with singular cohomology, but it does not in general. (The
topologists sin-curve is connected, but not path connected, leading to H0 6' Ȟ0

or consider wild knots in R3)
• Duality map: This is again the composition of capping with a certain funda-

mental class, and various isomomorphisms (based on excision and subdivision)
– There is a cap product

Cn(V ) + Cn(U \ L)

Cn(U \K)
⊗ Cp(U, V ) −→ Cn−p(U \ L,U \K).
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given by (b+ c) ∩ f = c ∩ f .
– Since {V, U \ L} is an open cover of U ,

H∗

(
Cn(V ) + Cn(U \ L)

Cn(U \K)

)
' H∗(U,U \K) ' H∗(M,M \K).

(First, subdivision, then excision).
– By excision in homology Hn−p(U \ L,U \K) ' Hn−p(M \ L,M \K).
– Thus we get a (co-)homology cap product

Hn(M,M \K)⊗Hp(U, V ) −→ Hn−p(M \ L,M \K).

In order to compute it, one has to decompose the representative µ of a
class in Hn(M,M \K) into a sum

µ = b+ c+ d ∈ Cn(V ) + Cn(U \ L) + Cn(U \K).

This reflects the first isomorphism in the previous item.
– Assume that A ⊂ M is a compact set containing K. Then there is a

fundamental class µA ∈ Hn(M,M \A) given by the orientation of M and
we get a map

µA∩ : Hp(U, V ) −→ Hn−p(M \ L,M \K).

This is compatible with inclusions of (U, V ). Passing to the direct limit
we get a map

µA∩ : Ȟp(K,L) −→ Hn−p(M \ L,M \K).

• Theorem (Poincaré-Alexander-Lefschetz duality): Let M be an oriented
n-manifold, L ⊂ K ⊂M compact subsets. Then the cap product

µ∩ : Ȟp(K,L) −→ Hn−p(M \ L,M \K)

defined above is an isomorphism.
• Lemma (Reduction to L = ∅): The following diagram with exact rows

commutes up to sign depending only on p.

. . . Ȟp(K,L) //

��

Ȟp(K) //

��

Ȟp(L)
δ∗ //

��

Ȟp+1(K,L) . . .

��
. . . Hn−p(M \ L,M \K) // Hn−p(M \K) // Hn−p(M \ L)

∂∗// Hn−p−1(M \ L,M \K) . . .

Vertical maps are cap products with the orientation class. Therefore, if Poincaré-
Alexander-Lefschetz duality holds for L = ∅, then it holds for pairs by the five
lemma.
• Proof: The top row is exact, by the general fact that direct limits preserve

exactness. For commutativity, we consider the left most square.
Let µ be the fundamental class and decompose

µ = b+ c+ d ∈ Cn(V ) + Cn(U \ L) + Cn(M \K)

where µ ∈ Cn(M,M \A) represents the orientation class for a compact set such
that U ⊂ A. This decomposition allows, to compute the cap-product with the
fundamental class Ȟp+1(K,L) −→ Hn−p−1(M \L,M \K). To compute the cap
product with the fundamental class for (L, ∅), one uses the decomposition

µ = 0 + b+ (c+ d) ∈ Cn(∅) + Cn(V \ ∅) + Cn(M \ L).
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Let f ∈ Cp(V ) represent a class in Ȟp(L). In particular, δf = 0 (on V ). Then
(first right, then down)

[µ ∩ δf ] = [c ∩ δf ] ∈ Hn−p−1(M \ L,M \K).

But we also have

∂∗[µ ∩ f ] = (−1)p

 ∂µ︸︷︷︸
∈Cn−1(M\K)

∩f + µ ∩ δf


= [c ∩ δf ] ∈ Hn−p−1(M \ L,M \K).

• The following lemma corresponds to the Lemma on p. 49 used for induction in
the proof of Poincaré duality.
• Remark: Ȟ∗ is more complicated than H∗: For example, a map between

compact sets does not automatically yield a map between neighborhoods in
some manifold.
• Lemma: Let K,L be compact subsets in the n-manifold M and µ represents

a fundamental class in Hn(M,M \ (K ∪ L)). Then there is a diagram

Ȟp(K ∪ L) //

��

Ȟp(K)⊕ Ȟp(L) //

��

Ȟp(K ∩ L) . . .

