

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
November 24, 2016

Functional Analysis II

Assignment 6

Problem 21. (Hilbert-Schmidt operators)
Let $d \geqslant 1$ and $k \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$. For $f \in L^{2}\left(\mathbb{R}^{d}\right)$ let

$$
\begin{equation*}
T f(x):=\int_{\mathbb{R}^{d}} k(x, y) f(y) d y \quad \text { for a.e. } x \in \mathbb{R}^{d} . \tag{1}
\end{equation*}
$$

(a) Prove that this defines $T \in \mathcal{B}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ and find an upper bound for $\|T\|$.
(b) Prove that T is compact.
(c) Prove for any orthonormal basis $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ of $L^{2}\left(\mathbb{R}^{d}\right)$ that $\sum_{n=1}^{\infty}\left\|T \varphi_{n}\right\|_{2}^{2}=\|k\|_{2}^{2}$.
(d) Prove that $\operatorname{dim} N(T-I) \leqslant\|k\|_{2}^{2}$.
[Remark: Operators with the property that $\sum_{n=1}^{\infty}\left\|T \varphi_{n}\right\|_{2}^{2}<\infty$ for any orthonormal basis $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ of $L^{2}\left(\mathbb{R}^{d}\right)$ are called Hilbert-Schmidt operators. They form an important class of compact operators. It can be shown that every Hilbert-Schmidt operator on $L^{2}\left(\mathbb{R}^{d}\right)$ is in fact of the form (11) for some $k \in L^{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.]

Problem 22. (A non-compact integral operator)
Consider the so-called Abel integral operator $A: C([0,1]) \rightarrow C([0,1])$ given by

$$
A f(t)= \begin{cases}\int_{0}^{t} \frac{f(s)}{\sqrt{t^{2}-s^{2}}} d s & \text { for } t \in(0,1] \\ \frac{\pi}{2} f(0) & \text { for } t=0\end{cases}
$$

(a) Prove that A is well-defined and bounded.
(b) Prove that A is not compact. (Compare with Problem 3 on the warm-up sheet!) [Hint: For $\alpha>0$, consider the functions $f_{\alpha}(t)=t^{\alpha}$.]

Problem 23. (No triangle inequality for operators)
(a) Show that $|A+B| \leqslant|A|+|B|$ is not true for arbitrary compact operators A and B.
(b) Prove for compact operators A, B on a Hilbert space \mathcal{H} that $\frac{1}{2}|A+B|^{2} \leqslant|A|^{2}+|B|^{2}$.

Problem 24. (Perturbation of the spectrum by compact operators)
(a) Let X be a Banach space and let $S, T \in \mathcal{B}(X)$ be such that $T-S$ is compact. Prove that $\sigma(T) \backslash \sigma_{p}(T) \subset \sigma(S)$. [Hint: Fredholm Alternative.]
(b) Let $X=X_{1} \oplus X_{2}$ be a Banach space which is the direct sum of two closed subspaces X_{1} and X_{2}. For $i=1,2$, let operators $A_{i} \in \mathcal{B}\left(X_{i}\right)$ be given and define the direct sum operator $A=A_{1} \oplus A_{2}$ by $A\left(\left(x_{1}, x_{2}\right)\right):=\left(A_{1} x_{1}, A_{2} x_{2}\right)$.
Prove that $\sigma(A)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$.
(c) Let \mathcal{H} be a Hilbert space and let $U \in \mathcal{B}(\mathcal{H})$ be a unitary operator. Prove that

$$
\sigma(U) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\} .
$$

(d) The fact proved in (a) does not exclude that the two spectra may look considerably different. As an example, find a bounded operator A and a compact operator K on a Hilbert space \mathcal{H} such that

$$
\sigma(A) \subset\{\lambda \in \mathbb{C}:|\lambda|=1\}, \sigma(A+K)=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\} .
$$

[Hint: One way is to consider shift operators on $\ell^{2}(\mathbb{Z})$. The results from (b) and (c) can be helpful.]

