Infinite Particle Systems in Non-Discrete Spaces:

 Orthogonal Intertwiners43rd Conference on Stochastic Processes and their Applications CS37-Wiener chaos, orthogonal polynomials, and intertwinings

Stefan Wagner

Particle system

= a time-continuous Markov process describing the stochastic evolution of particles in a set E given a deterministic initial configuration

Uniform sticky Brownian motions with stickiness $\theta>0$

Special case of a martingale problem introduced by Howitt, Warren '09. Let $E=\mathbb{R}$.

Different notations

Unlabeled notation	Labeled notation		
Markov process	family of Markov processes indexed via number of particles $N \in \mathbb{N}$		
values in \mathbf{N}, the set of counting measures consisting of $\mu=\sum_{k=1}^{N} \delta_{x_{k}}, x_{k} \in \mathbb{R}$.			
$\mu(A)=$ number of particles in a subset A		\quad	values in \mathbb{R}^{N}
:---:			
$\left(P_{t}\right)_{t \geq 0}$ Markov semigroup acting on functions $F: \mathbf{N} \rightarrow \mathbb{R}$			
family of Markov semigroups $\left(P_{t}^{[N]}\right)_{t \geq 0}, N \in \mathbb{N}$			
acting on functions $f_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}$			

n-th factorial measure intertwiner

For $f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a configuration $\sum_{k=1}^{N} \delta_{x_{k}}$ put

$$
J_{n}\left(f_{n}, \sum_{k=1}^{N} \delta_{x_{k}}\right):=\sum_{\substack{i_{1}, \ldots, i_{n}=1 \\ \text { pairwise different }}}^{N} f_{n}\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)
$$

$$
\begin{aligned}
& J_{1}\left(f_{1}, \delta_{x}+\delta_{y}+\delta_{z}\right)=f_{1}(x)+f_{1}(y)+f_{1}(z) \\
& J_{2}\left(f_{2}, \delta_{x}+\delta_{y}+\delta_{z}\right)=f_{2}(x, y)+f_{2}(y, x)+f_{2}(x, z)+f_{2}(z, x)+f_{2}(y, z)+f_{2}(z, y)
\end{aligned}
$$

Theorem 1 (W., '23)

J_{n} intertwines the dynamics of infinitely many sticky Brownian motions and their n-particle evolution, i.e.,

$$
P_{t} J_{n}\left(f_{n}, \cdot\right)(\mu)=J_{n}\left(P_{t}^{[n]} f_{n}, \mu\right) \quad f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \mu \in \mathbf{N}
$$

Example

Given an initial configuration $\sum_{k=1}^{N} \delta_{x_{k}}$: What is the expected number of particles in a set A at a time $t>0$? $\begin{aligned} \text { expected number of particles in a set } A \text { at time } t & =P_{t}(\nu \mapsto \nu(A))\left(\sum_{k=1}^{N} \delta_{x_{k}}\right) \\ & =P_{t} J_{1}\left(\mathbf{1}_{A}, \cdot\right)\left(\sum_{k=1}^{N} \delta_{x_{k}}\right) \\ & =J_{1}\left(P_{t}^{[1]} \mathbf{1}_{A}, \mu\right) \\ & =\sum_{k=1}^{N} P_{t}^{[1]} \mathbf{1}_{A}\left(x_{k}\right)=\end{aligned}$

Let each particle evolve the one-particle dynamics separately. Sum of the probabilities that the respective particle is in the set A at time t.

The proof relies solely on compatibility (Le Jan, Raimond, '04)
$=$ "the action of removing a particle commutes with the dynamics".
Le Jan, Raimond proved a one-to-one correspondence to stochastic flows.

Examples:

- independent particles:
- independent random walkers (IRW)
- free Kawasaki dynamics
- correlated Brownian motions
- coalescing Brownian motions

Theorem 2 (Redig, Jansen, Floreani, W., '21)

Consider a finite particle system that preserves the number of particles. Then, consistency $\quad \Longleftrightarrow \quad J_{n}$ intertwines $P_{t}^{[n]}$ and P_{t} for all t and n, i.e.,

$$
P_{t} J_{n}\left(f_{n}, \cdot\right)(\mu)=J_{n}\left(P_{t}^{[n]} f_{n}, \mu\right), \quad f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \mu \in \mathbf{N}
$$

consistency $=$ "the action of removing a particle uniformly at random commutes with the dynamics".

Examples:

- symmetric inclusion process (SIP), symmetric exclusion process (SEP).
- Theorem 2 recovers well-known self-dualities in terms of falling factorial polynomials.
- generalized SIP in the continuum $=$ Moran process from population genetics

Infinite-dimensional orthogonal polynomials

Let ρ be a probability measure on \mathbf{N}, i.e., the distribution of a point process.

$$
\begin{array}{ll}
I_{n}\left(f_{n}, \cdot\right):=\quad & \text { orthogonal projection of } J_{n}\left(f_{n}, \cdot\right) \\
& \text { onto }\left\{J_{k}\left(u_{k}, \cdot\right), u_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}, 0 \leq k \leq n-1\right\}^{\perp} \\
& \text { in } L^{2}(\rho) .
\end{array}
$$

Keywords: infinite-dimensional orthogonal polynomials, (extended) Fock spaces, chaos decompositions, multiple stochastic integrals, non-Gaussian white noise analysis, Malliavin calculus

Let ρ be the distribution of a Pascal process with parameters $\theta \mathrm{Vol}_{\mathbb{R}}$ and arbitrary $p \in(0,1)$.

Theorem 3 (W., '23)

I_{n} intertwines the dynamics of infinitely many sticky Brownian motions and their n-particle evolution, i.e.,

$$
P_{t} I_{n}\left(f_{n}, \cdot\right)(\mu)=I_{n}\left(P_{t}^{[n]} f_{n}, \mu\right) \quad f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \mu \in \mathbf{N}
$$

Corollary 4 (W., '23)
ρ is reversible for infinitely many sticky Brownian motions.
The proof of the corollary applies a result of Brockington, Warren '23: existence of a reversible measure for n ordered uniform sticky Brownian motions for each $n \in \mathbb{N}$.

Connection: reversible measures and orthogonal intertwiners

Theorem 5 (Redig, Jansen, Floreani, W., '21)

$$
\begin{array}{r}
J_{n} \text { intertwines } P_{t}^{[n]} \text { and } P_{t} \text { for all } t \text { and } n \quad+\quad \rho \text { reversible } \\
\\
\\
\qquad I_{n} \text { intertwines } P_{t}^{[n]} \text { and } P_{t} \text { for all } t \text { and } n
\end{array}
$$

Together with Theorem 2:
finite number of particles $+\rho$ reversible + consistency $\Rightarrow I_{n}$ intertwines $P_{t}^{[n]}$ and P_{t} Applications:

- Theorem 5 recovers well-known self-dualities in terms of orthogonal polynomials for discrete particle systems (SIP, SEP, IRW)
- independent particles (ρ distribution of the Poisson process)
- generalized SIP (ρ distribution of the Pascal process)

Thank you!

- S. Floreani, S. Jansen, F. Redig, S.W.: Duality and intertwining for consistent Markov processes, arXiv:2112.11885 [math.PR], 32 pp.
- S.W.: Orthogonal Intertwiners for Infinite Particle Systems In The Continuum, arXiv:2305.03367 [math.PR], 24 pp.