��
Hn−p(M,M \ (K ∪ L)) // Hn−p(M,M \K)⊕Hn−p(M,M \ L) // Hn−p(M,M \ (K ∩ L))

. . . Ȟp(K ∩ L)
δ∗ //

��

Ȟp+1(K ∪ L)

��
. . . Hn−p(M,M \ (K ∩ L))

∂∗ // Hn−p−1(M,M \ (K ∪ L))

with exact rows, and which commutes up to sign depending on p only. The
vertical maps are cap products.
• Proof: The top sequence is the limit of Mayer-Vietoris sequences coming from

the short exact sequence of cochain complexes

0 −→ Hom(C∗(U)+C∗(V ), G) −→ Hom(C∗(U), G)⊕Hom(C∗(V ), G) −→ Hom(C∗(U∩V ), G) −→ 0

for open neighborhoods (U, V ) of (K,L). We consider the last square. Let
f ∈ Cp(U∩V ;G) represent a class in Ȟp(K∩L) and µ represent a fundamental
class in Hn(M,M \ (U ∪ V )).

The subdivision theorem appears in the maps in the diagram. We therefore
have to decompose a representative δ∗[f ]: f comes from f⊕0 ∈ Cn(U)⊕Cn(V ).
Then δ∗[f ] is represented by h ∈ Hom(C∗(U) +C∗(V )) with h(u+ v) = δf(u).
One extends h arbitrarily to C∗(M).

We decompose µ as follows.

µ = b+ c+ d+ e ∈ Cn(U ∩ V ) + Cn(U \ L) + Cn(V \K) + Cn(M \ (K ∪ L)).

Then the class [µ] ∩ δ∗[f ] is represented by

(b+ c+ d+ e) ∩ h ∼ (b+ c+ d) ∩ h mod Cn−p(M \ (K ∪ L))

= c ∩ h since δf = h vanishes on C∗(V ).
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The lower row also involves some decomposition of a chain with respect to an
open covering: M \ (K ∩ L) is viewed as union of M \K with M \ L and the
long exact sequence comes from

0 −→ C∗(M)

C∗(M \ (K ∪ L))
−→ C∗(M)

C∗(M \K)
⊕ C∗(M)

C∗(M \ L)
−→ C∗(M)

C∗(M \K) + C∗(M \ L)
−→ 0

To compute ∂∗(µ ∩ f) one has to decompose µ ∩ f according to the second
non-trivial map, and then applies ∂ to obtain a chain in the left most chain
group. The first step results in (µ ∩ f, 0). The second step yields

(−1)p(∂(µ ∩ f)) = (∂µ) ∩ f − µ ∩ δf
= −∂µ) ∩ f − c ∩ δ.

∂µ is a chain in the complement of U ∪W while f has support in U ∩V . Thus
the first summand does not contribute.
• Proof of Poincaré-Alexander-Lefschetz duality:

– By the first Lemma after the statement of the theorem (+ five Lemma)
we may assume L = ∅.

– The statement is true for a point in x ∈ Rn. Then Ȟ∗ vanishes in non-
zero degree, while in degree zero it is lim−→ε

H0(Bε(x)) = Z generated by

a constant cochain 1. Let an orientation class in Hn(Rn,Rn \ 0). Then
1 7−→ µ ∩ 1 = µ which generates Hn−0(Rn,Rn \ 0)

– Ȟ∗(U) = H∗(U) for all convex subsets (we did not check that Ȟ is
homotopy invariant).

– The case when K is a finite union of convex sets follows from the previous
Lemma.

– If M ⊃ K1 ⊃ K2 ⊂ . . . is a sequence of compact sets as above such
that ∩iKi = K. For each i one choose a descending sequence Ui,j such
that ∩Ui,j = Ki (for example a 1/j-neighborhood for some metric on
M , topological manifolds are metrizable [Qu]). Instead of Ui,j consider
Ui0,j = ∩i≤i0Ui,j for all j. This is a family of neighborhoods of K. Using
this and general properties of direct limits one shows that

lim−→
i

Ȟ∗(Ki) ' Ȟ∗(K).

