

Prof. T. Ø. SøRENSEN PhD
T. König

Winter term 2016/17
October 14, 2016

Functional Analysis II

Assignment 0 - Warm-up sheet

Problem 1. (Constructing new Banach spaces as quotients of Banach spaces)
Let $(X,\|\cdot\|)$ be a Banach space (over \mathbb{C}) and let $Y \subset X$ be a closed subspace. The goal of this exercise is to prove that the quotient vector space X / Y, endowed with a 'natural' norm inherited from $\|\cdot\|$, is again a Banach space.
We first construct X / Y as a vector space.
(a) Define the relation \sim on X by $x \sim x^{\prime}: \Leftrightarrow x-x^{\prime} \in Y$. Prove that \sim is an equivalence relation.
(b) Denote by X / Y the set of equivalence classes with respect to \sim, i.e. of elements $[x]=\{x+y: y \in Y\}$. Prove that on X / Y, addition and scalar multiplication are well-defined by $[x]+\left[x^{\prime}\right]:=\left[x+x^{\prime}\right]$ respectively $\lambda[x]:=[\lambda x]$ for $x, x^{\prime} \in X, \lambda \in \mathbb{C}$.

Next, we define a norm on X / Y with respect to which X / Y is complete.
(c) Define $\|[x]\|_{\sim}:=\inf _{y \in Y}\|x-y\|^{\prime}$. Prove that $\|\cdot\|_{\sim}$ is well-defined and that $\|\cdot\|_{\sim}$ is indeed a norm on X / Y.
(d) Define the projection $\pi: X \rightarrow X / Y$ by $\pi(x):=[x]$. Prove that the normed space structures on X and X / Y are compatible in the sense that π is bounded linear of norm $\|\|\pi\|=1$.
(e) Prove that $\left(X / Y,\|\cdot\|_{\sim}\right)$ is a Banach space.

Let $T: V \rightarrow W$ be a bounded surjective linear map between Banach spaces V and W and denote by $\pi: V \rightarrow V / \operatorname{ker} T$ the canonical projection. As an application of the above, we will prove that $V / \operatorname{ker} T$ and W are isomorphic as Banach spaces:
(f) Prove that there is a unique bounded linear map $\tilde{T}: V / \operatorname{ker} T \rightarrow W$ such that $T=\tilde{T} \circ \pi$. Prove that \tilde{T} is bijective.
(g) Using the previous results and the open mapping theorem, prove that \tilde{T} is a Banach space isomorphism between the spaces $V / \operatorname{ker} T$ and W, i.e. \tilde{T} has a bounded linear inverse $\tilde{T}^{-1}: W \rightarrow V / \operatorname{ker} T$.

Problem 2. (A continuity property for a sequence of orthogonal projections)
Let \mathcal{H} be a Hilbert space, $V_{1} \supset V_{2} \supset \cdots \supset V_{n} \supset V_{n+1} \supset \cdots$ be a sequence of closed linear subspaces. Define $V:=\bigcap_{n \in \mathbb{N}} V_{n}$ and let $P_{n}: \mathcal{H} \rightarrow \mathcal{H}$ resp. $P: \mathcal{H} \rightarrow \mathcal{H}$ be the orthogonal projection operators onto V_{n} resp. V. Prove that for every $x \in \mathcal{H}, \lim _{n \rightarrow \infty} P_{n} x=P x$.

Problem 3. (A compact integral operator)
For $k \in C([0,1] \times[0,1])$, consider the integral operator

$$
T: L^{2}([0,1]) \rightarrow C([0,1]), \quad(T f)(x):=\int_{0}^{1} k(x, y) f(y) d y \text { for } x \in[0,1]
$$

where $L^{2}([0,1])$ is equipped with the norm $\|\cdot\|_{2}$ given by $\|u\|_{2}^{2}=\int_{0}^{1}|u(x)|^{2} d x$. Prove:
(a) The operator T is well-defined.
(b) If we equip $C([0,1])$ with the norm $\|\cdot\|_{2}$, then T is bounded with

$$
\left\|\left||T|\left\|\leq\left(\int_{0}^{1} \int_{0}^{1}|k(x, y)| d x d y\right)^{1 / 2}=\right\| k \|_{L^{2}([0,1] \times[0,1])} .\right.\right.
$$

(c) If we equip $C([0,1])$ with the norm $\|\cdot\|_{\infty}$ given by $\|u\|_{\infty}=\sup _{x \in[0,1]}|u(x)|$, then T is compact.

This sheet is to be discussed in the exercise class on Thursday, October 20.
For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php

