

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 November 4, 2016

FUNCTIONAL ANALYSIS II Assignment 3

Problem 9. (Shift operator)

Consider the left shift operator $T : \ell^1(\mathbb{N}) \to \ell^1(\mathbb{N}), (x_1, x_2, x_3, \dots) \mapsto (x_2, x_3, x_4, \dots).$

- (a) Prove that $T \in \mathcal{B}(\ell^1(\mathbb{N}))$ and determine ||T||.
- (b) Find the adjoint T' (domain and action).
- (c) Determine the spectra, point spectra and the residual spectra of T and T'.

Problem 10. (Existence and continuity of projections)

- (a) Show that for every linear subspace $W \subset V$ of a linear space V there exists a projection $P: V \to V$ with R(P) = W. [Hint: Zorn's Lemma.]
- (b) Find a normed space X and a projection $P: X \to X$ that is not continuous.
- (c) Suppose that X is a Banach space and that $P: X \to X$ is a projection such that R(P) and N(P) are closed. Prove that P is continuous.

Problem 11. (Complemented subspaces, codimension of a subspace)

Let X be a Banach space. A closed subspace $Y \subset X$ is called a *complemented subspace* of X (or complemented in X) if there exists a closed subspace $Z \subset X$ such that $X = Y \oplus Z$.

(a) Prove that every subspace $Y \subset X$ of finite dimension is complemented in X. [*Hint: Consider suitable functionals defined on* Y *and use the Hahn-Banach theorem* to extend them to elements of X'.]

Define the codimension of a subspace $Y \subset X$ to be the dimension of the quotient space X/Y (possibly ∞).

(b) Prove that every closed subspace $Y \subset X$ of finite codimension is complemented in X. If $Z \subset X$ is a closed subspace such that $X = Y \oplus Z$, prove that dim $Z = \dim X/Y$.

[Remark: This shows that the codimension of a closed subspace with finite-dimensional complement, as it was introduced in the lecture, is indeed well-defined.]

Problem 12. (Compact vs. closed range)

Let X and Y be Banach spaces and let $T : X \to Y$ be a compact operator. The goal of this exercise is to draw and illustrate two useful consequences of the fact that R(T) cannot be closed unless dim $R(T) < \infty$ (Problem 2.d).

- (a) Assume that dim $X = \infty$.
 - (i) Prove that there cannot exist c > 0 such that $||Tx||_Y \ge c||x||_X$ for all $x \in X$.
 - (*ii*) If T is injective, construct a non-injective compact operator arbitrarily close in norm to T.
- (b) Assume that $\dim Y = \infty$.
 - (i) Prove that T cannot be surjective.
 - (*ii*) Let $1 \leq p \leq \infty$ and $T : \ell^p(\mathbb{N}) \to \ell^p(\mathbb{N}), x \mapsto (x_1, \frac{x_2}{2}, \frac{x_3}{3}, \dots)$. Find $y \in \ell^p(\mathbb{N})$ such that Tx = y has no solution $x \in \ell^p(\mathbb{N})$.