The same inductive step which allowed passage do direct limits/compactly
supported cohomology now shows that the statement is true for arbitrary
compact sets K ⊂ Rn.

– The claim for general manifolds follows in the same fashion as for Poincaré-
duality.

• Application: The following map is an embedding

RP2 −→ R4

[x0 : x1 : x2] 7−→ (x2
0 − x2

1, x0x1, x1x2, x2x0).

The first homology of the complement of the image is

Ȟ2(RP2) = H2(RP2;Z) ' H2(R4,R4 \ RP2;Z) = H1(R4 \ RP2;Z).

For this note that the R4 is orientable, so we may use Z-coefficients. The last
equality follows from the exact sequence of the pair (R4,R4 \ RP2). By the
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universal coefficient theorem for cohomology

H2(RP2;Z) ' Hom(H2(RP2,Z);Z)⊕ Ext(H1(RP2;Z),Z) ' Ext(Z2,Z) ' Z2

This shows H1(R4 \ RP2;Z) ' Z2, in particular there is an open set in R4

whose first homology is torsion. This is of course independent of the form of
the embedding RP2 −→ R4.
• Corollary (Alexander duality): Let A be a compact set in Rn. Then

H̃q(Rn \ A;G) ' Ȟn−q−1(A;G).

• Proof: By Poincaré-Alexander-Lefschetz duality Ȟn−q−1(A;G) ' Hq+1(Rn \
A;G). By the reduced homology sequence of the pair (Rn,Rn \A) all inclusion

maps H̃q+1(Rn,Rn\A) = Hq+1(Rn,Rn\A) are isomorphisms because H̃i(Rn) =
0.
• Remark: If one considers only embeddings, where A has a basis of neighbor-

hoods Ui such that A ⊂ Ui is a strong deformation retract, then Ȟ∗ coincides
with H∗. This is the case for A a smooth manifold which is a smooth subman-
ifold in M (this is not true in the topological catagory).

The homology of Rn \ A is completely determined by the topology of A,
not how A is embedded (as locally flat submanifold). This is not true for the
fundamental groups, for example.
• Corollary (Generalized Jordan curve theorem): Assume that M is con-

nected, orientable, closed with H1(M ;Z). Let A ⊂M be a proper closed (hence
compact) subset. Then Ȟn−1(A;Z) is a free Abelian group whose rank is the
number of components of Mn \ A.
• Proof:

Ȟn−1(A) ' H1(M,M \ A) by duality

' H̃0(M \ A) long exact homology sequence, H̃0(M) = 0, H1(M) = 0

• Application: No non-orientable (smooth) (n− 1)-manifold A (smoothly) em-
beds into a compact, orientable (smooth) n-manifold with H1(M ;Z) = 0 since
Hn−1(A;Z) ' Z2 is not free Abelian.

Lecture on July, 1 – Intersections

• We want to (partially) interpret the cup product and Poincaré-duality for
smooth manifolds. For this we need a few fact (similar to the collar theorem).
After addition of adjectives (like locally flat) the statement can be transferred
to topological manifolds.
• Theorem (tubular neighborhood theorem): Let N ⊂ M be a smooth

submanifold of codimension k. Then there is an embedded submanifold with
boundary W of dimension n and a smooth map pr : W −→ N such that each
point x ∈ N there is an open neighborhood U ⊂ N and a diffeomorphism

