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Abstract

We axiomatically introduce risk-consistent conditional systemic risk
measures defined on multidimensional risks. This class consists of those
conditional systemic risk measures which can be decomposed into a state-
wise conditional aggregation and a univariate conditional risk measure.
Our studies extend known results for unconditional risk measures on fi-
nite state spaces. We argue in favor of a conditional framework on gen-
eral probability spaces for assessing systemic risk. Mathematically, the
problem reduces to selecting a realization of a random field with suitable
properties. Moreover, our approach covers many prominent examples of
systemic risk measures from the literature and used in practice.

Keywords: conditional systemic risk measure, conditional aggregation,
risk-consistent properties, conditional value at risk, conditional expected
short fall.

1 Introduction

The recent financial crisis revealed weaknesses in the financial regulatory frame-
work when it comes to the protection against systemic events. Before, it was
generally accepted to measure the risk of financial institutions on a stand alone
basis. In the aftermath of the financial crisis risk assessment of financial systems
as well as their impact on the real economy has become increasingly important,
as is documented by a rapidly growing literature; see e.g. Amini and Minca
(2013) or Bisias et al. (2012) for a survey and the references therein. Parts
of this literature are concerned with designing appropriate risk measures for fi-
nancial systems, so-called systemic risk measures. The aim of this paper is to
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axiomatically characterize the class of systemic risk measures ρ which admit a
decomposition of the following form:

ρ(X) = η (Λ(X)) , (1.1)

where Λ is a state-wise aggregation function over the d-dimensional random risk
factors X of the financial system, e.g. profits and losses at a given future time
horizon, and η is a univariate risk measure. The aggregation function determines
how much a single risk factor contributes to the total risk Λ(X) of the financial
system in every single state, whereas the so-called base risk measure η quantifies
the risk of Λ(X). Chen et al. (2013) first introduced axioms for systemic risk
measures, and showed that these admit a decomposition of type (1.1). Their
studies relied on a finite state space and were carried out in an unconditional
framework. Kromer et al. (2013) extend this to arbitrary probability spaces, but
keep the unconditional setting. The main contributions of this paper are:

1. We axiomatically characterize systemic risk measures of type (1.1) in a
conditional framework, in particular we consider conditional aggregation
functions and conditional base risk measures in (1.1).

2. We allow for a very general structure of the aggregation, which is flexible
enough to cover examples from the literature which could not be handled
in axiomatic approaches to systemic risk so far.

3. We work in a less restrictive axiomatic setting, which gives us the flexibility
to study systemic risk measures which for instance need not necessarily be
convex or quasi-convex, etc. This again provides enough flexibility to cover
a vast amount of systemic risk measures applied in practice or proposed in
the literature. It also allows us to identify the relation between properties
of ρ and properties of Λ and η, and in particular the mechanisms behind
the transfer of properties from ρ to Λ and η, and vice versa. This is related
to the following point 4.

4. We identify the underlying structure of the decomposition (1.1) by defining
systemic risk measures solely in terms of so called risk-consistent properties
and properties on constants.

In the following we will elaborate on the points 1.–4. above.

1. A conditional framework for assessing systemic risk

We consider systemic risk in a conditional framework. The standard motivation
for considering conditional univariate risk measures (see e.g. Detlefsen and Scan-
dolo (2005) and Acciaio and Penner (2011)) is the conditioning in time, and the
argumentation in favor of this also carries over to multivariate risk measures.
However, apart from a dynamic assessment of the risk of a financial system, it
might be particularly interesting to consider conditioning in space. In that re-
spect Föllmer and Klüppelberg (2014) recently introduced and studied so-called
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spatial risk measures for univariate risks. Typical examples of spatial condition-
ing are conditioning on events representing the whole financial system or parts
of that system, such as single financial institutions, in distress. This is done to
study the impact of such a distress on (parts of) the financial system or the real
economy, and thereby to identify systemically relevant structures. For instance
the Conditional Value at Risk (CoVaR) introduced in Adrian and Brunnermeier
(2011) considers for q ∈ (0, 1) the q-quantile of the distribution of the netted prof-
its/losses of a financial system X = (X1, . . . , Xd) conditional on a crisis event
C(Xi) of institution i:

P

(
d∑
i=1

Xi ≤ −CoVaRq(X)

∣∣∣∣∣C(Xi)

)
= q; (1.2)

see Example 4.6. More examples can be found in Cont et al. (2013), Engle et al.
(2014), Acharya et al. (2010). Such risk measures fit naturally in a conditional
framework; cf. Example 4.6 and Example 4.8.

