

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 December 15, 2016

FUNCTIONAL ANALYSIS II Assignment 9

Problem 33. (Operator monotonicity of the inverse)

Let \mathcal{H} be a Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Assume that $\mathbb{O} \leq A \leq B$ and $\lambda > 0$. Prove:

- (a) $A + \lambda \mathbb{I}$ and $B + \lambda \mathbb{I}$ are invertible, and $(B + \lambda \mathbb{I})^{-1} \leq (A + \lambda \mathbb{I})^{-1}$ for all $\lambda > 0$.
- (b) If A is invertible then B is invertible too, and $B^{-1} \leq A^{-1}$.

[Remark: The result from (b) can be rephrased by saying that the function $t \to -t^{-1}$ is operator monotone on the interval $(0, \infty)$. More on this topic in Assignment 10.]

Problem 34. (Stone's formula)

Let \mathcal{H} be a Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove for $a, b \in \mathbb{R}$, a < b, that

$$\frac{1}{\pi i} \int_{a}^{b} \left((A - \lambda - i\varepsilon)^{-1} - (A - \lambda + i\varepsilon)^{-1} \right) d\lambda \longrightarrow \chi_{[a,b]}(A) + \chi_{(a,b)}(A)$$

strongly, as $\varepsilon \to 0^+$. Both sides are defined via the measurable functional calculus.

Problem 35. (Discrete Laplacian)

Let $-\Delta: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ be given by

$$(-\Delta x)_n := \sum_{\substack{m \in \mathbb{Z}, \\ |m-n|=1}} (x_n - x_m) \quad \forall n \in \mathbb{Z}.$$

- (a) Show that $-\Delta$ is bounded and self-adjoint.
- (b) Show that $\mathbb{O} \leq -\Delta \leq 4\mathbb{I}$
- (c) Compute $\| -\Delta \|$.
- (d) Determine $\sigma(-\Delta)$. [Hint: Construct appropriate Weyl sequences with the help of the sequences $(x_n = e^{in\alpha})_{n \in \mathbb{Z}}$, where $\alpha \in \mathbb{R}$.]
- (e) Find a measure space (\mathcal{M}, μ) , an isomorphism $U : \ell^2(\mathbb{Z}) \to L^2(\mathcal{M}, \mu)$, and a function $F : \mathcal{M} \to \mathbb{R}$ such that $U(-\Delta)U^{-1}$ is the operator of multiplication by F.

Problem 36. (A 'spectral puzzle')

Let $A \in \mathcal{B}(L^2([0,1]))$ be such that $A \ge 0$ and

$$A^{2016}e^A f(x) = ef(x) + e \int_0^x f(y) \, dy \,,$$

where $e = \exp(1)$. Find $\sigma(A)$.

This sheet is to be discussed in the exercise class on Thursday, December 22. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php