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Overview

1. Known facts - discrete spaces.
Self-dualities of Markov processes describing the evolution of particles on a discrete
set.

2. Research - general spaces.
What happens if we replace the discrete space by a much more general space?
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Stochastic Duality

Definition (Stochastic duality of Markov processes)
Let X = (Ω1,F1, (Xt)t≥0, (Px)x∈X) and Y = (Ω2,F2, (Yt)t≥0, (Py)y∈Y) be two
(time-continuous) Markov processes with state spaces X,Y. X and Y are dual with
respect to H ∶ X × Y→ R if and only if for all x ∈ X, y ∈ X and t ≥ 0

ExH(Xt , y) = EyH(x ,Yt).

Semigroup1 notation: PtH( ⋅ , y)(x) = StH(x , ⋅ )(y)
Self-duality: X = Y .

1Markov semigroup: Pt f (x) ∶= Ex f (Xt)



Particle configurations

We are interested in Markov processes describing the time-evolution of particles.
Let E be a countable set (e.g. E = {1, . . . ,N}, E = Zd , graph). Consider

X ∶= NE
0 ∶= {(xk)k∈E ∶ xk ∈ N0} .

xk = “number of particles at position k”.

Example: E = {1,2,3}: x = (x1, x2, x3) = (0,4,1) =
1 2 3

○○
○○

○



The Independent Random Walker, IRW

We introduce three models by their (formal) generators2 ((δk)` ∶= δk,`). Fix αk ∈ N,
c ∶ E × E is an arbitrary symmetric function (spatial component). For f ∶ NE

0 → R:

Lf (x) = ∑
k∈E

∑
`∈E

(f (x − δk + δ`) − f (x))c(k, `)α`xk

1 2 3
○○
○○

○
rate 4c(2,3)α3rate 4c(2,1)α1

2Generator of a Markov process: Lf (x) ∶= ∂t∣t=0Pt f (x)



The Symmetric Inclusion Process, SIP

Lf (x) = ∑
k∈E

∑
l∈E

(f (x − δk + δl) − f (x))c(k , l)(αl+xl)xk

1 2 3
○○
○○

○
rate 4c(2,3)(α3+1)rate 4c(2,1)(α1+0)



The Symmetric Exclusion Process, SEP

Lf (x) = ∑
k∈E

∑
l∈E

(f (x − δk + δl) − f (x))c(k , l)(αl−xl)xk

1 2 3
○○
○○

○
rate 4c(2,3)(α3−1)rate 4c(2,1)(α1−0)



Consistency

“the action of removing a particle uniformly at random commutes with the dynamic”
These three models share the following3 relation: AL = LA for the so-called lowering
operator Af (x) ∶= ∑k∈E xk f (x − δk).
In terms of expectations, for each f ∶ NE

0 → R, t ≥ 0, x ∈ NE
0

Ex [∑
k∈E

f (Xt − δk)Xt] = ∑
k∈E

xkEx−δk [f (Xt)] .

3There is a link to Lie-algebras



Conservation of the number of particles

For all t ≥ 0 and X0 ∈ NE
0

∑
k∈E

(X0)k = ∑
k∈E

(Xt)k .

Thus we can define also the dynamics of exactly n-particles. We denote the
Markov-semigroup by (p[n]

t )t≥0



Duality with falling factorials

Theorem (Carinci, Giardinà, Redig, ’19)
Let % be a reversible measure (i.e. detailed balance), (n)k ∶= n(n − 1)⋯(n − k + 1).
Then, a self-duality function for IRW, SIP, SEP is H(x , y) ∶= 1

%({x})∏k∈E(yk)xk 1
(xk)!

.



Reversible measures

Define % =⊗k∈E %αk
with

%a =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Poi(a) IRW
NegativeBinomial(p, a) SIP
Binomial(p, a) SEP

for a fixed p ∈ (0,1).



Orthogonal Polynomials

Let (Pn( ⋅ , a))n∈N0 be the orthogonal Polynomials

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Charlier Poi(α) (IRW)
Meixner NegativeBinomial(p, a) (SIP)
Krawtchouk Binomial(p, a) (SEP)

Consider the multivariate polynomials (orthogonal for %)

Py(x , α) ∶=∏
k∈E

Pyk (xk , αk)

Let Pn ∶= {x ↦ ∑∣`∣≤n a`x
` ∶ a` ∈ R}, x` ∶=∏k∈E x`kk , ∣`∣ = ∑k∈E `k . Then Py( ⋅ , α) is the

orthogonal projection of x ↦∏k∈E xykk onto P∣y ∣ ⊖P∣y ∣−1 = P⊥∣y ∣−1 ∩P∣y ∣ in L2(%)



Orthogonal Duality

Theorem (Franceschini, Giardinà, 19’)
H(x , y) ∶= Px(y , α) forms a duality function for the three models.