2. Aggregation of multidimensional risk

A quite common aggregation rule for a multivariate risk X = (X1, . . . , Xd) is
simply the sum

Λsum(X) =
d∑
i=1

Xi;

see the definition of CoVaR in (1.2). Λsum(X) represents the total profit/loss after
the netting of all single profits/losses. However, such an aggregation rule might
not always be reasonable when measuring systemic risk. The major drawbacks
of this aggregation function in the context of financial systems are that profits
can be transferred from one institution to another and that losses of a financial
institution cannot trigger additional contagion effects. Those deficiencies are
overcome by aggregation functions which explicitly account for contagion effects
within a financial system. For instance, based on the approach in Eisenberg and
Noe (2001), the authors in Chen et al. (2013) introduce such an aggregation
rule which however, due to the more restrictive axiomatic setting, exhibits the
unrealistic feature that in case of a clearing of the system institutions might
decrease their liabilities by more than their total debt level. We will present a
more realistic extension of this contagion model together with a small simulation
study in Example 4.9.

Moreover, we present reasonable aggregation functions which are not com-
prised by the axiomatic framework of Chen et al. (2013) or Kromer et al. (2013).
In particular this includes conditional aggregation functions which come natu-
rally into play in our framework; see Example 4.5.

3.–4. Axioms for systemic risk measures
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Our aim is to identify the relation between properties of ρ and properties of Λ
and η in (1.1) respectively, and in particular the mechanisms behind the transfer
of properties from ρ to Λ and η, and vice versa. We will show that this leads to
two different classes of axioms for conditional systemic risk measures. One class
concerns the behavior on deterministic risks, so-called properties on constants.
The other class of axioms ensures a consistency between state-wise and global -
in the sense of over all states - risk assessment. This latter class will be called
risk-consistent properties.

The risk-consistent properties ensure a consistency between local - that is
ω-wise - risk assessment and the measured global risk. For example, risk-
antitonicity is expressed by: if for given risk vectors X and Y it holds that
ρ(X(ω)) ≥ ρ(Y (ω)) in almost all states ω, then ρ(X) ≥ ρ(Y ). The naming
risk-antitonicity, and analogously the naming for the other risk-consistent prop-
erties, is motivated by the fact that antitonicity is considered with respect to
the order relation ρ(X(ω)) ≥ ρ(Y (ω)) induced by the ω-wise risk comparison of
two positions and not with respect to the usual order relation on the space of
random vectors.

Note that for a univariate risk measure ρ which is constant on constants,
i.e. ρ(x) = −x for all x ∈ R, risk-antitonicity is equivalent to the ’classical’
antitonicity with respect to the usual order relation on the underlying space of
random variables. In a general multivariate setting this equivalence does not
hold anymore. However, we will show that properties on constants in conjunc-
tion with corresponding risk-consistent properties imply the classical properties
on the space of risks. This makes our risk model very flexible, since we may
identify systemic risk measures where for example the corresponding aggrega-
tion function Λ in (1.1) is concave, but the base risk measure η is not convex.
Moreover, it will turn out that the properties on constants basically determine
the underlying aggregation rule in the systemic risk assessment, whereas the
risk-consistent properties translate to properties of the base risk measure in the
decomposition (1.1).

Some of the risk-consistent properties, however partly under different names,
also appear in the frameworks of Chen et al. (2013) and Kromer et al. (2013).
For instance what we will call risk-antitonicity is called preference consistency
in Chen et al. (2013). In our framework we emphasize the link between the risk-
consistent properties (and the properties on constants) and the decomposition
(1.1). This aspect has not been clearly worked out so far. It leads us to introduc-
ing a number of new axioms and to classifying all axioms within the mentioned
classes of risk-consistent properties and properties on constants.

