The Inclusion Process on General Spaces: Reversible Measures, Consistency and Self-Duality YoungStatS Webinar: Inclusion Process and Sticky Brownian Motions

Stefan Wagner (LMU Munich)

February 9th, 2022

Overview

1. Known facts - discrete spaces.

Self-dualities of Markov processes describing the evolution of particles on a discrete set.

2. My Research - general spaces.

What happens if we replace the discrete space by a much more general space?

Joint work with

- Sabine Jansen (LMU Munich)
- Frank Redig (TU Delft)
- Simone Floreani (TU Delft)

Some notations: Particle configurations

Let *E* be a countable set (e.g. $E = \{1, ..., N\}$, $E = \mathbb{Z}^d$, graph). Consider $\mathbb{N}_0^E \coloneqq \{(x_k)_{k \in E} : x_k \in \mathbb{N}_0\}.$

 \sim

 x_k = "number of particles at position k".

Example:
$$E = \{1, 2, 3\}$$
: $x = (x_1, x_2, x_3) = (0, 4, 1) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

The Symmetric Inclusion Process (SIP)

$$Lf(x) = \sum_{k \in E} \sum_{l \in E} (f(x - \delta_k + \delta_l) - f(x))(\alpha_l + x_l)x_k$$

A single particle at Position k jumps to a position I with rate $\alpha_I + x_I$

rate
$$\alpha_1 + 0$$
 rate $\alpha_3 + 1$
 1 rate $\alpha_3 + 1$

Consistency

"the action of removing a particle uniformly at random commutes with the dynamic" More precisely: The lowering operator $\mathcal{A}f(x) \coloneqq \sum_{k \in E} x_k f(x - \delta_k)$ commutes with the generator (and equiv. with the semigroup).

Examples:

- SIP (also with optional weight function)
- Symmetric exclusion process
- Independent random walkers

All models are conservative, i.e., conserve the number of particles.

Fix $p \in (0, 1)$. Then

$$\varrho = \bigotimes_{k \in E} \varrho_{\alpha_k}$$

with

 $\rho_a = \text{NegativeBinomial}(p, a)$

is a reversible measure for SIP.

Theorem (Carinci, Giardinà, Redig) Put $(n)_k := n(n-1)\cdots(n-k+1)$. Then, $H(x,y) := \frac{1}{\varrho(\{x\})} \prod_{k \in E} (y_k)_{x_k} \frac{1}{(x_k)!}$ is a self-duality function for SIP, i.e.

$$\mathbb{E}_{X_0}H(X_t,Y_0)=\mathbb{E}^{Y_0}H(X_0,Y_t)$$

for all $X_0, Y_0 \in \mathbb{N}_0^E$. Thereby, X, Y are Markov-Processes of SIP starting in X_0, Y_0 .

Let $(M_n(\cdot; a))_{n \in \mathbb{N}_0}$ be the Meixner Polynomials. Consider the multivariate polynomials

$$H_{y}(x) \coloneqq \prod_{k \in E} M_{y_{k}}(x_{k}; \alpha_{k}), x, y \in \mathbb{N}_{0}^{E}.$$

which are orthogonal with respect to ϱ .

Orthogonal Duality

Theorem (Franceschini, Giardinà) $(x, y) \mapsto H_y(x)$ is a self-duality function for SIP.

Replace the discrete *E* by a much more general space *E* (e.g. \mathbb{R}^d , topological space) **My Question:** Generalization of all the objects and the resulting theorems?

We are now looking at all the slides again and see what happens at each step.

Some notations: Particle configurations

Let *E* be a countable set (e.g. $E = \{1, ..., N\}$, $E = \mathbb{Z}^d$, graph). Consider

 $\mathbb{N}_0^E \coloneqq \{(x_k)_{k\in E} : x_k \in \mathbb{N}_0\}.$

 x_k = "number of particles at position k".

Example: $E = \{1, 2, 3\}$: $x = (x_1, x_2, x_3) = (0, 4, 1) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix}$

Let E be a Borel space. Consider the set of measures

$$\mathbf{N}(E) := \left\{ \sum_{k=1}^{n} \delta_{x_{k}} : x_{k} \in E, n \in \mathbb{N}_{0} \cup \{\infty\} \right\}$$

Example: $E = \mathbb{R}$: $2\delta_{1.5} + \delta_{4} + \delta_{4.3} = \underbrace{\begin{array}{c} & & & \\ & & & & \\ & & & &$

Therefore, we look at measure-valued Markov processes.

The Symmetric Inclusion Process (SIP)

$$Lf(x) = \sum_{k \in E} \sum_{l \in E} (f(x - \delta_k + \delta_l) - f(x))(\alpha_l + x_l)x_k$$

A single particle at Position k jumps to a position I with rate $\alpha_I + x_I$

rate
$$\alpha_1 + 0$$
 rate $\alpha_3 + 1$
 $\alpha_1 + 0$ rate $\alpha_3 + 1$
 $\alpha_1 + 0$ rate $\alpha_3 + 1$

Let α be a finite measure on E

$$Lf(\mu) = \iint (f(\mu - \delta_x + \delta_y) - f(\mu))(\mu + \alpha)(\mathrm{d}y)\mu(\mathrm{d}x)$$

A single particle at position x jumps to a position y with rate $\alpha(dy) + \mu(dy)$. **Interpretation:** The particle jumps either to a "new" position $y \sim \frac{\alpha(dy)}{\alpha(E)}$ at rate $\alpha(E)$ or to an already occupied position y with rate $\mu(\{y\})$

Consistency

"the action of removing a particle uniformly at random commutes with the dynamic" More precisely: The lowering operator $\mathcal{A}f(x) \coloneqq \sum_{k \in E} x_k f(x - \delta_k)$ commutes with the generator (and equiv. with the semigroup).

