

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 February 2, 2017

FUNCTIONAL ANALYSIS II ASSIGNMENT 14

Problem 53. Let A be a symmetric operator on a separable Hilbert space \mathcal{H} such that its domain $\mathcal{D}(A)$ contains an orthonormal basis of \mathcal{H} consisting of eigenvectors of A. Prove:

- (a) A is essentially self-adjoint.
- (b) $\sigma(\overline{A})$ is the closure of the set of the eigenvalues of A.

Problem 54. (Dirichlet and Neumann Laplacian in one dimension)

On the Hilbert space $L^2([0,1])$ consider the densely defined operators A_D and A_N given by

$$\mathcal{D}(A_D) = \{ \psi \in C^2([0,1]) \, | \, \psi(0) = 0 = \psi(1) \}, \qquad A_D \psi = -\psi'', \\ \mathcal{D}(A_N) = \{ \psi \in C^2([0,1]) \, | \, \psi'(0) = 0 = \psi'(1) \}, \qquad A_N \psi = -\psi''.$$

- (a) Prove that A_D and A_N are symmetric.
- (b) Prove that A_D is essentially self-adjoint and find $\sigma(\overline{A_D})$.
- (c) Prove that A_N is essentially self-adjoint and find $\sigma(\overline{A_N})$.
- (d) Let $A_{D,N}$ be given by $\mathcal{D}(A_{D,N}) = \mathcal{D}(A_D) \cap \mathcal{D}(A_N)$ and $A_{D,N}\psi = -\psi''$. Prove that $A_{D,N}$ has at least two distinct self-adjoint extensions.

Problem 55. (Self-adjoint operators generate unitary groups)

Let \mathcal{H} be a Hilbert space. A family $\{U(t)\}_{t\in\mathbb{R}} \subset \mathcal{B}(\mathcal{H})$ is called a *(one-parameter) unitary* group of operators if U(t) is unitary for all $t \in \mathbb{R}$ and if U(t)U(s) = U(t+s) for all $s, t \in \mathbb{R}$. Moreover, $\{U(t)\}_{t\in\mathbb{R}}$ is said to be strongly continuous if the map $t \mapsto U(t)\varphi$ is continuous for all $\varphi \in \mathcal{H}$.

Let A be a densely defined self-adjoint operator on \mathcal{H} . Prove:

- (a) $U(t) := e^{-itA}$ defines a strongly continuous unitary group $\{U(t)\}_{t \in \mathbb{R}}$.
- (b) For all $t \in \mathbb{R}$, U(t) leaves $\mathcal{D}(A)$ invariant and fulfills U(t)A = AU(t) on $\mathcal{D}(A)$.
- (c) For all $\varphi \in \mathcal{D}(A)$, the map $t \mapsto U(t)\varphi$ is differentiable with $\frac{d}{dt}(U(t)\varphi) = -iAU(t)\varphi$.

Problem 56. (Unitary groups are generated by s.a. operators aka Stone's theorem)

Let $\{U(t)\}_{t\in\mathbb{R}}$ be a strongly continuous unitary group on a Hilbert space \mathcal{H} . The operator A given by

$$\mathcal{D}(A) = \{ \psi \in \mathcal{H} \mid \lim_{t \to 0} \frac{i}{t} (U(t)\psi - \psi) \text{ exists in } \mathcal{H} \text{ (in norm sense)} \}, \quad A\psi = \lim_{t \to 0} \frac{i}{t} (U(t)\psi - \psi)$$

is called the *generator* of the unitary group $\{U(t)\}_{t\in\mathbb{R}}$. This is justified by what shall be proved in this exercise: A is a densely defined self-adjoint operator and $U(t) = e^{-itA}$.

- (a) Given $\psi \in \mathcal{H}$, and $\tau > 0$, let $\psi_{\tau} := \int_{0}^{\tau} U(t)\psi dt$, where the integral is a Hilbertspace-valued Riemann integral. Prove that $\psi_{\tau} \in \mathcal{D}(A)$. Conclude from this that $\mathcal{D}(A)$ is dense in \mathcal{H} . [Hint: It is helpful to prove that for any $B \in \mathcal{B}(\mathcal{H})$, $B \int_{0}^{\tau} U(t)\psi dt = \int_{0}^{\tau} BU(t)\psi dt$.]
- (b) Prove that A is symmetric.
- (c) Prove that U(t) leaves $\mathcal{D}(A)$ invariant and that $AU(t)\psi = U(t)A\psi$ for all $\psi \in \mathcal{D}(A)$.
- (d) Prove that for all $\psi \in \mathcal{D}(A)$, we have

$$\frac{d}{dt}U(t)\psi = -iU(t)A\psi \quad \text{and} \quad U(t)\psi - \psi = \frac{1}{i}\int_0^t U(s)A\psi \, ds$$

where the integral is again a Riemann integral. Use this to prove that A is closed.

(e) Suppose that $\varphi \in N(A^* \pm i)$. Prove that for any $\psi \in D(A)$,

$$\frac{d}{dt}(\varphi, U(t)\psi) = \pm(\varphi, U(t)\psi).$$

Use this to prove that necessarily $\varphi = 0$. Conclude that A is self-adjoint.

(f) Prove that $U(t) = e^{-itA}$. [Hint: Set $w(t) := U(t)\varphi - e^{-itA}\varphi$ for $\varphi \in \mathcal{D}(A)$ and check that $\frac{d}{dt} ||w(t)||^2 = 0.$]