Structure of the paper

In Section 2 we introduce our notation and the main objects of this paper, that
is the risk-consistent conditional systemic risk measures, the conditional aggre-
gation functions and the conditional base risk measures as well as their various
extensions. At the end of Section 2 we state our main decomposition result
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(Theorem 2.9) for risk-consistent conditional systemic risk measures. Moreover,
Theorem 2.11 reveals the connection between risk-consistent properties and prop-
erties on constants on the one hand and the classical properties of risk measures
on the other hand. Section 3 is devoted to the proofs of Theorem 2.9 and Theo-
rem 2.11. In Section 4 we collect our examples.

2 Decomposition of systemic risk measures

Throughout this paper let (Ω,F ,P) be a probability space and G be a sub-
σ-algebra of F . L∞(F) := L∞(Ω,F ,P) refers to the space of F -measurable,
P-almost surely (a.s.) bounded random variables and L∞

d (F) to the d-fold carte-
sian product of L∞(F). As usual, L∞(F) and L∞d (F) denote the corresponding
spaces of random variables/vectors modulo P-a.s. equality. For G-measurable
random variables/vectors analogue notations are used.
In general, upper case letters will represent random variables, where X, Y, Z
are multidimensional and F,G,H are one-dimensional, and lower case letters
deterministic values.
We will use the usual componentwise orderings on Rd and L∞d (F), i.e. x =
(x1, . . . , xd) ≥ y = (y1, . . . , yd) for x, y ∈ Rd if and only if xi ≥ yi for all i =
1, . . . , d, and similarly X ≥ Y if and only if Xi ≥ Yi a.s. for all i = 1, ..., d.
Furthermore 1d and 0d denote the d-dimensional vectors whose entries are all
equal to 1 or all equal to 0, respectively.
When deriving our main results we will run into similar problems as one faces in
the study of stochastic processes: At some point it will not be sufficient to work
on equivalence classes, but we will need a specific nice realization or version of
the process, for instance a version with continuous paths, etc. In the following,
by a realization of a function ρG : L∞d (F) → L∞(G) we mean a selection of one
representative in the equivalence class ρG(X) for each X ∈ L∞d (F), i.e. a function
ρG(·, ·) : L∞d (F) × Ω → R where ρG(X, ·) ∈ L∞(G) with ρG(X, ·) ∈ ρG(X) for
all X ∈ L∞d (F). We emphasize that in the following we will always denote a
realization of a function ρG by its explicit dependence on the two arguments:
ρG(·, ·). Indeed, our decomposition result in Theorem 2.9 will be based on the
idea to break down a random variable into every single scenario and evaluating it
separately. This implies working with appropriate realizations which will satisfy
properties which we will denote risk-consistent properties.

Also for risk factors we will work both with equivalence classes of random
vectors in L∞d (F) and their corresponding representatives in L∞

d (F). However,
in contrast to the realizations of ρG introduced above, here the considerations do
not depend on the specific choice of the representative. Hence for risk factors
X ∈ L∞d (F) we will stick to usual abuse of notation of also writing X for an
arbitrary representative in L∞

d (F) of the corresponding equivalence class. This
will become clear from the context. In particular, X(ω) denotes an arbitrary
representative of the corresponding equivalence class evaluated in the state ω ∈
Ω.
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Finally, we write x ∈ Rd both for real numbers and for (equivalence classes
of) constant random variables depending on the context.

The following definition introduces our main object of interest in this paper:

Definition 2.1 (Risk-consistent Conditional Systemic Risk Measure).
A function ρG : L∞d (F)→ L∞(G) is called a risk-consistent conditional systemic
risk measure (CSRM), if it is

Antitone on constants: For all x, y ∈ Rd with x ≥ y we have ρG(x) ≤ ρG(y) ,

and if there exists a realization ρG (·, ·) such that the restriction

ρ̃G : Rd × Ω→ R; x 7→ ρG (x, ω) (2.1)

has continuous paths, i.e. ρ̃G is continuous in its first argument a.s., and it
satisfies

Risk-antitonicity: For all X, Y ∈ L∞d (F) with ρ̃G (X(ω), ω) ≥ ρ̃G (Y (ω), ω)
a.s. we have ρG(X) ≥ ρG(Y ).

