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Abstract

In this paper we establish a one-to-one correspondence between law-
invariant convex risk measures on L∞ and L1. This proves that the canon-
ical model space for the predominant class of law-invariant convex risk
measures is L1.

1 Introduction

Convex risk measures are best known on L∞. Indeed, Artzner et al. [1] intro-
duced the seminal axioms of coherence, which then were further generalised to
the convex case by Föllmer and Schied [6] and Frittelli and Rosazza-Gianin [8],
on L∞. However, there is a growing mathematical finance literature dealing
with convex risk measures beyond L∞, see e.g. [2, 3, 4, 10, 11, 13]. This ex-
tended approach is vital since important risk models, such as normal distributed
random variables, are not contained in L∞.

In most of the above mentioned articles, the model space is chosen such that
some preselected risk measure remains finite valued. In contrast, we believe that
the model space should be maximal possible to capture the universe of financial
risks from the outset. On the other hand, from a computational point of view,
the model space should be standard and endowed with a topological structure
supporting convex duality. In sum, we propose the model space Lp for p ≥ 1.

Risk measures on Lp have been studied by several authors, e.g. [2, 3, 10, 11,
13]. But the interplay between convex risk measures on Lp and L∞ has not
been highlighted yet. In this paper, we establish a one-to-one correspondence
between law-invariant convex risk measures on L∞ and L1. This proves that
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the canonical model space for the predominant class of law-invariant convex risk
measures is L1.

2 Extensions of Law-invariant Functions on L∞

Throughout, we fix a standard probability space (Ω,F ,P). All equalities and
inequalities between random variables are understood in the P-almost sure (a.s.)
sense. The topological dual space of Lp = Lp(Ω,F ,P), for p ∈ [1,∞], is denoted
by Lp∗. It is well known that (Lp)∗ = Lq with q = p

p−1 for p < ∞, and

that L∞∗ ⊃ L1 can be identified with ba, the space of all bounded finitely
additive measures µ on (Ω,F) such that P(A) = 0 implies µ(A) = 0. With
some facilitating abuse of notation, we shall write (X,Z) 7→ E[XZ] for the dual
pairing on (Lp, Lp∗) also for the case p =∞.

We suppose the reader is familiar with standard terminology and basic du-
ality theory for convex functions as outlined in [5] or [12]. We recall that a
function f : Lp → [−∞,∞] is

(i) convex if its epigraph epi f := {(X, y) | f(X) ≤ y} is a convex subset of
Lp × R,

(ii) proper if f > −∞ and its domain dom f := {f <∞} 6= ∅,

(iii) closed if either f ≡ −∞, f ≡ ∞ or f is proper and lower semi-continuous
(l.s.c.),

(iv) law-invariant if f(X) = f(Y ) for all identically distributed X ∼ Y .

The dual f∗(Z) = supX∈Lp(E[XZ]− f(X)) of f is a closed convex function on
Lp∗. The Fenchel–Moreau theorem (proposition 4.1 in [5]) states that f∗∗ = f
if and only if f is closed convex.

Definition 2.1. A convex function ρ : Lp → (−∞,∞] is called convex risk
measure if it is

(i) cash-invariant: ρ(0) ∈ R and ρ(X +m) = ρ(X)−m for all m ∈ R,

(ii) monotone: ρ(X) ≤ ρ(Y ) for X ≥ Y .

A positively homogeneous convex risk measure ρ is called coherent.

Note that convex risk measures on Lp for p ∈ [1,∞) are not closed in general.
Consider e.g. the law-invariant coherent risk measure

ρ : Lp → (−∞,∞] , ρ(X) = E[−X] + δ(X− | L∞)

where δ(X | L∞) is defined as 0 if X ∈ L∞ and ∞ elsewhere. Clearly, the
acceptance set Aρ := {X ∈ Lp | ρ(X) ≤ 0} is not closed, so ρ is not closed.

The following theorem is our main result, which is valid not only for convex
risk measures.
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Theorem 2.2. Let f : L∞ → [−∞,∞] be a law-invariant closed convex func-
tion. Then, for each p ∈ [1,∞], there exists a unique law-invariant closed convex
function f

p
on Lp such that f

p|L∞ = f . The function f
p

is given by

f
p
(X) = sup

Z∈Lp∗
E[ZX]− f∗(Z), X ∈ Lp,

where f∗ : L∞∗ → [−∞,∞] is the dual of f . Moreover, for all p ∈ [1,∞], we

have that f
p

= f
1|Lp . In particular, the function f is σ(L∞, L∞)-closed.

Hence there is a one-to-one correspondence between law-invariant closed
convex functions, and thus between law-invariant closed convex risk measures,
on L∞ and L1. In this sense, we may conclude that the canonical model space
for law-invariant convex risk measures is L1.

Now let p ∈ [1,∞], and f : L∞ → [−∞,∞] be some convex function. Then
f is trivially extended to a convex function f̃ on Lp by letting f̃ = f on L∞ and
f̃ =∞ elsewhere. It is easily verified that f̃∗ = f∗ on Lp∗. Hence, the function
f
p

in theorem 2.2 is simply the well-known closure or l.s.c. regularisation of f̃
in Lp (see [5] section 3.2 or [12] section 3). We chose the notation f

p
in order

to emphasise the dependence on p. Clearly, in general f
p

will differ for differing
p ∈ [1,∞] (for an example see [14]). But if f is law-invariant, then theorem 2.2
states that we can omit the p, which is a strong property of law-invariant closed
convex functions.

The core of the proof of theorem 2.2 is lemma 2.4 below. It is based on
results by Jouini, Schachermayer, and Touzi in [9].

