

Prof. T. \varnothing. SøRENSEN PhD
T. König

Winter term 2016/17
November 4, 2016

Functional Analysis II

Assignment 3

Problem 9. (Shift operator)
Consider the left shift operator $T: \ell^{1}(\mathbb{N}) \rightarrow \ell^{1}(\mathbb{N}),\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(x_{2}, x_{3}, x_{4}, \ldots\right)$.
(a) Prove that $T \in \mathcal{B}\left(\ell^{1}(\mathbb{N})\right)$ and determine $\|T\|$.
(b) Find the adjoint T^{\prime} (domain and action).
(c) Determine the spectra, point spectra and the residual spectra of T and T^{\prime}.

Problem 10. (Existence and continuity of projections)
(a) Show that for every linear subspace $W \subset V$ of a linear space V there exists a projection $P: V \rightarrow V$ with $R(P)=W$. [Hint: Zorn's Lemma.]
(b) Find a normed space X and a projection $P: X \rightarrow X$ that is not continuous.
(c) Suppose that X is a Banach space and that $P: X \rightarrow X$ is a projection such that $R(P)$ and $N(P)$ are closed. Prove that P is continuous.

Problem 11. (Complemented subspaces, codimension of a subspace)
Let X be a Banach space. A closed subspace $Y \subset X$ is called a complemented subspace of X (or complemented in X) if there exists a closed subspace $Z \subset X$ such that $X=$ $Y \oplus Z$.
(a) Prove that every subspace $Y \subset X$ of finite dimension is complemented in X.
[Hint: Consider suitable functionals defined on Y and use the Hahn-Banach theorem to extend them to elements of X^{\prime}.]

Define the codimension of a subspace $Y \subset X$ to be the dimension of the quotient space X / Y (possibly ∞).
(b) Prove that every closed subspace $Y \subset X$ of finite codimension is complemented in X.

If $Z \subset X$ is a closed subspace such that $X=Y \oplus Z$, prove that $\operatorname{dim} Z=\operatorname{dim} X / Y$.
[Remark: This shows that the codimension of a closed subspace with finite-dimensional complement, as it was introduced in the lecture, is indeed well-defined.]

Problem 12. (Compact vs. closed range)
Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a compact operator. The goal of this exercise is to draw and illustrate two useful consequences of the fact that $R(T)$ cannot be closed unless $\operatorname{dim} R(T)<\infty$ (Problem 2.d).
(a) Assume that $\operatorname{dim} X=\infty$.
(i) Prove that there cannot exist $c>0$ such that $\|T x\|_{Y} \geq c\|x\|_{X}$ for all $x \in X$.
(ii) If T is injective, construct a non-injective compact operator arbitrarily close in norm to T.
(b) Assume that $\operatorname{dim} Y=\infty$.
(i) Prove that T cannot be surjective.
(ii) Let $1 \leq p \leq \infty$ and $T: \ell^{p}(\mathbb{N}) \rightarrow \ell^{p}(\mathbb{N}), x \mapsto\left(x_{1}, \frac{x_{2}}{2}, \frac{x_{3}}{3}, \ldots\right)$. Find $y \in \ell^{p}(\mathbb{N})$ such that $T x=y$ has no solution $x \in \ell^{p}(\mathbb{N})$.