Furthermore, we will consider the following properties of ρG on constants:

Convexity on constants: ρG (λx+ (1− λ)y) ≤ λρG(x) + (1− λ)ρG(y) for all
constants x, y ∈ Rd and λ ∈ [0, 1];

Positive homogeneity on constants: ρG(λx) = λρG(x) for all x ∈ Rd and
λ ≥ 0.

We will also consider the following risk-consistent properties of ρG:

Risk-convexity: If for X, Y, Z ∈ L∞d (F) there exists an α ∈ L∞(G) with 0 ≤
α ≤ 1 such that ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) +

(
1−α(ω)

)
ρ̃G (Y (ω), ω)

a.s., then ρG(Z) ≤ αρG(X) + (1− α)ρG(Y );

Risk-quasiconvexity: If for X, Y, Z ∈ L∞d (F) there exists an α ∈ L∞(G) with
0 ≤ α ≤ 1 such that ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω)+

(
1−α(ω)

)
ρ̃G (Y (ω), ω)

a.s., then ρG(Z) ≤ ρG(X) ∨ ρG(Y );

Risk-positive homogeneity: If for X, Y ∈ L∞d (F) there exists an α ∈ L∞(G)
with α ≥ 0 such that ρ̃G (Y (ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s., then ρG(Y ) =
αρG(X);

Risk-regularity: ρG (X,ω) = ρ̃G (X(ω), ω) a.s. for all X ∈ L∞d (G).

We will see in Theorem 2.9 that risk-antitonicity is the crucial property which
guarantees that ρG allows a conditional decomposition analogously to (1.1). The
idea behind all risk-consistent properties is that they ensure a consistency be-
tween local - that is ω-wise - risk assessment and the measured global risk. Con-
sider for instance again the risk-antitonicity property and suppose we are given
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an event A ∈ G and random risk factors Z ∈ L∞d (F) as well as X, Y ∈ L∞d (F)
such that on the level of our realization which satisfies the risk-antitonicity we
have ρ̃G (X(ω), ω) ≥ ρ̃G (Y (ω), ω) a.s. on A. In other words for almost all ω ∈ A,
the risk of the constant risk factors X(ω) evaluated in ω is higher than the cor-
responding risk of Y (ω) evaluated in ω. Now consider the modified risk factors
ZX := X1A +Z1AC and ZY := Y 1A +Z1AC where we modify Z on A in such a
way that ZY is preferred on almost every state in A to ZX , and otherwise both
risk factors are identical. Then risk-antitonicity implies that ρG(ZY ) ≤ ρG(ZX).

Our definition of a CSRM is based on properties on constants together with
risk-consistent properties. It turns out (see Theorem 2.9) that the properties on
constants translate into the corresponding properties of the (conditional) aggre-
gation function and the risk-consistent properties translate into the correspond-
ing properties of the (conditional) base risk measure in the decomposition of
a CSRM. Moreover, a natural question is to which extend CSRM’s also fulfill
the established properties of risk measures in the literature. For instance, anti-
tonicity on L∞d , i.e. X ≥ Y implies ρG(X) ≤ ρG(Y ), is commonly accepted as a
minimal requirement for risk measures. Further, quasiconvexity or the stronger
condition of convexity on L∞d are properties often asked for as they correspond to
the requirement that diversification should not be penalized, cf. Cerreia-Vioglio
et al. (2011). Also, an important subclass are those CSRM which are positive
homogeneous, as for example the CoVaR or the CoES introduced in Adrian and
Brunnermeier (2011); see Example 4.6 and Example 4.7. In general, it will turn
out (see Theorem 2.11) that properties on constants combined with the cor-
responding risk-consistent properties will imply properties such as antitonicity,
(quasi-) convexity or positive homogeneity of ρG on L∞d . For example, antitonic-
ity on constants in conjunction with risk-antitonicity implies antitonicity on L∞d .

One might ask in which setting it is possible to formulate the risk-consistent
properties directly in terms of the function ρG without requiring the existence of
a particular realization of this function. As we will see in the next Proposition 2.2
this is possible if ρG(x) has a discrete structure for all x ∈ Rd. For the sake of
brevity we omit the proof.