Let G ⊂ F be a sub-σ-algebra. As in [9] we define the conditional expectation
on L∞∗ as a function E[· | G] : L∞∗ → L∞∗ where E[µ | G] is given by

E[E[µ | G]X] := E[µE[X | G]] ∀X ∈ L∞ .

Clearly, this definition is consistent with the ordinary conditional expectation
in case µ ∈ L1 ⊂ L∞∗.

Remark 2.3. If G = σ(A1, . . . , An) is finite, then E[µ | G] ∈ L∞. In order to
verify this, note that for all X ∈ L∞ we have

E[E[µ | G]X] = E[µE[X | G]] =

n∑
i=1

E[X1Ai ]
µ(Ai)

P(Ai)
.

Hence, E[µ | G] =
∑n
i=1

µ(Ai)
P(Ai)

1Ai ∈ L∞.

Note that (L∞, Lr) is a dual pair for every r ∈ [1,∞].

Lemma 2.4. (i) Let D ⊂ L∞ be a ‖.‖∞-closed convex law-invariant set.
Then D is σ(L∞, Lr)-closed for every r ∈ [1,∞].

(ii) A law-invariant convex function f : L∞ → [−∞,∞] is closed if and only
if it closed w.r.t. any σ(L∞, Lr)-topology for every r ∈ [1,∞].
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Proof. (i): if D = ∅, the assertion is obvious. For the remainder of this proof,
we assume thus that D 6= ∅.

According to lemma 4.2 in [9], for all Y ∈ D and all sub-σ-algebras G ⊂ F
we have

E[Y | G] ∈ D. (2.1)

Now let (Xi)i∈I be a net in D converging to some X ∈ L∞ in the σ(L∞, Lr)-
topological sense, i.e. E[ZXi] → E[ZX] for all Z ∈ Lr. Then, in view of
remark 2.3, if G is finite, we have E[E[µ | G]Xi]→ E[E[µ | G]X] for all µ ∈ L∞∗.
But by definition this equals E[µE[Xi | G]]→ E[µE[X | G]] for all µ ∈ L∞∗. In
other words, the net (E[Xi | G])i∈I converges to E[X | G] in the σ(L∞, L∞∗)-
topology. Since, according to (2.1), E[Xi | G] ∈ D for all i ∈ I, we conclude
that E[X | G] ∈ D, because D is closed and convex and thus σ(L∞, L∞∗)-closed.
Hence, E[X | G] ∈ D for all finite sub-σ-algebras G ⊂ F . Recalling that we
can approximate X in (L∞, ‖ · ‖∞) by a sequence of conditional expectations
(E[X | Gn])n∈N in which the Gns are all finite, we conclude by means of the
norm-closedness of D that X ∈ D. Thus D is σ(L∞, Lr)-closed, and (i) is
proved.

(ii): suppose f is closed. Then, for every k ∈ R the level sets {X ∈
L∞ | f(X) ≤ k} are ‖.‖∞-closed, convex, and law-invariant. Hence, (i) yields
the σ(L∞, Lr)-closedness of the level sets, i.e. f is closed with respect to the
σ(L∞, Lr)-topology. The converse implication is trivial.

In the following we denote the (left continuous) quantile function of a random
variable X by

qX : (0, 1)→ R , qX(s) = inf{x ∈ R | P(X ≤ x) ≥ s} . (2.2)

In the proof of theorem 2.2 we will need the following fact:

(F1) For X ∈ Lp and Z ∈ Lp∗ ∩ L1 we have that∫ 1

0

qX(s)qZ(s) ds = sup
X̂∼X

E[X̂Z] = sup
Ẑ∼Z

E[XẐ] .

The relation (F1) is stated and proved in [7] lemma 4.55 for the case X ∈ L1

and Z ∈ L∞. This result in turn can be easily extended to X ∈ Lp and
Z ∈ Lp∗ ∩ L1 by suitable approximation, so we omit a proof here.

Proof of theorem 2.2. Since the case p =∞ is trivial, we assume henceforth that
p ∈ [1,∞). According to lemma 2.4 any law-invariant closed convex function
f : L∞ → [−∞,∞] is σ(L∞, L∞)-closed. Hence, f

p
equals f on L∞. Applying

(F1) we observe that f∗|L1 is law-invariant, because for all Z ∈ L1:

f∗(Z) = sup
X∈L∞

E[XZ]− f(X) = sup
X∈L∞

(
sup
X̂∼X

E[X̂Z]

)
− f(X)

= sup
X∈L∞

∫ 1

0

qX(s)qZ(s) ds− f(X)
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in which the latter expression depends on the law of Z only. Thus (f
p
)∗ = f∗|Lp∗

is law-invariant. Another application of (F1) similar to the one above yields the
law-invariance of f

p
. In order to prove that f

p
is the unique law-invariant

closed convex extension of f to Lp, let g be any such extension. For every
X ∈ Lp and all m ∈ N there exists a finite partition Am1 , . . . , A

m
n of Ω such

that the Lp-distance between X and the simple random variable Xm := E[X |
σ(Am1 , . . . , A

m
n )] ∈ L∞ is less than 1/m. On the one hand, corollary 4.59 in [7]

(in combination with lemma 2.4) states that g(Xm) ≤ g(X) for all m ∈ N. On
the other hand, by l.s.c. of g, we know that g(X) ≤ lim infm→∞ g(Xm). Hence,
g(X) = limm→∞ g(Xm). Since the latter observation in particular holds for f

p
,

we obtain

g(X) = lim
m→∞

g(Xm) = lim
m→∞

f(Xm) = lim
m→∞

f
p
(Xm) = f

p
(X)

and uniqueness is proved. Finally, by letting g = f
1|Lp , it immediately follows

that f
1|Lp = f

p
.
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