

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 October 27, 2016

FUNCTIONAL ANALYSIS II Assignment 2

Problem 5. (Orthogonal projections and their spectrum)

Let V be a vector space and let P be a projection on V, that is, a linear map $P: V \to V$ such that $P^2 = P$. Prove:

- (a) R(P) = N(I-P).
- (b) $V = R(P) \oplus N(P)$, where \oplus denotes the direct sum.

Let \mathcal{H} be a Hilbert space. A projection $P : \mathcal{H} \to \mathcal{H}$ is called *orthogonal* if $\mathbb{R}(P) \perp \mathbb{N}(P)$.

- (c) Let $P : \mathcal{H} \to \mathcal{H}$ be a projection. Prove that P is orthogonal iff $P \in \mathcal{B}(\mathcal{H})$ and $P^* = P$.
- (d) Let A be a linear subspace of \mathcal{H} . Show that there exists a unique orthogonal projection $P_A : \mathcal{H} \to \mathcal{H}$ with $R(P_A) = \overline{A}$. [*Hint: Projection Theorem.*]

Let $P : \mathcal{H} \to \mathcal{H}$ be a non-trivial orthogonal projection (i.e. $R(P) \neq \mathcal{H}, N(P) \neq \mathcal{H}$).

(e) Prove that $\sigma_p(P) = \sigma(P) = \{0, 1\}$. [*Hint: Find an explicit expression for* $(P - \lambda I)^{-1}$ whenever $\lambda \in \mathbb{C} \setminus \{0, 1\}$.]

Problem 6. (Multiplication operators acting on a sequence space)

For $w \in \ell^{\infty}(\mathbb{N})$ let $T_w : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the componentwise multiplication by $w = (w_1, w_2, \ldots)$, i.e.

$$T_w x := (w_1 x_1, w_2 x_2, \dots)$$

- (a) Prove that T_w is bounded and calculate its norm.
- (b) Find the explicit action of the adjoint T_w^* .
- (c) Characterize the sequences $w \in \ell^{\infty}(\mathbb{N})$ for which
 - (i) $T_w^*T_w = T_wT_w^*$ (such operators are called *normal*).
 - (*ii*) $T_w = T_w^*$.
 - (*iii*) T_w is compact.
- (d) Determine $\sigma_p(T_w)$ and prove that $\overline{\sigma_p(T_w)} = \sigma(T_w)$.

Problem 7. (Spectrum of the inverse operator)

Let X be a Banach space and let $T \in \mathcal{B}(X)$ be bijective. Prove:

- (a) $\sigma(T^{-1}) = \frac{1}{\sigma(T)} := \{\lambda^{-1} \in \mathbb{C} \mid \lambda \in \sigma(T)\}.$
- (b) If $Tx = \lambda x$ for some $\lambda \neq 0$ and $x \in X$, then $T^{-1}x = \lambda^{-1}x$.

Problem 8. (Resolvent formulas, power series expansions of the resolvent map)

Let X be a Banach space, let $T \in \mathcal{B}(X)$, let $\rho(T) \subset \mathbb{C}$ be the resolvent set of T and for $\lambda \in \rho(T)$ let $R_{\lambda}(T) = (T - \lambda I)^{-1}$ be the resolvent of T at λ .

- (a) Prove the following two useful identities, also known under the names of *first* resp. *second resolvent formula*:
 - (i) $R_{\lambda}(T) R_{\mu}(T) = (\lambda \mu) R_{\lambda}(T) R_{\mu}(T)$ for all $\lambda, \mu \in \rho(T)$.
 - (*ii*) $R_{\lambda}(T) R_{\lambda}(S) = R_{\lambda}(T) (S T) R_{\lambda}(S)$ for all $S \in \mathcal{B}(X)$ and $\lambda \in \rho(T) \cap \rho(S)$.
- (b) Using the Neumann series known from the lecture, prove the following power series expansions for the resolvent map $\rho(T) \to \mathcal{B}(X), \lambda \mapsto R_{\lambda}(T)$:
 - (i) If $\lambda \in \mathbb{C}$ is such that $|\lambda \lambda_0| < ||R_{\lambda_0}(T)||^{-1}$ for some $\lambda_0 \in \rho(T)$, then $\lambda \in \rho(T)$ and

$$R_{\lambda}(T) = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R_{\lambda_0}(T)^{n+1}.$$

(*ii*)
$$R_{\lambda}(T) = -\sum_{n=0}^{\infty} \lambda^{-1-n} T^n$$
 for $|\lambda| > ||T||$.

- (c) Use the previous results to prove the following facts about $R_{\lambda}(T)$:
 - (i) $||R_{\lambda}(T)|| \ge (\operatorname{dist}(\lambda, \sigma(T)))^{-1}$ for all $\lambda \in \rho(T)$.
 - (*ii*) The resolvent map $\lambda \mapsto R_{\lambda}(T)$ is continuous.
 - (*iii*) The resolvent map $\lambda \mapsto R_{\lambda}(T)$ has a complex derivative, in the sense that

$$\frac{d}{d\lambda}R_{\lambda}(T) := \lim_{h \to 0, h \in \mathbb{C}} \frac{1}{h} \left(R_{\lambda+h}(T) - R_{\lambda}(T) \right)$$

exists in $\mathcal{B}(X)$. In fact, $\frac{d}{d\lambda}R_{\lambda}(T) = R_{\lambda}(T)^2$.

This sheet is to be discussed in the exercise class on Thursday, November 3. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php