Proposition 2.2. Let ρG : L∞d (F)→ L∞(G) be a function which has a realization
with continuous paths. Further suppose that

ρG(x) =
s∑
i=1

ai(x)1Ai
, x ∈ Rd, (2.2)

where ai(x) ∈ R and Ai ∈ G are pairwise disjoint sets such that Ω =
⋃s
i=1Ai

for s ∈ N ∪ {∞}. Define k : Ω → N; ω 7→ i such that ω ∈ Ai. Then ρG is
risk-antitone if and only if

ρG(X(ω))1Ak(ω)
≥ ρG(Y (ω))1Ak(ω)

a.s. implies ρG(X) ≥ ρG(Y ), (2.3)

where here the point evaluations X(ω), Y (ω) ∈ Rd have to be understood as equiv-
alence classes of constant random variables. Also the remaining risk-consistent
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properties can be expressed in a similar way without requiring a particular real-
ization of ρG.

Remark 2.3. Notice that in the setting of Proposition 2.2, we had to require
that there exists a realization with continuous paths. Sufficient criteria for ρG
which guarantee that such a continuous realizations exists are well known, e.g.
Kolmogorov’s criterion (see e.g. Theorem 2.1 in Revuz and Yor (1999)). A suf-
ficient specification of a CSRM solely in terms of ρG (without employing any
realization) is thus: if ρG is antitone on constants, has a discrete structure (2.2)
and fulfills (2.3) and Kolmogorov’s criterion, then ρG is a CSRM.

In order to state our decomposition result we need to clarify what we mean
by a (conditional) aggregation function and a conditional base risk measure. We
start with the aggregation function.

Definition 2.4 (Aggregation Functions).

We call a function Λ̃ : Rd → R a deterministic aggregation function (DAF), if
it has the following two properties:

Isotonicity: If x, y ∈ Rd with x ≥ y, then Λ̃(x) ≥ Λ̃(y);

Continuity: Λ̃ is continuous.

A DAF is called concave or positive homogeneous, respectively, if it satisfies for
all x, y ∈ Rd

Concavity: If λ ∈ [0, 1], then Λ̃
(
λx+ (1− λ)y

)
≥ λΛ̃(x) + (1− λ)Λ̃(y);

Positive homogeneity: Λ̃(λx) = λΛ̃(x) for all λ ≥ 0.

Furthermore, a function Λ̃G : Rd × Ω→ R is a conditional aggregation function
(CAF), if

(i) Λ̃G (x, ·) ∈ L∞(G) for all x ∈ Rd,

(ii) Λ̃G (·, ω) is a DAF for all ω ∈ Ω.

A CAF is called concave (positive homogeneous) if Λ̃G (·, ω) is concave (positive
homogeneous) for all ω ∈ Ω.

Remark 2.5. Note that, functions like CAFs which are continuous in one argu-
ment and measurable in the other also appear under the name of Carathéodory
functions in the literature on differential equations. For Carathéodory functions
it is well known (see e.g. Aubin and Frankowska (2009) Lemma 8.2.6) that they

are product measurable, i.e. every CAF Λ̃G is B(R)× G-measurable.

Given a CAF Λ̃G, we extend the aggregation from deterministic to random
vectors in the following way (which is well-defined due to Remark 2.5 as well as
isotonicity and property (i) in the definition of a CAF):

ΛG : L∞d (F)→ L∞(F), X 7→ Λ̃G (X(ω), ω) . (2.4)

8



Remark 2.6. Notice that the aggregation (2.4) of random vectors X is ω-wise in
the sense that given a certain state ω ∈ Ω, in that state we aggregate the sure
payoff X(ω). Consequently, properties such as isotonicity, concavity or positive

homogeneity of the CAF Λ̃G translate to the extended CAF ΛG. Hence, ΛG
always satisfies

ΛG (X) ≥ ΛG (Y ) for all X, Y ∈ L∞d (F) with X ≥ Y . (2.5)

If Λ̃G is concave, then for all X, Y ∈ L∞d (F) and α ∈ L∞(F) with 0 ≤ α ≤ 1 we
have