Generalization?

Replace the discrete E by a much more general Polish space E (e.g. Rd , Banach spaces)
My Question: Generalization of all the objects and the resulting theorems?

We are now looking at all the slides again and see what happens at each step.



Stochastic Duality

Definition (Stochastic duality of Markov processes)
Let X = (Ω1,F1, (Xt)t≥0, (Px)x∈X) and Y = (Ω2,F2, (Yt)t≥0, (Py)y∈Y) be two
(time-continuous) Markov processes with state spaces X,Y. X and Y are dual with
respect to H ∶ X × Y→ R if and only if for all x ∈ X, y ∈ X and t ≥ 0

ExH(Xt , y) = EyH(x ,Yt).

Semigroup4 notation: PtH( ⋅ , y)(x) = StH(x , ⋅ )(y)
Self-duality: X = Y .

Definition (Intertwiner)
An operator U is called intertwiner, if UPt = StU for all t ≥ 0.

4Markov semigroup: Pt f (x) ∶= Ex f (Xt)



Particle configurations
We are interested in Markov processes describing the time-evolution of particles.
Let E be a countable set (e.g. E = {1, . . . ,N}, E = Zd , graph). Consider

X ∶= NE
0 ∶= {(xk)k∈E ∶ xk ∈ N0} .

xk = “number of particles at position k”.

Example: E = {1,2,3}: x = (x1, x2, x3) = (0,4,1) =
1 2 3

○○
○○

○

Let E be a Polish space. Consider the set of measures

X ∶= N(E) ∶= {
n

∑
k=1

δxk ∶ xk ∈ E ,n ∈ N0 ∪ {∞}}

Example: E = R: 2δ1.5 + δ4 + δ4.3 =
R0 1 2 3 4 5

○○ ○ ○

Therefore, we look at measure-valued Markov processes.



The Independent Random Walker, IRW

We introduce three models by their (formal) generators5 ((δk)` ∶= δk,`). Fix αk ∈ N,
c ∶ E × E is an arbitrary symmetric function (spatial component). For f ∶ NE

0 → R:

Lf (x) = ∑
k∈E

∑
`∈E

(f (x − δk + δ`) − f (x))c(k, `)α`xk

1 2 3
○○
○○

○
rate 4c(2,3)α3rate 4c(2,1)α1

Let Z be an arbitrary Markov process with reversible measure α on E (e.g. Brownian
motion). For an initial condition η0 = ∑n

k=1 δzi ∈ N(E) define the Markov process
ηt ∶= ∑n

k=1 δZk,t
with (Zk,t)t≥0 independent copies of Z with initial condition Zk,0 = zk .

5Generator of a Markov process: Lf (x) ∶= ∂t∣t=0Pt f (x)



The Symmetric Inclusion Process, SIP

Lf (x) = ∑
k∈E

∑
l∈E

(f (x − δk + δl) − f (x))c(k , l)(αl+xl)xk

1 2 3
○○
○○

○
rate 4c(2,3)(α3+1)rate 4c(2,1)(α1+0)

Let α be a finite measure on E . Consider

Lf (µ) =∬ c(x , y)(f (µ − δx + δy) − f (µ))(µ + α)(dy)µ(dx)

for f ∶ N(E)→ R, µ ∈ N(E).



The Symmetric Exclusion Process, SEP

Lf (x) = ∑
k∈E

∑
l∈E

(f (x − δk + δl) − f (x))c(k , l)(αl−xl)xk

1 2 3
○○
○○

○
rate 4c(2,3)(α3−1)rate 4c(2,1)(α1−0)

No (direct) generalization.



Consistency

“the action of removing a particle uniformly at random commutes with the dynamic”
These three models share the following6 relation: AL = LA for the so-called lowering
operator Af (x) ∶= ∑k∈E xk f (x − δk).
In terms of expectations, for each f ∶ NE

0 → R, t ≥ 0, x ∈ NE
0

Ex [∑
k∈E

f (Xt − δk)Xt] = ∑
k∈E

xkEx−δk [f (Xt)] .

