
MATHEMATISCHES INSTITUT

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
January 26, 2016

Functional Analysis II

Assignment 13

Problem 49. (Operators with non-empty resolvent set are closed)
Prove that a densely defined operator T on a Hilbert space \mathcal{H} satisfying $\sigma(T) \subsetneq \mathbb{C}$ is necessarily closed.

Problem 50. (A commutation relation only satisfied by unbounded operators)
Let P, Q be densely defined linear operators on a Hilbert space \mathcal{H} such that $\mathcal{D}(P Q) \cap$ $\mathcal{D}(Q P)$ is dense in \mathcal{H}, and

$$
[P, Q]:=P Q-Q P=i \mathbb{I}
$$

(a) Prove that if $P, Q \in \mathcal{B}(\mathcal{H})$, then $P^{n} Q-Q P^{n}=$ in P^{n-1} for all $n \in \mathbb{N}$.
(b) Prove that at least one of the operators P and Q has to be unbounded.

Problem 51. (Absolutely continuous functions and weak differentiability)
Let $[a, b] \subset \mathbb{R}$ be a compact interval. We call a function $f \in C([a, b])$ absolutely continuous if there exists $g \in L^{1}([a, b])$ such that f can be written as

$$
f(x)=f(a)+\int_{a}^{x} g(y) d y \quad \text { for all } x \in[a, b] .
$$

The vector space of all absolutely continuous functions on $[a, b]$ is denoted by $A C([a, b])$.
The Lebesgue differentiation theorem asserts that if $f \in A C([a, b])$, then f is differentiable almost everywhere with derivative $f^{\prime}(x)=g(x)$ for a.e. $x \in[a, b]$.
(a) Prove that for every $f, g \in A C([a, b])$ the usual integration by parts formula holds:

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

From the IBP formula the following extended notion of differentiability can be derived: A function $f \in L^{1}((a, b))$ is said to be weakly differentiable on (a, b) if there exists $g \in$ $L^{1}((a, b))$ such that for all $\phi \in C_{0}^{\infty}((a, b))$ it holds $\int_{a}^{b} f(x) \phi^{\prime}(x) d x=-\int_{a}^{b} g(x) \phi(x) d x$. In that case, g is called the weak (or distributional) derivative of f.
(b) Prove that $f \in A C([a, b])$ if and only if f is weakly differentiable on (a, b).
[Hint: You may use without proof the so-called Fundamental Lemma of the Calculus of Variations: If some function $h \in L^{1}((a, b))$ fulfills $\int_{a}^{b} h \phi=0$ for all $\phi \in C_{0}^{\infty}((a, b))$, then $h \equiv 0$.]

Problem 52. (Momentum operator on $[0,2 \pi]$)
Consider the operators A_{0} and A in $L^{2}([0,2 \pi])$ given by

$$
\begin{aligned}
A_{0} f & =-i f^{\prime}, & \mathcal{D}\left(A_{0}\right) & =\left\{f \in C^{1}([0,2 \pi]) \mid f(0)=f(2 \pi)=0\right\}, \\
A f & =-i f^{\prime}, & \mathcal{D}(A) & =\left\{f \in C^{1}([0,2 \pi]) \mid f(0)=f(2 \pi)\right\} .
\end{aligned}
$$

(a) Prove that A_{0} and A are symmetric, and that $A_{0} \subset A$.
(b) Prove:
(i) $D\left(A_{0}^{*}\right)=\left\{g \in A C([0,2 \pi]) \mid g^{\prime} \in L^{2}([0,2 \pi])\right\}$ and $A_{0}^{*} g=-i g^{\prime}$ for all $g \in D\left(A_{0}^{*}\right)$.
(ii) $D\left(\overline{A_{0}}\right)=\left\{g \in D\left(A_{0}^{*}\right) \mid g(0)=g(2 \pi)=0\right\}$ and $\overline{A_{0}} g=-i g^{\prime}$ for all $g \in D\left(\overline{A_{0}}\right)$.
(iii) $D\left(A^{*}\right)=\left\{g \in D\left(A_{0}^{*}\right) \mid g(0)=g(2 \pi)\right\}, A^{*} g=-i g^{\prime}$ for all $g \in D\left(A^{*}\right)$.
(c) Prove that A is essentially self-adjoint.
(d) Prove that A_{0} has no eigenvalues.
(e) Prove that A admits an orthonormal basis of eigenvectors.
(f) Let $\lambda \in \mathbb{S}^{1}:=\{z \in \mathbb{C}| | z \mid=1\}$. Prove that the operator A_{λ} given by

$$
D\left(A_{\lambda}\right)=\left\{g \in D\left(A_{0}^{*}\right) \mid g(0)=\lambda g(2 \pi)\right\} \quad \text { and } \quad A_{\lambda} g=-i g^{\prime}
$$

is a self-adjoint extension of A_{0}.
(g) Prove that the family of operators $\left(A_{\lambda}\right)_{\lambda \in \mathbb{S}^{1}}$ consists of all the self-adjoint extensions of A_{0}, i.e. if $B \supset A_{0}$ is a self-adjoint extension of A_{0}, then already $B=A_{\lambda}$ for some $\lambda \in \mathbb{S}^{1}$.
[Hint: Take a close look at the proof of Thm 3.14 from the lecture.]