ΛG (αX + (1− α)Y ) ≥ αΛG (X) + (1− α)ΛG (Y ) , (2.6)

and if Λ̃G is positively homogeneous, then for all X ∈ L∞d (F) and α ∈ L∞(F)
with α ≥ 0:

ΛG (αX) = αΛG (X) . (2.7)

The last yet undefined ingredient in our decomposition (1.1) is the condi-
tional base risk measure ηG which we define next. Notice that the domain X of
ηG depends on the underlying aggregation given by ρG. For example the aggrega-
tion function Λ̃(x) =

∑d
i=1 min{xi, 0}, x ∈ Rd only considers the losses. Hence,

the corresponding base risk measure η a priori only needs to be defined on the
negative cone of L∞(F), even though it in many cases allows for an extension to
L∞(F). We will see in Lemma 3.1 that if X is the image of an extended CAF ΛG
then X is G-conditionally convex, i.e. F,G ∈ X and α ∈ L∞(G) with 0 ≤ α ≤ 1
implies αF + (1− α)G ∈ X .

Definition 2.7 (Conditional Base Risk Measure).
Let X ⊆ L∞(F) be a G-conditionally convex set. A function ηG : X → L∞(G) is
a conditional base risk measure (CBRM), if it is

Antitone: F ≥ G implies ηG(F ) ≤ ηG(G).

Moreover, we will also consider CBRM’s which fulfill additionally one or more
of the following properties:

Constant on constants: ηG(α) = −α for all α ∈ X ∩ L∞(G);

Quasiconvexity: ηG (αF + (1− α)G) ≤ ηG(F )∨ηG(G) for all α ∈ L∞(G) with
0 ≤ α ≤ 1;

Convexity: ηG (αF + (1− α)G) ≤ αηG(F ) + (1 − α)ηG(G) for all α ∈ L∞(G)
with 0 ≤ α ≤ 1;

Positive homogeneity: ηG(αF ) = αηG(F ) for all α ∈ L∞(G) with α ≥ 0 and
αF ∈ X .

Constructing a CSRM by composing a CBRM and a CAF as in (1.1), we
need a property for ηG which allows to ’extract’ the CAF in order to obtain the
properties on constants of ρG. The constant on constants property serves this
purpose, but we will see in Theorem 2.9 that the following weaker property is
also sufficient.
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Definition 2.8. A CBRM ηG : X → L∞(G) is called constant on a CAF Λ̃G, if
ΛG(x) ∈ X for all x ∈ Rd and

ηG (ΛG (x)) = −ΛG (x) for all x ∈ Rd. (2.8)

Clearly, if ηG is constant on constants, then it is constant on any CAF with
an appropriate image as (2.8) is always satisfied.

Conditional risk measures have been widely studied in the literature, see
Föllmer and Schied (2011) for an overview. As already explained above the an-
titonicity is widely accepted as a minimal requirement for risk measures. The
constant on constants property is a standard technical assumption, whereas we
will only need the weaker property of constancy on an aggregation function for an
CBRM. Typically conditional risk measures are also required to be monetary in
the sense that they satisfy some translation invariance property which we do not
require in our setting, see e.g. Detlefsen and Scandolo (2005). Much of the liter-
ature is concerned with the study of quasiconvex or convex conditional risk mea-
sures which in our setting implies that the corresponding risk-consistent condi-
tional systemic risk measure will satisfy risk-quasiconvexity resp. risk-convexity,
see Theorem 2.9.

After introducing all objects and properties of interest we are now able to
state our decomposition theorem.

Theorem 2.9. A function ρG : L∞d (F)→ L∞(G) is a CSRM if and only if there

exists a CAF Λ̃G : Rd × Ω→ R and a CBRM ηG : Im ΛG → L∞(G) such that ηG
is constant on Λ̃G (Definition 2.8) and

ρG (X) = ηG (ΛG (X)) for all X ∈ L∞d (F), (2.9)

where the extended CAF ΛG (X) := Λ̃G (X(ω), ω) was introduced in (2.4). The
decomposition into ηG and ΛG is unique.
Furthermore there is a one-to-one correspondence between additional properties
of the CBRM ηG and additional risk-consistent properties of the CSRM ρG:

• ρG is risk-convex iff ηG is convex;

• ρG is risk-quasiconvex iff ηG is quasiconvex;

• ρG is risk-positive homogeneous iff ηG is positive homogeneous;

• ρG is risk-regular iff ηG is constant on constants.

