

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
January 12, 2016

Functional Analysis II

Assignment 11

Problem 41. (Operator convex functions)
Let \mathcal{H} be a Hilbert space. A continuous real-valued function f defined on an interval $I \subset \mathbb{R}$ is called operator convex (on I) if for any pair of self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ with $\sigma(A), \sigma(B) \subset I$ and any $\lambda \in[0,1]$ the inequality $f(\lambda A+(1-\lambda) B) \leqslant \lambda f(A)+(1-\lambda) f(B)$ holds in the operator sense. Prove:
(a) A continuous real-valued function f is operator convex iff $f\left(\frac{A+B}{2}\right) \leqslant \frac{1}{2}(f(A)+f(B))$ for any pair $A, B \in \mathcal{B}(\mathcal{H})$ of self-adjoint operators with spectrum in I.
(b) $f: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto t^{2}$ is operator convex on every interval.
(c) $f:[0, \infty) \rightarrow \mathbb{R}, t \mapsto t^{3}$ is not operator convex on $[0, \infty)$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}, t \mapsto|t|$ is not operator convex on any interval that contains a neighbourhood of zero.
(e) $f:(0, \infty) \rightarrow \mathbb{R}, t \mapsto t^{-1}$ is operator convex on $(0, \infty)$.

Problem 42. (A unitary group of operators)
Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove:
(a) The operator $U(t):=e^{i t A}$ constructed via the functional calculus is unitary for all $t \in \mathbb{R}$, and

$$
U(t)^{*}=U(-t), \quad U(t) U(s)=U(t+s) \quad \forall t, s \in \mathbb{R}
$$

(b) The operator-valued function $t \mapsto U(t)$ defined in (a) is a differentiable map between the normed spaces \mathbb{R} and $\mathcal{B}(\mathcal{H})$ with derivative $U^{\prime}(t)=i A U(t)$ for all $t \in \mathbb{R}$.
(c) For $\lambda \notin \sigma(A)$ we have $\left\|(A-\lambda \mathbb{I})^{-1}\right\|=\operatorname{dist}(\lambda, \sigma(A))^{-1}$.

Problem 43. ('Diagonalizing' an integral operator)
Let A be the integral operator on $L^{2}([0,1])$ given by

$$
A f(x)=\int_{0}^{1} \min (x, y) f(y) d y
$$

(a) Prove that A is bounded and self-adjoint.
(b) Find a measure space (M, μ), an isomorphism $U: L^{2}([0,1]) \rightarrow L^{2}(M, \mu)$, and a bounded measurable function $F: M \rightarrow \mathbb{R}$ such that $U A U^{*}: L^{2}(M, \mu) \rightarrow L^{2}(M, \mu)$ is the operator of multiplication by F.

Problem 44. (Cyclic vectors I)
(a) An $N \times N$ Hermitian matrix has a cyclic vector iff its eigenvalues are all distinct.
(b) Consider the self-adjoint operators A, B on $L^{2}([-1,1])$, where A is multiplication by $x \mapsto x$ and B is multiplication by $x \mapsto x^{2}$. Prove:
(i) $f:[-1,1] \rightarrow \mathbb{R}, x \mapsto 1$ is a cyclic vector of A.
(ii) The characteristic function $\chi_{[0,1]}$ is not a cyclic vector of A.
(iii) B does not have any cyclic vectors.

This sheet is to be discussed in the exercise class on Thursday, January 19. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php

