

Prof. T. \varnothing. SøRENSEN PhD
T. König

Winter term 2016/17
December 15, 2016

Functional Analysis II
 Assignment 9

Problem 33. (Operator monotonicity of the inverse)
Let \mathcal{H} be a Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Assume that $\mathbb{O} \leqslant A \leqslant B$ and $\lambda>0$. Prove:
(a) $A+\lambda \mathbb{I}$ and $B+\lambda \mathbb{I}$ are invertible, and $(B+\lambda \mathbb{I})^{-1} \leqslant(A+\lambda \mathbb{I})^{-1}$ for all $\lambda>0$.
(b) If A is invertible then B is invertible too, and $B^{-1} \leqslant A^{-1}$.
[Remark: The result from (b) can be rephrased by saying that the function $t \rightarrow-t^{-1}$ is operator monotone on the interval $(0, \infty)$. More on this topic in Assignment 10.]

Problem 34. (Stone's formula)
Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove for $a, b \in \mathbb{R}, a<b$, that

$$
\frac{1}{\pi i} \int_{a}^{b}\left((A-\lambda-i \varepsilon)^{-1}-(A-\lambda+i \varepsilon)^{-1}\right) d \lambda \longrightarrow \chi_{[a, b]}(A)+\chi_{(a, b)}(A)
$$

strongly, as $\varepsilon \rightarrow 0^{+}$. Both sides are defined via the measurable functional calculus.

Problem 35. (Discrete Laplacian)
Let $-\Delta: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ be given by

$$
(-\Delta x)_{n}:=\sum_{\substack{m \in \mathbb{Z},|m-n|=1}}\left(x_{n}-x_{m}\right) \quad \forall n \in \mathbb{Z} .
$$

(a) Show that $-\Delta$ is bounded and self-adjoint.
(b) Show that $\mathbb{O} \leqslant-\Delta \leqslant 4 \mathbb{I}$
(c) Compute $\|-\Delta\|$.
(d) Determine $\sigma(-\Delta)$. [Hint: Construct appropriate Weyl sequences with the help of the sequences $\left(x_{n}=e^{i n \alpha}\right)_{n \in \mathbb{Z}}$, where $\alpha \in \mathbb{R}$.]
(e) Find a measure space (\mathcal{M}, μ), an isomorphism $U: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathcal{M}, \mu)$, and a function $F: \mathcal{M} \rightarrow \mathbb{R}$ such that $U(-\Delta) U^{-1}$ is the operator of multiplication by F.

Problem 36. (A 'spectral puzzle')
Let $A \in \mathcal{B}\left(L^{2}([0,1])\right)$ be such that $A \geqslant 0$ and

$$
A^{2016} e^{A} f(x)=e f(x)+e \int_{0}^{x} f(y) d y
$$

where $e=\exp (1)$. Find $\sigma(A)$.