Moreover, properties on constants of the CSRM ρG are related to properties of
the CAF Λ̃G:

• ρG is convex on constants iff Λ̃G is concave;

• ρG is positive homogeneous on constants iff Λ̃G is positive homogeneous.
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The proof of Theorem 2.9 is quite lengthy and needs some additional prepa-
ration and is thus postponed to Section 3. Note that it follows from the proof
of Theorem 2.9 that the aggregation rule in (2.9) is deterministic if and only if
ρG(Rd) ⊆ R.

Remark 2.10. The decomposition (2.9) can also be established without requiring
the CSRM to be risk-antitone, but to fulfill the weaker property

ρ̃G (X(ω), ω) = ρ̃G (Y (ω), ω) a.s. =⇒ ρG(X) = ρG(Y ). (2.10)

Notice, however, if we only require (2.10), then the CBRM ηG in (2.9) (and also
ρG itself, see Theorem 2.11 below) might not be antitone anymore.

An important question is to which degree CSRM’s fulfill the usual (condi-
tional) axioms of risk measures on L∞d (F) (where these axioms on L∞d (F) are
defined analogously to the ones on L∞(F) in Definition 2.7). In the following
Theorem 2.11 we will investigate the relation between risk-consistent properties
and properties on constants on the one side and properties of ρG on L∞d (F) on
the other.

Theorem 2.11. Let ρG be a CSRM. Then

• risk-antitonicity together with antitonicity on constants can equivalently be
replaced by antitonicity of ρG (X ≥ Y implies ρG(X) ≤ ρG(Y )) together
with (2.10).

Moreover:

• ρG is risk-positive homogeneous and positive homogeneous on constants iff
ρG is positive homogeneous;

• If ρG is risk-convex and convex on constants, then ρG is convex;

• If ρG is risk-quasiconvex and convex on constants, then ρG is quasiconvex.

As for Theorem 2.9 we postpone the proof to Section 3.

Remark 2.12. We have seen in Theorem 2.11 that a property on L∞d (F) of a
CSRM is implied by the corresponding risk-consistent property and the property
on constants. The reverse is only true for the antitonicity and positive homo-
geneity. To see this we give a counterexample for the convex case. Suppose that

Λ̃G(x) := u−1
(∑d

i=1 xi

)
and ηG(F ) := −u−1 (EP [u(F ) | G]), where u : R → R

is a strictly increasing and convex function. Then it can be easily verified that
u−1 is strictly increasing and concave. Hence Λ̃G is a concave CAF and ηG is a
CBRM. Nevertheless, there are functions u such that ηG is not a convex CBRM,
e.g. u(c) = c1{c≤0} + ac1{c>0}, a > 1. According to Theorem 2.9 we get a CSRM
ρG by composing ΛG and ηG, which is explicitly given by

ρG(X) = −u−1
(
EP

[
d∑
i=1

Xi

∣∣∣∣∣ G
])

.

It is obvious that ρG is convex. But since ηG is not convex, ρG cannot be risk-
convex by Theorem 2.9.
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3 Proof of Theorem 2.9 and 2.11

Before we state the proofs of Theorems 2.9 and 2.11, we provide some auxiliary
results.

Lemma 3.1. Let Λ̃G : Rd×Ω→ R be a CAF and let H be a sub-σ-algebra of F
such that G ⊆ H ⊆ F . Then

ΛG (L∞d (H)) ⊆ L∞(H), (3.1)

and for every X, Y ∈ L∞(H) and α ∈ L∞(G) with 0 ≤ α ≤ 1 there is an
F ∈ L∞(H) such that

αΛG(X) + (1− α)ΛG(Y ) = ΛG(F1d).

In particular this implies that the image of ΛG is G-conditionally convex.
Conversely, we have that

L∞(H) ∩ Im ΛG ⊆ ΛG (L∞d (H)) .

