

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD T. König Winter term 2016/17 October 14, 2016

FUNCTIONAL ANALYSIS II

Assignment 0 - Warm-up sheet

Problem 1. (Constructing new Banach spaces as quotients of Banach spaces)

Let $(X, \|\cdot\|)$ be a Banach space (over \mathbb{C}) and let $Y \subset X$ be a *closed* subspace. The goal of this exercise is to prove that the quotient vector space X/Y, endowed with a 'natural' norm inherited from $\|\cdot\|$, is again a Banach space.

We first construct X/Y as a vector space.

- (a) Define the relation \sim on X by $x \sim x' :\Leftrightarrow x x' \in Y$. Prove that \sim is an equivalence relation.
- (b) Denote by X/Y the set of equivalence classes with respect to \sim , i.e. of elements $[x] = \{x + y : y \in Y\}$. Prove that on X/Y, addition and scalar multiplication are well-defined by [x] + [x'] := [x + x'] respectively $\lambda[x] := [\lambda x]$ for $x, x' \in X, \lambda \in \mathbb{C}$.

Next, we define a norm on X/Y with respect to which X/Y is complete.

- (c) Define $||[x]||_{\sim} := \inf_{y \in Y} ||x y||$. Prove that $|| \cdot ||_{\sim}$ is well-defined and that $|| \cdot ||_{\sim}$ is indeed a norm on X/Y.
- (d) Define the projection $\pi : X \to X/Y$ by $\pi(x) := [x]$. Prove that the normed space structures on X and X/Y are compatible in the sense that π is bounded linear of norm $|||\pi||| = 1$.
- (e) Prove that $(X/Y, \|\cdot\|_{\sim})$ is a Banach space.

Let $T: V \to W$ be a bounded surjective linear map between Banach spaces V and W and denote by $\pi: V \to V/\ker T$ the canonical projection. As an application of the above, we will prove that $V/\ker T$ and W are isomorphic as Banach spaces:

- (f) Prove that there is a unique bounded linear map $\tilde{T} : V/\ker T \to W$ such that $T = \tilde{T} \circ \pi$. Prove that \tilde{T} is bijective.
- (g) Using the previous results and the open mapping theorem, prove that \tilde{T} is a Banach space isomorphism between the spaces $V/\ker T$ and W, i.e. \tilde{T} has a bounded linear inverse $\tilde{T}^{-1}: W \to V/\ker T$.

Problem 2. (A continuity property for a sequence of orthogonal projections)

Let \mathcal{H} be a Hilbert space, $V_1 \supset V_2 \supset \cdots \supset V_n \supset V_{n+1} \supset \cdots$ be a sequence of closed linear subspaces. Define $V := \bigcap_{n \in \mathbb{N}} V_n$ and let $P_n : \mathcal{H} \to \mathcal{H}$ resp. $P : \mathcal{H} \to \mathcal{H}$ be the orthogonal projection operators onto V_n resp. V. Prove that for every $x \in \mathcal{H}$, $\lim_{n \to \infty} P_n x = P x$.

Problem 3. (A compact integral operator)

For $k \in C([0,1] \times [0,1])$, consider the integral operator

$$T: L^2([0,1]) \to C([0,1]), \ (Tf)(x) := \int_0^1 k(x,y)f(y)dy \text{ for } x \in [0,1],$$

where $L^2([0,1])$ is equipped with the norm $\|\cdot\|_2$ given by $\|u\|_2^2 = \int_0^1 |u(x)|^2 dx$. Prove:

- (a) The operator T is well-defined.
- (b) If we equip C([0,1]) with the norm $\|\cdot\|_2$, then T is bounded with

$$|||T||| \le \left(\int_0^1 \int_0^1 |k(x,y)| dx \, dy\right)^{1/2} = ||k||_{L^2([0,1]\times[0,1])}$$

(c) If we equip C([0,1]) with the norm $\|\cdot\|_{\infty}$ given by $\|u\|_{\infty} = \sup_{x \in [0,1]} |u(x)|$, then T is compact.

This sheet is to be discussed in the exercise class on Thursday, October 20. For more details please visit http://www.math.lmu.de/~tkoenig/16FA2exercises.php