

MAXIMILIANS-UNIVERSITÄT MÜNCHEN MA

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 January 19, 2016

FUNCTIONAL ANALYSIS II Assignment 12

Problem 45. (Unbounded multiplication operators)

Let X be a metric space and μ a positive measure on the Borel σ -algebra of X such that $\mu(\Lambda) < \infty$ for any bounded Borel set $\Lambda \subset X$. For a (possibly unbounded) measurable function $f: X \to \mathbb{C}$ consider the linear map M_f in $L^2(X, \mu)$ defined by

$$\mathcal{D}(M_f) := \left\{ \varphi \in L^2(X, \mu) \, \middle| \, f\varphi \in L^2(X, \mu) \right\}$$
$$M_f \varphi := f\varphi.$$

Prove:

- (a) $\mathcal{D}(M_f)$ is dense in $L^2(X, \mu)$.
- (b) $(M_f)^* = M_{\overline{f}}.$
- (c) $\sigma(M_f) = \operatorname{essran} f = \{\lambda \in \mathbb{C} \mid \forall \varepsilon > 0 : \mu(\{x \in X \mid |\lambda f(x)| < \varepsilon\}) > 0\}$.
- (d) λ is an eigenvalue of M_f iff $\mu(f^{-1}(\{\lambda\})) > 0$.
- (e) Let $X = \mathbb{R}$, let μ be Lebesgue measure on \mathbb{R} , and let $f(x) := x \quad \forall x \in \mathbb{R}$. Then the position operator $q := M_f$ is self-adjoint, has no eigenvalues, and $\sigma(q) = \mathbb{R}$.

Problem 46. (Properties of the adjoint)

Let A and B be densely defined operators on a Hilbert space \mathcal{H} . Prove:

- (a) $(\alpha A)^* = \overline{\alpha} A^* \quad \forall \alpha \in \mathbb{C}.$
- (b) If $\mathcal{D}(A+B) = \mathcal{D}(A) \cap \mathcal{D}(B)$ and $\mathcal{D}(A^*+B^*) = \mathcal{D}(A^*) \cap \mathcal{D}(B^*)$ are dense in \mathcal{H} , then $(A+B)^* \supset A^*+B^*$.
- (c) If $\mathcal{D}(AB)$ is dense, then $(AB)^* \supset B^*A^*$.
- (d) If $A \subset B$, then $A^* \supset B^*$.
- (e) If A is self-adjoint, then A has no symmetric extensions.
- (f) $N(A^*) = R(A)^{\perp}$.

Problem 47. (Cyclic Vectors II)

Consider the self-adjoint operators A, B in $L^2([-1, 1])$ discussed in Problem 44, i.e. Af(x) = xf(x) and $Bf(x) = x^2f(x)$. Prove:

- (a) $L^2([-1,1]) \cong \mathcal{H}_1 \oplus \mathcal{H}_2$, where \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces on which B has a cyclic vector.
- (b) $f \in L^2([-1,1])$ is a cyclic vector for A iff $f(x) \neq 0$ almost everywhere. [*Hint: For* \Leftarrow , *it can be helpful to prove* $\{\phi f : \phi \in M_b([-1;1])\} \subset \overline{span\{A^n f, n \geq 0\}}.$]

Problem 48. (Von Neumann's Theorem)

- (a) Let A be a symmetric operator on a Hilbert space \mathcal{H} and assume there exists a map $C: \mathcal{H} \to \mathcal{H}$ with the following properties:
 - (i) C is anti-linear (i.e. $C(\alpha x + y) = \overline{\alpha}C(x) + C(y)$).
 - (ii) C is norm-preserving.
 - (*iii*) $C^2 = \mathbb{I}$.
 - $(iv) \mathcal{D}(A)$ is invariant under C.
 - (v) AC = CA on $\mathcal{D}(A)$.

[Remark: A map satisfying (i) - (iii) is called a conjugation.]

Prove that A has self-adjoint extensions.

(b) Consider the operator H in $L^2(\mathbb{R}^d)$ given by

$$\mathcal{D}(H) = C_0^{\infty}(\mathbb{R}^d)$$

($H\psi$)(x) = $-\Delta\psi(x) + V(x)\psi(x)$ for a.e. $x \in \mathbb{R}^d$,

where $\Delta = \sum_{j=1}^{d} \partial_j^2$ and $V \in L^2_{loc}(\mathbb{R}^d)$ is real-valued. Show that H is symmetric and has at least one self-adjoint extension.

This sheet is to be discussed in the exercise class on Thursday, January 26. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php