

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 October 21, 2016

Functional Analysis II Assignment 1

Problem 1. (Examples of compact and non-compact operators)

Let X and Y be normed spaces, and let C([0,1]) be equipped with $\|\cdot\|_{\infty}$. Decide which of the following operators are compact:

- (a) $T: C([0,1]) \to C([0,1]), Tf(x) = f(0) + xf(1).$
- (b) id : $X \to X, x \mapsto x$.
- (c) $F \in \mathcal{B}(X, Y)$ with dim Ran $(F) < \infty$ (such F are called *finite-rank* operators).

Problem 2. (Some properties of compact operators)

Let X, Y and Z be Banach spaces. Prove the following statements:

- (a) $\mathcal{K}(X,Y)$ is a closed subspace of $\mathcal{B}(X,Y)$.
- (b) For $A \in \mathcal{B}(X, Y)$ and $B \in \mathcal{B}(Y, Z)$, we have $BA \in \mathcal{K}(X, Z)$ if A or B is compact.
- (c) If dim $X = \infty$ and $T \in \mathcal{K}(X)$, then $0 \in \sigma(T)$.
- (d) If $T \in \mathcal{K}(X, Y)$, then $\operatorname{Ran}(T)$ is closed if and only if T is a finite-rank operator. [*Hint: For* ' \Rightarrow ', use the open mapping theorem and the fact that the unit ball is compact in finite dimensions only.]

Problem 3. (Approximating compact operators by finite-rank operators)

Let \mathcal{H} be a separable Hilbert space, let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} , and let P_N be the orthogonal projection onto the span of $\{\varphi_1, \ldots, \varphi_N\}$. Prove for $T \in \mathcal{K}(\mathcal{H})$ that

$$T \circ P_N \xrightarrow{|||\cdot|||} T$$
 in operator norm as $N \to \infty$.

Problem 4. (Multiplication operators)

For $1\leqslant p<\infty$ and $h\in L^\infty([0,1])$ let the operator of multiplication by h be denoted by

 $M_{p,h}: L^p([0,1]) \to L^p([0,1]), \quad M_{p,h}f(x) := h(x)f(x).$

- (a) Find the adjoint $M'_{p,h}$ of $M_{p,h}$ as an operator on $L^q([0,1])$, where 1/p + 1/q = 1.
- (b) Prove that $M_{p,h}$ is compact if and only if h = 0. [*Hint: Find a closed subspace* $V \subset L^p([0,1])$ such that $M_{p,h}|_V : V \to V$ is surjective.]

This sheet is to be discussed in the exercise class on Thursday, October 27. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php