

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 December 8, 2016

Functional Analysis II Assignment 8

Problem 29. (The \leq -relation for a self-adjoint operator)

Let \mathcal{H} be a Hilbert space and $A = A^* \in \mathcal{B}(\mathcal{H})$. Prove:

- (a) $A \leqslant ||A|| \mathbb{I}$.
- (b) If $A \ge \mathbb{O}$ then $\sigma(A) \subset [0, ||A||]$.
- (c) If $\sigma(A) \subset [0, R]$ for some R > 0, then $\mathbb{O} \leq A \leq R \mathbb{I}$.

Problem 30. (*The* \leq *-relation for two self-adjoint operators*)

Let \mathcal{H} be a Hilbert space and let $A, B \in \mathcal{B}(\mathcal{H})$ be self-adjoint. Prove:

- (a) If $A \leq B$ then $C^*AC \leq C^*BC$ for all $C \in \mathcal{B}(\mathcal{H})$.
- (b) If $\mathbb{O} \leq A \leq B$ then $||A|| \leq ||B||$.
- (c) If $A \ge \mathbb{O}$, then A is invertible iff $A \ge c \mathbb{I}$ for some c > 0.

Problem 31. (Commuting operators under measurable functional calculus)

Let \mathcal{H} be a Hilbert space, let $S, T \in \mathcal{B}(\mathcal{H})$ be self-adjoint, and assume that TS = ST. Prove for any bounded Borel function $f \in \mathcal{M}_b(\sigma(T))$ that f(T)S = Sf(T).

Problem 32. (Some properties of normal operators)

Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be normal. Prove:

- (a) $N(T) = N(T^*)$.
- (b) $\overline{R(T)} = \overline{R(T^*)}$, and if R(T) is closed then $R(T^*) = R(T)$.
- (c) If T has a bounded one-sided inverse, then T is invertible.

This sheet is to be discussed in the exercise class on Thursday, December 15. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php