ϕU : pr−1(U) −→ U ×Dk
such that ϕ(U) = U × {0} and

pr−1(U)
ϕ //

pr
##

U ×Dk

||
U
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commutes. W is a tubular neighborhood of N . It is a smooth disk bundle. If
pr′ : W ′ −→ N is another tubular neighborhood, then there is a diffeomorphism
ψ of M such that ψ(W ) = W ′ and pr′ ◦ ψ = pr.
• Remark: This is an example of a disc bundle, i.e. a map pr : W −→ N which

satisfies a local triviality axiom as above around every point in the base. A
disc bundle can be defined over an arbitrary space. Given two local trivializa-
tions over open sets U, V uch that U ∩ V one obtains a transition map into
Homeo(Dk, ∂Dk) (homeo’s of pairs, not relative to the boundary). A bundle
is orientable if one can choose a bundle atlas such that all transition functions
preserve an orientation of the fiber (Dk, ∂Dk). An orienation is the choice of
such an atlas. The fiber of this bundle is homeo. to (Dk, ∂Dk). If N and
the fiber a smooth, then the bundle is smooth if one can choose an bundle
atlas whose transition functions take values on Diffeo(Dk, ∂Dk) and depends
smoothly on the base point.
• Remark: Orientations matter. The tubular neighborhood is a disc bundle

over N whose fiber is the closed disc. The total space W of the bundle and
the base N are oriented, then so is the fiber using the local product structure
with the fiber first convention. This is consistent with the outward normal first
convention for the orientation of the boundary of an oriented manifold.
• Remark: A disc bundle W is homotopy equivalent to the base space N once a

section s : N −→ W is fixed. If N is a CW-complex, this can always be done.
• Definition: If N,N ′ are two smooth submanifolds of codimension k, k′ in M ,

then they are transverse if TpN + TpN
′ + TpM for all p ∈ (N ∩ N ′). Then

N ∩N ′ is a smooth submanifold of codimension k + k′.
• Definition: Let M be compact, oriented, connected and denote the inverse of
µ∩ with

PD : Hj(M,∂M) −→ Hn−j(M) or

PD : Hj(M) −→ Hn−j(M,∂M)

inverses of the Poincaré duality map, i.e.

[M ] ∩ PD(σ) = σ.

The intersection product

• : Hi(M)⊗Hj(M) −→ Hn−i−j(M)

• : Hi(M,∂M)⊗Hj(M) −→ Hn−i−j(M,∂M)

• : Hi(M,∂M)⊗Hj(M,∂M) −→ Hn−i−j(M,∂M)

is defined as
PD(a • b) = PD(a) ∪ PD(b).

• Properties: This is associative and a • b = (−1)(n−|a|)(n−|b|)b • a.
• Definition: Let pr : W −→ N be an oriented disk bundle (not necessarily a

tubular neighborhood) and s : N −→ W a section (exists always when the base
is a CW-complex), i.e. pr ◦ s = idN . We assume that N is oriented. The Thom
class of the disc bundle pr : W −→ N is

τ = PDW (s∗[N ]) ∈ Hk(W,∂W ).

This implies

(36) [W ] ∩ τ = i∗[N ].
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• This is less explicit than it looks. Another interpretation of the Thom-class is as
follows. It is the unique class τ which restricts to a generator of Hk(Dk, ∂Dk).
If the bundle is oriented, one can construct the Thom class in the same way
as the fundamental class of an oriented manifold. One has to show that the
result of this construction and the above definition coincide. Wince [W ]∩ is
an isomorphism, it suffices to verify that the result of the construction satisfies
[W ] ∩ τ = [N ]. If one views of [W ] as sum of cross products of generators
Hk(D

k, ∂Dk) and Hn(U, ∂U) where U is the domain of a trivialization of the
bundle, then [M ]∩ τ restrict to the generator of Hn(N,N \ x) representing the
local orientation of N .
• Defintion: Let f : N −→ M be a map from a compact oriented n-manifold
N into the compact oriented connected m-manifold M which maps ∂N to ∂M .
Define

f ! : Hn−p(N) −→ Hm−p(M) f! : Hn−p(N, ∂N) −→ Hm−p(M,∂M)

as f ! = PDM ◦ f∗ ◦ PD−1
N . The maps

f! : Hm−p(M) −→ Hn−p(N) f! : Hm−p(M,∂M) −→ Hn−p(N, ∂N)

are f! = PD−1
N ◦ f ∗ ◦ PDM .

