

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 November 18, 2016

FUNCTIONAL ANALYSIS II ASSIGNMENT 5

Problem 17. (Spectral mapping theorem for polynomials)

Let X be a Banach space and $T \in \mathcal{B}(X)$. Prove for any polynomial p on \mathbb{C} of degree $n \ge 1$ that

$$\sigma(p(T)) = p(\sigma(T)).$$

Problem 18. (Square root of positive semidefinite operators - 'by hand')

Let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be positive semidefinite. If T were compact then the Spectral Theorem for compact operators would allow to construct the square root of T in a straightforward way (see lecture). Even though we do not have the Spectral Theorem for self-adjoint operators at our disposal yet, we can still construct \sqrt{T} in this case from scratch, as will be done in this exercise. Prove:

(a) The power series $\sqrt{1-x} = \sum_{n=0}^{\infty} c_n x^n$ converges absolutely for $|x| \leq 1$, where

$$c_n = \left. \frac{1}{n!} \left. \frac{d^n}{dx^n} \right|_{x=0} \sqrt{1-x} \right.$$

- (b) The series $S := \sqrt{\|T\|} \sum_{n=0}^{\infty} c_n \left(I \frac{1}{\|T\|}T\right)^n$ converges in $\mathcal{B}(\mathcal{H}), S \ge 0$, and $S^2 = T$.
- (c) The operator $S \in \mathcal{B}(\mathcal{H})$ with the properties S self-adjoint, $S \ge 0$ and $S^2 = T$ is unique.

Problem 19. (Norm-preserving linear maps on a Hilbert space)

Let \mathcal{H} be a Hilbert space and $U \in \mathcal{B}(\mathcal{H})$. Recall that U is called an *isometry* if ||Ux|| = ||x|| for all $x \in \mathcal{H}$, and U is called *unitary* if U is a surjective isometry. Moreover, U is called a *partial isometry* if ||Ux|| = ||x|| for all $x \in N(U)^{\perp}$. Prove:

- (a) U is unitary iff $U^*U = UU^* = I$.
- (b) U is an isometry iff $U^*U = I$.
- (c) If $U \neq 0$ is a partial isometry then R(U) is closed and ||U|| = 1.
- (d) The adjoint of a partial isometry is again a partial isometry.
- (e) U is a partial isometry iff U^*U is an orthogonal projection.
- (f) U is a partial isometry iff $U = UU^*U$.

Problem 20. (Volterra integral operator)

Let $V: L^{2}([0,1]) \to L^{2}([0,1])$ be given by

$$(Vf)(x) := \int_0^x f(y) \, dy \, .$$

Prove the following:

- (a) V is a well-defined, bounded operator in $L^2([0,1])$.
- (b) V is compact.
- (c) $\sigma(V) = \sigma_c(V) = \{0\}.$
- (d) $V+V^*$ is an orthogonal projection with dim $R(V+V^*) = 1$.

This sheet is to be discussed in the exercise class on Thursday, November 24. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php