

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
November 18, 2016

Functional Analysis II

Assignment 5

Problem 17. (Spectral mapping theorem for polynomials)
Let X be a Banach space and $T \in \mathcal{B}(X)$. Prove for any polynomial p on \mathbb{C} of degree $n \geqslant 1$ that

$$
\sigma(p(T))=p(\sigma(T))
$$

Problem 18. (Square root of positive semidefinite operators - 'by hand')
Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be positive semidefinite. If T were compact then the Spectral Theorem for compact operators would allow to construct the square root of T in a straightforward way (see lecture). Even though we do not have the Spectral Theorem for self-adjoint operators at our disposal yet, we can still construct \sqrt{T} in this case from scratch, as will be done in this exercise. Prove:
(a) The power series $\sqrt{1-x}=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges absolutely for $|x| \leqslant 1$, where

$$
c_{n}=\left.\frac{1}{n!} \frac{d^{n}}{d x^{n}}\right|_{x=0} \sqrt{1-x} .
$$

(b) The series $S:=\sqrt{\|T\|} \sum_{n=0}^{\infty} c_{n}\left(I-\frac{1}{\|T\|} T\right)^{n}$ converges in $\mathcal{B}(\mathcal{H}), S \geqslant 0$, and $S^{2}=T$.
(c) The operator $S \in \mathcal{B}(\mathcal{H})$ with the properties S self-adjoint, $S \geqslant 0$ and $S^{2}=T$ is unique.

Problem 19. (Norm-preserving linear maps on a Hilbert space)
Let \mathcal{H} be a Hilbert space and $U \in \mathcal{B}(\mathcal{H})$. Recall that U is called an isometry if $\|U x\|=\|x\|$ for all $x \in \mathcal{H}$, and U is called unitary if U is a surjective isometry. Moreover, U is called a partial isometry if $\|U x\|=\|x\|$ for all $x \in N(U)^{\perp}$. Prove:
(a) U is unitary iff $U^{*} U=U U^{*}=I$.
(b) U is an isometry iff $U^{*} U=I$.
(c) If $U \neq 0$ is a partial isometry then $R(U)$ is closed and $\|U\|=1$.
(d) The adjoint of a partial isometry is again a partial isometry.
(e) U is a partial isometry iff $U^{*} U$ is an orthogonal projection.
(f) U is a partial isometry iff $U=U U^{*} U$.

Problem 20. (Volterra integral operator)
Let $V: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be given by

$$
(V f)(x):=\int_{0}^{x} f(y) d y
$$

Prove the following:
(a) V is a well-defined, bounded operator in $L^{2}([0,1])$.
(b) V is compact.
(c) $\sigma(V)=\sigma_{c}(V)=\{0\}$.
(d) $V+V^{*}$ is an orthogonal projection with $\operatorname{dim} R\left(V+V^{*}\right)=1$.

This sheet is to be discussed in the exercise class on Thursday, November 24. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php