• Theorem (Thom isomorphism): Let pr : W −→ N be a k-disc bundle over
the closed, connected oriented n-manifold N and a section i. Then the Thom
isomorphism is the composition

Hp(N) −→pr Hp(W ) −→∪τ Hp+k(W,∂W )

and it coincides with i!.
• Proof: Let β = i∗α

i!β = PDW i∗PD
−1
N (β)

= PDW i∗([N ] ∩ β)

= PDW i∗([N ] ∩ i∗α)

= PDW (i∗[N ] ∩ α)

= PDW (([W ] ∩ τ) ∩ α) by (36)

= PDW ([W ] ∩ (α ∪ τ)) by (34)

= α ∪ τ
= pr∗β ∪ τ.

This is an isomorphism since i! is a composition of isomorphisms.
• So far we discussed N as a submanifold inside a disc bundle. Now we turn

to iWN : Nn −→ Ww, where everything is smooth and oriented. Moreover we
assume that N ∩ ∂W = ∂N and N is transverse to ∂W . We write [N ]W =
iWN∗[N ] and PDW : Hn(W,∂W ) −→ Hw−n(W ).
• Definition: The Thom class of N ⊂ W is

τW = PDW [N ]W ∈ Hw−n(W )

• Remark: This is the image of the previous Thom class under

Hw−n(tube, ∂tube) ' Hw−n(W,W \ tube) −→ Hw−n(W ).

The first isomorphism is given by excision. Moreover,

[N ]W = [W ] ∩ τWN .
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• The connection with the intersection product on homology is as follows. Let
K,N properly embedded manifolds in W . Then

[K]W • [N ]W = [W ] ∩ (PDW [K]W ∪ PDW [N ]W )

= [W ] ∩ (τWK ∪ τWN ).
(37)

• To interpret this more geometrically, we need to know the following plausible
fact about tubular neighborhoods: Let K,N be two submanifolds meeting
transversely along K ∩N with the standard precautions a the boundary. Then
one can choose the tubular neighborhood of K in W so that the restriction of
νWK toK∩N is the tubular neighborhood ofK∩N inN . By the characterization
of the Thom class, this implies iW∗N τWK = τNN∩K .
• Remark: This picks out the orientation convention for transverse intersections

of oriented manifolds (which result in oriented manifolds).
• Theorem: Assume that K,N intersect transversely with the usual precautions

at the boundary and orientation/compactness assumptions

τWK∩N = τWK ∪ τWN .

this is equivalent to

[K ∩N ]W = [K]W • [N ]W .

• Proof:

[K ∩N ]W = iWK∩N∗[K ∩N ]

= iWN∗i
N
K∩N∗[K ∩N ]

= iWN∗([N ] ∩ τNK∩N)

= iWN∗([N ] ∩ iW∗N τWK )

= [N ]W ∩ τWK
= ([N ] ∩ τWN ) ∩ τWK
= [N ] ∩ (τWK ∪ τWN )

= [K]W • [N ]W

• Warning: Sign conventions differ from book to book. I have tried to stay
consistent in these notes, but one has to be aware of the fact that many other
notes/books use different sign conventions.
• Example: Products of spheres. The cohomology ring structure can be deter-

mined geometrically.
• Example: CP2,RP2.
• Warum nicht gleich so?: The above works only when the ambient space

is a manifold. More subtly, not every cohomology class has a Poincaré-dual
which is the (multiple of) the the image of the fundamental class of a closed
submanifold (under inclusion), c.f. [Th]
• Definition: Let Nn be a smooth submanifold of Ww (both oriented) with N

transverse to ∂W and ∂N ⊂ ∂W . The Euler class of the normal bundle of N
in W is

(38) χWN = iW∗N τWN ∈ Hw−n(N).

i.e. the restriction of the Thom class to N . In particular, if Hw−n(W ) = 0,
then χWN = 0.
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• Let T be a closed tubular neighborhood of N in W . Then

Hw−n(W,W \ T ) //

'exc.
��

Hw−n(W ) 3 χWN

��
τTN ∈ Hw−n(T, ∂T ) // Hw−n(T ) //

iW∗N'
��

Hw−n(∂T )

