

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
December 22, 2016

Functional Analysis II
 Assignment 10

Problem 37. (Modulus, positive and negative part of an operator)
Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove:
(a) The operator $|A|=\sqrt{A^{*} A}$ constructed with Hilbert space techniques (see Problem 18) coincides with $|A|$ defined via the functional calculus.
(b) $A \leqslant|A|$.
(c) There exists a unique pair $A_{+}, A_{-} \in \mathcal{B}(\mathcal{H})$ of self-adjoint operators such that

$$
A_{+}, A_{-} \geqslant \mathbb{O}, \quad A_{+} A_{-}=\mathbb{O}, \quad A=A_{+}-A_{-}
$$

Problem 38. (A class of operator monotone functions)
A continuous real-valued function f on an interval $I \subset \mathbb{R}$ is said to be operator monotone (on the interval I), if $A \leqslant B$ implies that $f(A) \leqslant f(B)$ for all self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ such that $\sigma(A) \subset I$ and $\sigma(B) \subset I$.
(a) Prove that f_{α} given by $f_{\alpha}(t):=\frac{t}{1+\alpha t}$ is operator monotone on $[0, \infty$ if $\alpha \geqslant 0$.
(b) Let $\alpha \in[0,1]$, and $A, B \in \mathcal{B}(\mathcal{H})$ be such that $0 \leqslant A \leqslant B$. Prove that $0 \leqslant A^{\alpha} \leqslant B^{\alpha}$, i.e. that $x \mapsto x^{\alpha}$ is operator monotone on \mathbb{R}_{+}. [Hint: You may use without proof that for all $x \geqslant 0, \alpha \in(0,1)$ we have $x^{\alpha}=\frac{\sin (\alpha \pi)}{\pi} \int_{0}^{\infty} \frac{x}{x+\lambda} \frac{d \lambda}{\lambda^{1-\alpha}}$.]
(c) Find a counterexample for (b) when $\alpha>1$.

Problem 39. (Functional calculus on a multiplication operator)
Let $A: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be given by $\operatorname{Af}(x):=x f(x)$ for a.e. $x \in[0,1]$.
(a) Prove that $A=A^{*},\|A\|=1$ and $\sigma(A)=[0,1]$.
(b) Give the explicit action of $f(A) \in \mathcal{B}\left(L^{2}([0,1])\right)$ for any bounded measurable function $f:[0,1] \rightarrow \mathbb{C}$.
(c) For any $\psi \in L^{2}([0,1])$ express $(\psi, f(A) \psi)$ as an integral with respect to the measure $\Omega \mapsto\left(\psi, E_{\Omega} \psi\right)$, where E denotes the projection-valued measure given by A.

Problem 40. (Spectral projections)
Let \mathcal{H} be a Hilbert space, let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint, and let E denote the projectionvalued measure given by A. Prove:
(a) For any Borel set $\Omega \subset \sigma(A)$, the subspace $R\left(E_{\Omega}\right)$ is invariant under A.
(b) If $\Omega \subset \sigma(A)$ is closed, then $\sigma\left(\left.A\right|_{R\left(E_{\Omega}\right)}\right) \subset \Omega$.

