

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
December 1, 2016

Functional Analysis II

Assignment 7

Problem 25. (Decomposition into sums of self-adjoint resp. unitary operators)
Let \mathcal{H} be a complex Hilbert space and let $A \in \mathcal{B}(\mathcal{H})$. Prove:
(a) There exist unique self-adjoint operators $R_{A}, I_{A} \in \mathcal{B}(\mathcal{H})$ such that $A=R_{A}+i I_{A}$.
(b) A is normal iff $\left[R_{A}, I_{A}\right]:=R_{A} I_{A}-I_{A} R_{A}=\mathbb{O}$.
(c) A is unitary iff A is normal and $R_{A}^{2}+I_{A}^{2}=\mathbb{I}$.
(d) If $T=T^{*}$ and $\|T\| \leqslant 1$, then $U:=T+i \sqrt{\mathbb{I}-T^{2}}$ is unitary and $T=\frac{1}{2}\left(U+U^{*}\right)$.
(e) There exist unitary operators U_{1}, \ldots, U_{4} and $a_{1}, \ldots, a_{4} \in \mathbb{C}$ such that

$$
A=a_{1} U_{1}+a_{2} U_{2}+a_{3} U_{3}+a_{4} U_{4},
$$

and $\left|a_{j}\right|=\|A\| / 2$ for all $j=1,2,3,4$.

Problem 26. (Weyl sequences II)
Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$. Prove:
(a) If $\lambda \in \sigma(T)$ then there exists a Weyl sequence for T at λ or for T^{*} at $\bar{\lambda}$.
(b) If T is normal, then $\lambda \in \sigma(T)$ iff T has a Weyl sequence at λ.
(c) If T is self-adjoint and λ is an isolated point in $\sigma(T)$ then λ is an eigenvalue of T.

Problem 27. (Min-max principle for compact operators)
Let A be a positive compact self-adjoint operator on a Hilbert space \mathcal{H}. For $n \in \mathbb{N}$, let λ_{n} denote its eigenvalues labeled such that they may be repeated due to multiplicity and

$$
0 \leqslant \cdots \leqslant \lambda_{2} \leqslant \lambda_{1}
$$

Prove that for each $n \in \mathbb{N}$,

$$
\lambda_{n}=\inf _{V \in \mathcal{H}}^{n-1}, \sup _{\substack{x \perp V \\\|x\|=1}}\langle x, A x\rangle
$$

where \mathcal{H}_{n-1} is the collection of all $(n-1)$-dimensional subspaces of \mathcal{H}.
If A has also negative eigenvalues, how can one obtain those via a similar variational formula?

Problem 28. (Volterra integral operator II)
Let $V: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be the Volterra integral operator introduced in Problem 20, i.e. $V f(x)=\int_{0}^{x} f(y) d y$.
(a) Show that if $f \in L^{2}([0,1])$ is an eigenfunction of the operator $V^{*} V$ with eigenvalue λ, then $\lambda>0, f$ is twice differentiable a.e., and $\lambda f^{\prime \prime}+f=0$ a.e. in $[0,1]$.
(b) Find explicitly the collections $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ of all eigenvalues and corresponding eigenfunctions of $V^{*} V$. Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is (up to normalization) an ONB in $L^{2}([0,1])$ without using the spectral theorem for compact operators.
[Hint: You may use without proof that $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ with $e_{k}(x)=e^{2 \pi i k x}$ forms an ONB of $L^{2}([0,1])$. Try to find a unitary map $L^{2} \rightarrow L^{2}$ which maps $\left\{e_{k}\right\}$ to $\left.\left\{f_{n}\right\}.\right]$
(c) Deduce from (b) that $\|V\|=\frac{2}{\pi}$.