Hw−n(N)

pr∗
66

is commutative, the lower row is part of the long exact sequence of (T, ∂T ).
Now assume that there is section s : N −→ ∂T such that pr◦s = idN . Then the
inclusion ∂T −→ T is injective in cohomology, so the map Hw−n(T, ∂T ) −→
Hw−n(T ) is the zero map. Then χ vanishes.
• Theorem: If there is a non-zero section of the normal bundle of N in W (both

oriented), then χWN = 0.
• Fact: The tangent bundle of a smooth manifold N is isomorphic to the normal

bundle of the diagonal in N ×N : Fix a Riemannian metric on N and consider
the product metric on M . Tangent vectors to the diagonal have the form (v, v).
Normal vectors have the form (v,−v).

Let pr : W −→ ∆ be tubular neighborhood of the diagonal. The fibers of
pr have a tangent space at the intersection of the fiber with the diagonal, and
one can choose a diffeomorphism of a neighborhood of the zero section which
fixes the diagonal and whose differential is the projection of the tangent space
of the fiber at the zero section to T(p,p)∆

⊥.
When one proves the tubular neighborhood theorem, one shows among other

things the following: Fix a Riemannian metric on M . Consider νMN = (TN)⊥.
This is a family of subvectorspaces of TM perpendicular to TN . The tubular
neighborhood is diffeomorphic to

{v ∈ νMN | ‖v‖ ≤ 1}.

and zero-vectors correspond to points in N .
We obtain the following: The tubular neighborhood of N ⊂ N×N is isomor-

phic to the tubular neighborhood of N in νMN which is in turn isomorphic to a
tubular neighborhood of N ⊂ TN (note that the latter is a smooth 2n-manifold
(like N ×N).
• Goal: The current goal is to describe the Euler class explicitly. We did not

show, that the chohomology of a closed smooth manifold is finitely generated.
This can be proved in many ways, but the slickest way might be to use cellular
homology and the fact that closed manifolds have the homotopy type of finite
CW-complexes. For smooth manifolds this can be shown using Morse theory
[Mi]. The claim is still true for topological manifolds, but the proof is different.
• Theorem: Let N be a smooth, closed n-manifold (∂N = ∅). Fix a field F of

coefficients and fix a basis αi of H∗(N ;F ). The dual basis is denoted by α∗i ,
i.e.

(39) 〈α∗i ∪ αj, [N ]〉 = δij.
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Then the Thom class of the normal bundle of N in N ×N (or the Thom class
of the normal bundle in N ×N/tangent bundle TN −→ N) is

τN×NN = (−1)n
∑
i

(−1)|αi|α∗i × αi ∈ Hn(N ×N).

For the Euler class, we get

χ = d∗τ = (−1)n
∑
i

(−1)|αi|α∗i ∪ αi.

Moreover,

〈χ, [N ]〉 = (−1)nχ(N) = Eulercharacteristic of M.

• The factor (−1)n is not nice, and it does not appear in other sources. The
difference seems to come from the convention (23). However, it does not bother
too much, since χ(M) = 0 for odd n.
• Proof: By the Künneth formula, there are coefficients xij such that

τ =
∑
i,j

xijα
∗
i × αj ∈ Hn(N ×N ;F )

On N ×N we pick the product orientation [N ×N ] := [N ]× [N ]. On the one
hand

〈(αi × α∗j ) ∪ τ, [N ×N ]〉 = 〈αi × α∗j , [N ×N ] ∩ τ〉 by (34)

= 〈αi × α∗j , d∗[N ]〉 by (36)

= 〈d∗(αi × α∗j ), [N ]〉
= 〈αi ∪ α∗j , [N ]〉
= (−1)|αi|(n−|αj |)〈α∗j ∪ αi, [N ]〉
= (−1)|αi|(n−|αj |)δij.

