

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 January 26, 2016

FUNCTIONAL ANALYSIS II ASSIGNMENT 13

Problem 49. (Operators with non-empty resolvent set are closed)

Prove that a densely defined operator T on a Hilbert space \mathcal{H} satisfying $\sigma(T) \subsetneq \mathbb{C}$ is necessarily closed.

Problem 50. (A commutation relation only satisfied by unbounded operators)

Let P, Q be densely defined linear operators on a Hilbert space \mathcal{H} such that $\mathcal{D}(PQ) \cap \mathcal{D}(QP)$ is dense in \mathcal{H} , and

$$[P,Q] := PQ - QP = i\mathbb{I}.$$

- (a) Prove that if $P, Q \in \mathcal{B}(\mathcal{H})$, then $P^nQ QP^n = inP^{n-1}$ for all $n \in \mathbb{N}$.
- (b) Prove that at least one of the operators P and Q has to be unbounded.

Problem 51. (Absolutely continuous functions and weak differentiability)

Let $[a, b] \subset \mathbb{R}$ be a compact interval. We call a function $f \in C([a, b])$ absolutely continuous if there exists $g \in L^1([a, b])$ such that f can be written as

$$f(x) = f(a) + \int_{a}^{x} g(y) dy \quad \text{for all } x \in [a, b].$$

The vector space of all absolutely continuous functions on [a, b] is denoted by AC([a, b]).

The Lebesgue differentiation theorem asserts that if $f \in AC([a,b])$, then f is differentiable almost everywhere with derivative f'(x) = g(x) for a.e. $x \in [a,b]$.

(a) Prove that for every $f, g \in AC([a, b])$ the usual integration by parts formula holds:

$$\int_{a}^{b} f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) dx.$$

From the IBP formula the following extended notion of differentiability can be derived: A function $f \in L^1((a,b))$ is said to be weakly differentiable on (a,b) if there exists $g \in L^1((a,b))$ such that for all $\phi \in C_0^\infty((a,b))$ it holds $\int_a^b f(x)\phi'(x)\,dx = -\int_a^b g(x)\phi(x)\,dx$. In that case, g is called the weak (or distributional) derivative of f.

(b) Prove that $f \in AC([a,b])$ if and only if f is weakly differentiable on (a,b). [Hint: You may use without proof the so-called Fundamental Lemma of the Calculus of Variations: If some function $h \in L^1((a,b))$ fulfills $\int_a^b h\phi = 0$ for all $\phi \in C_0^{\infty}((a,b))$, then $h \equiv 0$.]

Problem 52. (Momentum operator on $[0, 2\pi]$)

Consider the operators A_0 and A in $L^2([0,2\pi])$ given by

$$A_0 f = -if',$$
 $\mathcal{D}(A_0) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) = 0 \},$
 $A f = -if',$ $\mathcal{D}(A) = \{ f \in C^1([0, 2\pi]) \mid f(0) = f(2\pi) \}.$

- (a) Prove that A_0 and A are symmetric, and that $A_0 \subset A$.
- (b) Prove:
 - $(i) \ \ D(A_0^*) = \{g \in AC([0,2\pi]) \, | \, g' \in L^2([0,2\pi]) \} \ \text{and} \ A_0^*g = -ig' \ \text{for all} \ g \in D(A_0^*).$
 - (ii) $D(\overline{A_0}) = \{g \in D(A_0^*) \mid g(0) = g(2\pi) = 0\}$ and $\overline{A_0}g = -ig'$ for all $g \in D(\overline{A_0})$.
 - (iii) $D(A^*) = \{g \in D(A_0^*) \mid g(0) = g(2\pi)\}, A^*g = -ig' \text{ for all } g \in D(A^*).$
- (c) Prove that A is essentially self-adjoint.
- (d) Prove that A_0 has no eigenvalues.
- (e) Prove that A admits an orthonormal basis of eigenvectors.
- (f) Let $\lambda \in \mathbb{S}^1 := \{z \in \mathbb{C} \mid |z| = 1\}$. Prove that the operator A_{λ} given by

$$D(A_{\lambda}) = \{ g \in D(A_0^*) \mid g(0) = \lambda g(2\pi) \}$$
 and $A_{\lambda}g = -ig'$

is a self-adjoint extension of A_0 .

(g) Prove that the family of operators $(A_{\lambda})_{{\lambda} \in \mathbb{S}^1}$ consists of all the self-adjoint extensions of A_0 , i.e. if $B \supset A_0$ is a self-adjoint extension of A_0 , then already $B = A_{\lambda}$ for some ${\lambda} \in \mathbb{S}^1$.

[Hint: Take a close look at the proof of Thm 3.14 from the lecture.]