

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
October 27, 2016

Functional Analysis II

Assignment 2

Problem 5. (Orthogonal projections and their spectrum)
Let V be a vector space and let P be a projection on V, that is, a linear map $P: V \rightarrow V$ such that $P^{2}=P$. Prove:
(a) $R(P)=N(I-P)$.
(b) $V=R(P) \oplus N(P)$, where \oplus denotes the direct sum.

Let \mathcal{H} be a Hilbert space. A projection $P: \mathcal{H} \rightarrow \mathcal{H}$ is called orthogonal if $\mathrm{R}(P) \perp$ $\mathrm{N}(P)$.
(c) Let $P: \mathcal{H} \rightarrow \mathcal{H}$ be a projection. Prove that P is orthogonal iff $P \in \mathcal{B}(\mathcal{H})$ and $P^{*}=P$.
(d) Let A be a linear subspace of \mathcal{H}. Show that there exists a unique orthogonal projection $P_{A}: \mathcal{H} \rightarrow \mathcal{H}$ with $R\left(P_{A}\right)=\bar{A}$. [Hint: Projection Theorem.]
Let $P: \mathcal{H} \rightarrow \mathcal{H}$ be a non-trivial orthogonal projection (i.e. $R(P) \neq \mathcal{H}, N(P) \neq \mathcal{H})$.
(e) Prove that $\sigma_{p}(P)=\sigma(P)=\{0,1\}$.
[Hint: Find an explicit expression for $(P-\lambda I)^{-1}$ whenever $\lambda \in \mathbb{C} \backslash\{0,1\}$.]

Problem 6. (Multiplication operators acting on a sequence space)
For $w \in \ell^{\infty}(\mathbb{N})$ let $T_{w}: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be the componentwise multiplication by $w=$ $\left(w_{1}, w_{2}, \ldots\right)$, i.e.

$$
T_{w} x:=\left(w_{1} x_{1}, w_{2} x_{2}, \ldots\right)
$$

(a) Prove that T_{w} is bounded and calculate its norm.
(b) Find the explicit action of the adjoint T_{w}^{*}.
(c) Characterize the sequences $w \in \ell^{\infty}(\mathbb{N})$ for which
(i) $T_{w}^{*} T_{w}=T_{w} T_{w}^{*}$ (such operators are called normal).
(ii) $T_{w}=T_{w}^{*}$.
(iii) T_{w} is compact.
(d) Determine $\sigma_{p}\left(T_{w}\right)$ and prove that $\overline{\sigma_{p}\left(T_{w}\right)}=\sigma\left(T_{w}\right)$.

Problem 7. (Spectrum of the inverse operator)
Let X be a Banach space and let $T \in \mathcal{B}(X)$ be bijective. Prove:
(a) $\sigma\left(T^{-1}\right)=\frac{1}{\sigma(T)}:=\left\{\lambda^{-1} \in \mathbb{C} \mid \lambda \in \sigma(T)\right\}$.
(b) If $T x=\lambda x$ for some $\lambda \neq 0$ and $x \in X$, then $T^{-1} x=\lambda^{-1} x$.

Problem 8. (Resolvent formulas, power series expansions of the resolvent map)
Let X be a Banach space, let $T \in \mathcal{B}(X)$, let $\rho(T) \subset \mathbb{C}$ be the resolvent set of T and for $\lambda \in \rho(T)$ let $R_{\lambda}(T)=(T-\lambda I)^{-1}$ be the resolvent of T at λ.
(a) Prove the following two useful identities, also known under the names of first resp. second resolvent formula:
(i) $R_{\lambda}(T)-R_{\mu}(T)=(\lambda-\mu) R_{\lambda}(T) R_{\mu}(T)$ for all $\lambda, \mu \in \rho(T)$.
(ii) $R_{\lambda}(T)-R_{\lambda}(S)=R_{\lambda}(T)(S-T) R_{\lambda}(S)$ for all $S \in \mathcal{B}(X)$ and $\lambda \in \rho(T) \cap \rho(S)$.
(b) Using the Neumann series known from the lecture, prove the following power series expansions for the resolvent map $\rho(T) \rightarrow \mathcal{B}(X), \lambda \mapsto R_{\lambda}(T)$:
(i) If $\lambda \in \mathbb{C}$ is such that $\left|\lambda-\lambda_{0}\right|<\left\|R_{\lambda_{0}}(T)\right\|^{-1}$ for some $\lambda_{0} \in \rho(T)$, then $\lambda \in \rho(T)$ and

$$
R_{\lambda}(T)=\sum_{n=0}^{\infty}\left(\lambda-\lambda_{0}\right)^{n} R_{\lambda_{0}}(T)^{n+1}
$$

(ii) $R_{\lambda}(T)=-\sum_{n=0}^{\infty} \lambda^{-1-n} T^{n}$ for $|\lambda|>\|T\|$.
(c) Use the previous results to prove the following facts about $R_{\lambda}(T)$:
(i) $\left\|R_{\lambda}(T)\right\| \geqslant(\operatorname{dist}(\lambda, \sigma(T)))^{-1}$ for all $\lambda \in \rho(T)$.
(ii) The resolvent map $\lambda \mapsto R_{\lambda}(T)$ is continuous.
(iii) The resolvent map $\lambda \mapsto R_{\lambda}(T)$ has a complex derivative, in the sense that

$$
\frac{d}{d \lambda} R_{\lambda}(T):=\lim _{h \rightarrow 0, h \in \mathbb{C}} \frac{1}{h}\left(R_{\lambda+h}(T)-R_{\lambda}(T)\right)
$$

exists in $\mathcal{B}(X)$. In fact, $\frac{d}{d \lambda} R_{\lambda}(T)=R_{\lambda}(T)^{2}$.

This sheet is to be discussed in the exercise class on Thursday, November 3. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php

