

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 December 22, 2016

Functional Analysis II Assignment 10

Problem 37. (Modulus, positive and negative part of an operator)

Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove:

- (a) The operator $|A| = \sqrt{A^*A}$ constructed with Hilbert space techniques (see Problem 18) coincides with |A| defined via the functional calculus.
- (b) $A \leq |A|$.
- (c) There exists a unique pair $A_+, A_- \in \mathcal{B}(\mathcal{H})$ of self-adjoint operators such that

 $A_+, A_- \geqslant \mathbb{O} \ , \quad A_+A_- = \mathbb{O} \ , \quad A = A_+ - A_- \, .$

Problem 38. (A class of operator monotone functions)

A continuous real-valued function f on an interval $I \subset \mathbb{R}$ is said to be *operator monotone* (on the interval I), if $A \leq B$ implies that $f(A) \leq f(B)$ for all self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ such that $\sigma(A) \subset I$ and $\sigma(B) \subset I$.

- (a) Prove that f_{α} given by $f_{\alpha}(t) := \frac{t}{1+\alpha t}$ is operator monotone on $[0, \infty \text{ if } \alpha \ge 0.$
- (b) Let $\alpha \in [0, 1]$, and $A, B \in \mathcal{B}(\mathcal{H})$ be such that $0 \leq A \leq B$. Prove that $0 \leq A^{\alpha} \leq B^{\alpha}$, i.e. that $x \mapsto x^{\alpha}$ is operator monotone on \mathbb{R}_+ . [Hint: You may use without proof that for all $x \geq 0, \alpha \in (0, 1)$ we have $x^{\alpha} = \frac{\sin(\alpha \pi)}{\pi} \int_0^{\infty} \frac{x}{x + \lambda} \frac{d\lambda}{\lambda^{1-\alpha}}$.]
- (c) Find a counterexample for (b) when $\alpha > 1$.

Problem 39. (Functional calculus on a multiplication operator)

Let $A: L^2([0,1]) \to L^2([0,1])$ be given by Af(x) := xf(x) for a.e. $x \in [0,1]$.

- (a) Prove that $A = A^*$, ||A|| = 1 and $\sigma(A) = [0, 1]$.
- (b) Give the explicit action of $f(A) \in \mathcal{B}(L^2([0,1]))$ for any bounded measurable function $f: [0,1] \to \mathbb{C}$.
- (c) For any $\psi \in L^2([0,1])$ express $(\psi, f(A)\psi)$ as an integral with respect to the measure $\Omega \mapsto (\psi, E_\Omega \psi)$, where *E* denotes the projection-valued measure given by *A*.

Problem 40. (Spectral projections)

Let \mathcal{H} be a Hilbert space, let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint, and let E denote the projectionvalued measure given by A. Prove:

- (a) For any Borel set $\Omega \subset \sigma(A)$, the subspace $R(E_{\Omega})$ is invariant under A.
- (b) If $\Omega \subset \sigma(A)$ is closed, then $\sigma(A|_{R(E_{\Omega})}) \subset \Omega$.

This sheet is to be discussed in the exercise class on Thursday, January 12. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php