

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 November 10, 2016

FUNCTIONAL ANALYSIS II Assignment 4

Problem 13. (Spectrum of the product)

Let X be a Banach space and $S, T \in \mathcal{B}(X)$.

- (a) Prove that $\sigma(TS) \cup \{0\} = \sigma(ST) \cup \{0\}$. [*Hint: Given* $0 \neq \lambda \in \rho(ST)$, formally (!) expand $(TS - \lambda)^{-1}$ into a geometric series to express $(TS - \lambda)^{-1}$ in terms of λ , S, T and $(ST - \lambda)^{-1}$.]
- (b) Show that $\sigma(TS) = \sigma(ST)$ is not true in general.

Problem 14. (Spectrum of self-adjoint operators)

Let A be a bounded self-adjoint operator on a Hilbert space \mathcal{H} , i.e. $A^* = A$. Prove the following:

- (a) $\sigma(A) \subset [m, M] \subset \mathbb{R}$, where $m = \inf_{x \in \mathcal{H}, \|x\|=1} \langle x, Ax \rangle$, $M = \sup_{x \in \mathcal{H}, \|x\|=1} \langle x, Ax \rangle$.
- (b) $m, M \in \sigma(A)$.
- (c) $\sigma_r(A) = \emptyset$.
- (d) If $x, y \in \mathcal{H}$ and $\lambda \neq \mu$ are such that $Ax = \lambda x$ and $Ay = \mu y$ then $\langle x, y \rangle = 0$.
- (e) If $\sigma(A) = \{0\}$, then $A = \mathbb{O}$.

Problem 15. (Weyl sequences)

Let X be a Banach space and $T \in \mathcal{B}(X)$. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is called a Weyl sequence of T at $\lambda \in \mathbb{C}$, if $||x_n|| = 1$ for all $n \in \mathbb{N}$ and $||Tx_n - \lambda x_n|| \to 0$ as $n \to \infty$. Prove:

- (a) If T has a Weyl sequence at $\lambda \in \mathbb{C}$ then $\lambda \in \sigma(T)$.
- (b) If $\lambda \in \partial \sigma(T)$ then T has a Weyl sequence at $\lambda \in \mathbb{C}$.

Now let \mathcal{H} be a Hilbert space and let $T \in \mathcal{B}(\mathcal{H})$ be self-adjoint.

(c) Prove that T has a Weyl sequence at λ iff $\lambda \in \sigma(T)$.

Problem 16. (Multiplication operators on general measure spaces)

Let (X, μ) be a σ -finite measure space, let $1 \leq p < \infty$, and for a measurable function $h: X \to \mathbb{C}$ let

$$D_h := \{ f \in L^p(X, \mu) : hf \in L^p(X, \mu) \}.$$

Let $M_h: D_h \to L^p(X, \mu), f \mapsto hf.$

(a) Prove that $M_h \in \mathcal{B}(L^p(X,\mu))$ iff $h \in L^{\infty}(X,\mu)$.

Assuming $h \in L^{\infty}(X, \mu)$ prove the following:

- (b) $\sigma_p(M_h) = \{\lambda \in \mathbb{C} : \mu(\{x \in X : h(x) = \lambda\}) > 0\}.$
- (c) $\rho(M_h) = \{\lambda \in \mathbb{C} : \exists c > 0 \text{ such that } |\lambda h(x)| \ge c \ \mu\text{-a.e.} \}.$

This sheet is to be discussed in the exercise class on Thursday, November 17. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php