On the other hand

〈(αi×α∗j ) ∪ τ, [N ×N ]〉 =

〈
(αi × α∗j ) ∪

(∑
k,l

xklα
∗
k × αl

)
, [N ]× [N ]

〉
=
∑
k,l

xkl(−1)(n−|αk|)(n−|αj |)
〈
(αi ∪ α∗k)×

(
α∗j ∪ αl

)
, [N ]× [N ]

〉
by (29)

=
∑
k,l

xkl(−1)(n−|αk|)(n−|αj |)+|αi|(n−|αk|)〈α∗k ∪ αi, [N ]〉〈α∗j ∪ αl, [N ]〉 by (23)

= xij(−1)(n−|αi|)(n−|αj |)+|αi|(n−|αi|)

Comparing coefficients, one gets xij = (−1)n+|αi|δij. The formula for χ and the
Euler characteristic follow immediately.
• Consider a map f : N −→ N (N closed, oriented) and its graph

Γ(f) = {(x, f(x)) |x ∈ N}
with the orientation [Γ] = ((1 × f) ◦ d)∗[N ]. As before, [N × N ] = [N ] × [N ].
The intersection number [Γ]·[∆] of the diagonal ∆ with Γ is ε∗([Γ]•[∆]). Recall
that ε : C0(N) −→ Z is the augmentation map ε(

∑
p cp · p) =

∑
p cp.

Note that Γ ∩∆ are the fixed points of f .
• Theorem: L(f) = [Γ] · [∆].
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• Proof: Let γ = PD([Γ]) in N × N , and τ the Poincare dual of the diagonal
(=Thom class of TN)

[Γ] · [∆] = ε∗([Γ] • [∆]) by (37)

= ε∗([N ×N ] ∩ (γ ∪ τ))

= 〈γ ∪ τ, [N ×N ]〉
= (−1)n〈τ, [N ×N ] ∩ γ〉 by (34)

= (−1)n〈τ, [Γ]〉
= (−1)n〈τ, (1× f)∗d∗[N ]〉
= (−1)n〈d∗(1× f)∗τ, [N ]〉

=
∑
i

(−1)|αi| 〈d∗(1× f)∗ (α∗i × αi) , [N ]〉 by previous Thm.

=
∑
i

(−1)|αi| 〈(α∗i ∪ f ∗αi) , [N ]〉 by Defn. of cup-prod.

=
∑
i

(−1)|αi|

〈
α∗i ∪

(∑
j

fijαj

)
, [N ]

〉
=
∑
i

(−1)|αi|fii by (39)

= L(f).

• This reproves the Lefschetz fixed point theorem for closed manifolds and allows
to interpret the Lefschetz number more geometrically. It is sad to have χ(M) =
(−1)nL(id), though.
• Fact: N smooth, closed, orientable, f : N −→ N smooth such that Dfp does

not have 1 as an eigenvalue for any fixed point p ∈ Fix(f) of f . Then

L(f) =
∑

p∈Fix(f)

sign(det(I −Dfp)).

• The hypothesis on the eigenvalues implies that Dfp(TpN) ∩ TpN = 0 for all
fixed points of f . Hence (1 × f)(N) = Γ is transverse to the diagonal. Γ ∩∆
is a collection of points and we have to determine the sign assigned to each
intersection point by an appropriate orientation convention. This is best done
in exmples in each dimension n.
• Proposition: If W n+k is an oriented k-disk bundle over N , then the self

intersection class [N ]W • [N ]W is the image of the Poincaré-dual of the Euler
class of the bundle under the inclusion iWN : N −→ W .
• Proof: By computation:

[N ]W • [N ]W = [W ] ∩ (τWN ∪ τWN )

= ([W ] ∩ τWN ) ∩ τWN
= iWN∗[N ] ∩ τWN
= iWN∗([N ] ∩ iW∗N τWN )

= iWN∗([N ] ∩ χWN ).

• Fact: Assume that k = n and N is connected. Then if [N ]W • [N ]W = 0, then
it is possible to find a section s : N −→ W such that s(N) ∩N = ∅
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• Summer reading: [Ro] is a classic in low dimensional geometric topology,
centering mostly around knots and links in S3. [Sa] is a great introduction to
the Casson invariant for homology 3-spheres. Several parts and some of the
appendices of Chapter 2 and 3 of [Ha], for example about H-spaces. Finally,
any book by Milnor, for example [Mi, Mi2] or the more basic [Mi3]
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