Examples:

- SIP (also with optional weight function)
- Symmetric exclusion process
- Independent random walkers

All models are conservative, i.e., conserve the number of particles.

Generalization: $\mathcal{A}f(\mu) \coloneqq \int f(\mu - \delta_x)\mu(\mathrm{d}x), \ \mu \in \mathbf{N}(E), \ f : \mathbf{N}(E) \to \mathbb{R}.$ **Theorem (Floreani, Jansen, Redig, W.)** The Generalized SIP is consistent.

More Examples:

- Independent (arbitrary) Markov processes
- Sticky Brownian Motion

Reversible measures

Fix $p \in (0, 1)$. Then

$$\varrho = \bigotimes_{k \in E} \varrho_{\alpha_k}$$

with

 $\rho_a = \text{NegativeBinomial}(p, a)$

is a reversible measure for SIP.

The Pascal process is a random element ζ with values in N(E) satisfying

- 1. $\xi(A_1), \ldots, \xi(A_N)$ are independent for pairwise disjoint measurable sets $A_1, \ldots, A_n \subset E$,
- 2. $\xi(A) \sim \text{NegativeBinomial}(p, \alpha(A))$ for each measurable $A \subset E$.

Theorem (Floreani, Jansen, Redig, W.) The distribution of ζ is a reversible measure for SIP.

Duality with falling factorials

Theorem (Carinci, Giardinà, Redig) Put $(n)_k := n(n-1)\cdots(n-k+1)$. Then, $H(x,y) := \frac{1}{\varrho(\{x\})} \prod_{k \in E} (y_k)_{x_k} \frac{1}{(x_k)!}$ is a self-duality function for SIP, i.e.

$$\mathbb{E}_{X_0}H(X_t,Y_0)=\mathbb{E}^{Y_0}H(X_0,Y_t)$$

for all $X_0, Y_0 \in \mathbb{N}_0^E$. Thereby, X, Y are Markov-Processes of SIP starting in X_0, Y_0 .

Falling factorial are generalized with factorial measures, i.e., $J_k(f_k, \mu) \coloneqq \int f_k d\mu^{(k)}$ for $f_k : E^k \to \mathbb{R}, \ \mu \in \mathbb{N}(E)$ **Theorem (Floreani, Jansen, Redig, W.)** Let η be a consistent and conservative Markov process. Denote by $P_t, t \ge 0$ the Markov semigroup of η and by $p_t^{[k]}$ its restriction to k (labeled) particles. Then, we obtain the self-intertwining relation

$$P_t J_k(f_k, \cdot)(\mu) = J_k(p_t^{[k]} f_k, \mu), \quad \mu \in \mathsf{N}(E), \quad f_k : E^k \to \mathbb{R}.$$

Orthogonal Polynomials

Let $(M_n(\cdot; a))_{n \in \mathbb{N}_0}$ be the Meixner Polynomials. Consider the multivariate polynomials

$$H_y(x) \coloneqq \prod_{k \in E} M_{y_k}(x_k; \alpha_k), x, y \in \mathbb{N}_0^E.$$

which are orthogonal with respect to ϱ .

We introduce orthogonal polynomials in infinite dimensions. Let

$$\mathcal{P}_n \coloneqq \left\{ \sum_{k=0}^n J_k(f_k, \cdot) : f_k : E^k \to \mathbb{R} \right\}$$

be the space of polynomials of degree $\leq n$. Define

$$I_n(f_n, \cdot) \coloneqq L^2(\varrho)$$
-orthogonal projection of $J_n(f_n, \cdot)$ onto $\mathcal{P}_{n-1}^{\perp}$.

Orthogonal polynomials in infinite dimensions are known in the theory of chaos decompositions (Fock spaces, multiple stochastic integrals)

Orthogonal Duality

Theorem (Franceschini, Giardinà) $(x, y) \mapsto H_y(x)$ is a self-duality function for SIP.

Theorem (Floreani, Jansen, Redig, W.)

Let $(\eta_t)_{t\geq 0}$ be a consistent and conservative Markov process. Assume that a reversible measure is given by the distribution of a Lévy process. Then, we obtain the orthogonal self-duality relation

$$P_t I_n(f_n, \cdot)(\mu) = I_n\left(p_t^{[n]}f_n, \mu\right)$$

for all $f_n: E^n \to \mathbb{R}$, $\mu \in \mathbf{N}(E)$, $t \ge 0$. Additionally, if ϱ is the distribution of a Pascal process, then

$$\int I_n(f_n,\,\cdot\,)I_m(g_m,\,\cdot\,)\,\mathrm{d}\varrho=\delta_{n,m}\frac{p^nn!}{(1-p)^{2n}}\int f_ng_m\,\mathrm{d}\lambda_n$$

for $f_n: E^n \to \mathbb{R}$, $g_m: E^m \to \mathbb{R}$ permutation invariant functions.

Thank you!

S. Floreani, S. Jansen, F. Redig, S.W.: *Duality and intertwining for consistent Markov processes* arXiv:2112.11885 [math.PR], 32 pp.