Generalized SIP and independent Markov processes: the operator
Af (µ) ∶= ∫ f (µ − δx)µ(dx) satisfies AL = AL, i.e. for each f ∶ N(E)→ R, t ≥ 0,
η ∈ N(E)

Eη [∫ f (ηt − δx)ηt(dx)] = ∫ Eη−δx [f (ηt)]η(dx)

6There is a link to Lie-algebras



Conservation of the number of particles

For all t ≥ 0 and X0 ∈ NE
0

∑
k∈E

(X0)k = ∑
k∈E

(Xt)k .

Thus we can define also the dynamics of exactly n-particles. We denote the
Markov-semigroup by (p[n]

t )t≥0

Both the generalized IRW and the generalized SIP conserve the number of particles, i.e.
for each t ≥ 0, (η0)(E) = ηt(E).



Duality with falling factorials
Theorem (Carinci, Giardinà, Redig, ’19)
Let % be a reversible measure (i.e. detailed balance), (n)k ∶= n(n − 1)⋯(n − k + 1).
Then, a self-duality function for IRW, SIP, SEP is H(x , y) ∶= 1

%({x})∏k∈E(yk)xk 1
(xk)!

.

Generalize the falling factorial with factorial measures, i.e.

Jk(fk , µ) ∶= ∫ fk dµ(k)

∶= ∫ fk(x1, . . . , xn)(µ − δx1 − . . . − δxk−1)(dxn)⋯(µ − δx1)(dx2)µ(dx1)

for fk ∶ E k → R, µ ∈ N(E)
Theorem (Floreani, Jansen, Redig, W.)
Let η be a consistent and conservative Markov process (there are also other examples).
Then PtJk(fk , ⋅ )(µ) = Jk(p[k]

t fk , µ), i.e.

Eη [∫ f (δx1 + . . . + δxk )η
(k)
t (d(x1, . . . , xk))] = ∫ Eδx1+...+δxk [f (ηt)]η(k)(d(x1, . . . , xk)).



Reversible measures
Define % =⊗k∈E %αk

with

%a =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Poi(a) IRW
NegativeBinomial(p, a) SIP
Binomial(p, a) SEP

for a fixed p ∈ (0,1).

A random variable ξ ∼ % (Poi, NegativeBinomial) satisfies for distinct k1, . . . , kl ∈ E
1. (ξk1 , . . . , ξkl ) are independent,
2. ξk1 + . . . + ξkl ∼ %αk1+...+αkl

This leads to Lévy processes on general spaces (in our examples: Pascal and Poisson
process), namely a measure ζ on N(E) s.t. ζ ∼ % implies
1. ξ(A1), . . . , ξ(AN) are independent for pairwise disjoint measurable sets

A1, . . . ,An ⊂ E ,
2. ξ(A) ∼ %α(A) for each measurable A ⊂ E



Orthogonal Polynomials
Let (Pn( ⋅ , a))n∈N0 be the orthogonal Polynomials

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Charlier Poi(α) (IRW)
Meixner NegativeBinomial(p, a) (SIP)
Krawtchouk Binomial(p, a) (SEP)

Consider the multivariate polynomials (orthogonal for %)

Py(x , α) ∶=∏
k∈E

Pyk (xk , αk)

Let Pn ∶= {x ↦ ∑∣`∣≤n a`x
` ∶ a` ∈ R}, x` ∶=∏k∈E x`kk , ∣`∣ = ∑k∈E `k . Then Py( ⋅ , α) is the

orthogonal projection of x ↦∏k∈E xykk onto P∣y ∣ ⊖P∣y ∣−1 = P⊥∣y ∣−1 ∩P∣y ∣ in L2(%)

Let Pn ∶= {µ↦ ∑n
k=0 ∫ fk dµ⊗k}. Define In(fn, ⋅ ) as the projection7 of Jn(fn, ⋅ ) onto

P⊥n−1 ∩Pn.
7Known as chaos decomposition. Also related to multiple stochastic integrals and Malliavin calculus



Orthogonal Duality

Theorem (Franceschini, Giardinà, 19’)
H(x , y) ∶= Px(y , α) forms a duality function for the three models.

Theorem (Floreani, Jansen, Redig, W.)
Let (ηt)t≥0 be a consistent and conservative Markov process. Assume that a reversible
measure is given by the distribution of a Lévy process. Then,

Pt In(fn, ⋅ )(µ) = In(p[n]
t fn, µ)

for all fn ∶ En → R, µ ∈ N(E), t ≥ 0.
“In intertwines the process with arbitrary (also infinite) many particles with the same
process on n particles”


