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Problem 49. (Operators with non-empty resolvent set are closed)

Prove that a densely defined operator T on a Hilbert space H satisfying σ(T ) ( C is
necessarily closed.

Problem 50. (A commutation relation only satisfied by unbounded operators)

Let P,Q be densely defined linear operators on a Hilbert space H such that D(PQ) ∩
D(QP ) is dense in H, and

[P,Q] := PQ−QP = iI .

(a) Prove that if P,Q ∈ B(H), then P nQ−QP n = inP n−1 for all n ∈ N.

(b) Prove that at least one of the operators P and Q has to be unbounded.

Problem 51. (Absolutely continuous functions and weak differentiability)

Let [a, b] ⊂ R be a compact interval. We call a function f ∈ C([a, b]) absolutely continuous
if there exists g ∈ L1([a, b]) such that f can be written as

f(x) = f(a) +

∫ x

a

g(y) dy for all x ∈ [a, b].

The vector space of all absolutely continuous functions on [a, b] is denoted byAC([a, b]).

The Lebesgue differentiation theorem asserts that if f ∈ AC([a, b]), then f is differentiable
almost everywhere with derivative f ′(x) = g(x) for a.e. x ∈ [a, b].

(a) Prove that for every f, g ∈ AC([a, b]) the usual integration by parts formula holds:∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x)g(x) dx.

From the IBP formula the following extended notion of differentiability can be derived:
A function f ∈ L1((a, b)) is said to be weakly differentiable on (a, b) if there exists g ∈
L1((a, b)) such that for all φ ∈ C∞0 ((a, b)) it holds

∫ b
a
f(x)φ′(x) dx = −

∫ b
a
g(x)φ(x) dx. In

that case, g is called the weak (or distributional) derivative of f .

(b) Prove that f ∈ AC([a, b]) if and only if f is weakly differentiable on (a, b).
[Hint: You may use without proof the so-called Fundamental Lemma of the Cal-

culus of Variations: If some function h ∈ L1((a, b)) fulfills
∫ b
a
hφ = 0 for all

φ ∈ C∞0 ((a, b)), then h ≡ 0.]

http://www.math.lmu.de/~sorensen/


Problem 52. (Momentum operator on [0, 2π])

Consider the operators A0 and A in L2([0, 2π]) given by

A0f = −if ′ , D(A0) = {f ∈ C1([0, 2π]) | f(0) = f(2π) = 0},
Af = −if ′ , D(A) = {f ∈ C1([0, 2π]) | f(0) = f(2π)}.

(a) Prove that A0 and A are symmetric, and that A0 ⊂ A.

(b) Prove:

(i) D(A∗0) = {g ∈ AC([0, 2π]) | g′ ∈ L2([0, 2π])} and A∗0g = −ig′ for all g ∈ D(A∗0).

(ii) D(A0) = {g ∈ D(A∗0) | g(0) = g(2π) = 0} and A0g = −ig′ for all g ∈ D(A0).

(iii) D(A∗) = {g ∈ D(A∗0) | g(0) = g(2π)}, A∗g = −ig′ for all g ∈ D(A∗).

(c) Prove that A is essentially self-adjoint.

(d) Prove that A0 has no eigenvalues.

(e) Prove that A admits an orthonormal basis of eigenvectors.

(f) Let λ ∈ S1 := {z ∈ C | |z| = 1}. Prove that the operator Aλ given by

D(Aλ) = {g ∈ D(A∗0) | g(0) = λg(2π)} and Aλg = −ig′

is a self-adjoint extension of A0.

(g) Prove that the family of operators (Aλ)λ∈S1 consists of all the self-adjoint extensions
of A0, i.e. if B ⊃ A0 is a self-adjoint extension of A0, then already B = Aλ for some
λ ∈ S1.
[Hint: Take a close look at the proof of Thm 3.14 from the lecture.]

This sheet is to be discussed in the exercise class on Thursday, February 2.
For more details please visit http://www.math.lmu.de/∼tkoenig/16FA2exercises.php

http://www.math.lmu.de/~tkoenig/16FA2exercises.php/