Proof. Let X ∈ L∞d (H) and set F (ω) := Λ̃G (X(ω), ω), ω ∈ Ω. Since Λ̃G is a
Carathéodory map it follows that F is H-measurable, cf. Lemma 8.2.3 in Aubin
and Frankowska (2009). Let A := {ω ∈ Ω : Λ̃G (X(ω), ω) ≤ 0}. Then

‖F‖∞ =
∥∥∥Λ̃G (X(·), ·)

∥∥∥
∞
≤
∥∥∥Λ̃G (essinf X, ·)1A

∥∥∥
∞

+
∥∥∥Λ̃G (esssupX, ·)1AC

∥∥∥
∞

≤
∥∥∥Λ̃G (essinf X, ·)

∥∥∥
∞

+
∥∥∥Λ̃G (esssupX, ·)

∥∥∥
∞
<∞, (3.2)

where we used the boundedness condition Definition 2.4 (i) in the last step and
where essinf X := (essinf X1, . . . , essinf Xd), and similarly for esssup. Hence, we
conclude that F ∈ L∞(H).
Let X, Y ∈ L∞d (H) and α ∈ L∞(G) with 0 ≤ α ≤ 1. The rest of the proof is based
on a measurable selection theorem for which we need that the probability space
is complete. However, L∞d (Ω,H,P) and L∞d (Ω, Ĥ, P̂) are isometric isomorph,

where (Ω, Ĥ, P̂) denotes the completion of (Ω,H,P). Thus for X and Y there

exist respective X̂, Ŷ ∈ L∞d (Ĥ) and it is easily verified that any representatives

of the equivalence classes X̂ (Ŷ ) and X (Y ) only differ on a P̂-nullset. Define

x := essinf

(
min
i=1,...,d

(
min(X̂i, Ŷi)

))
and x := esssup

(
max
i=1,...,d

(
max(X̂i, Ŷi)

))
.

Since both X̂, Ŷ are essentially bounded we have that x, x ∈ R. Moreover the
random variable G which is given for each ω ∈ Ω by

G(ω) := α(ω)Λ̃G (X(ω), ω) +
(
1− α(ω)

)
Λ̃G (Y (ω), ω) ,
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is contained in an equivalence class in L∞(H) by the first part of the proof and

thus we can find a corresponding equivalence class Ĝ ∈ L∞(Ĥ). By isotonicity
we have

Λ̃G (x1d, ω) ≤ Ĝ(ω) ≤ Λ̃G (x1d, ω) P̂-a.s.

The continuity of the function R 3 x 7→ Λ̃G (x1d, ω) for each ω ∈ Ω implies that

Ĝ(ω) ∈
{

Λ̃G (x1d, ω) : x ∈ [x, x]
}

P̂-a.s.

Finally, we can apply Filippov’s theorem (see e.g. Aubin and Frankowska (2009)

Theorem 8.2.10), that is there exists a Ĥ-measurable selection F̂ (ω) ∈ [x, x] such
that

Ĝ(ω) = Λ̃G

(
F̂ (ω)1d, ω

)
P̂-a.s.

For this measurable selection F̂ we can find an F ∈ L∞(H) such that P̂(F̂ 6=
F ) = 0. Hence there exists an F ∈ L∞(H) such that

αΛG(X) + (1− α)ΛG(Y ) = ΛG(F1d).

For the last part of the proof let G ∈ Im ΛG ∩ L∞(H), then by definition
there exists an X ∈ L∞d (F) such that ΛG(X) = G. Thus by setting x :=
essinf(mini=1,...,dXi) and x := esssup(maxi=1,...,dXi) we have that

Λ̃G (x1d, ω) ≤ G(ω) ≤ Λ̃G (x1d, ω) a.s.

Moreover, since G is H-measurable, we obtain by a similar argumentation as
above that there exists aH-measurable F with x ≤ F ≤ x and ΛG(F1d) = G.

Lemma 3.2. Let Λ̃G be a conditional aggregation function. Then there exists a
P-nullset N such that if x, y ∈ Rd satisfy Λ̃G (x, ω) = Λ̃G (y, ω) a.s. it holds that

Λ̃G (x, ω) = Λ̃G (y, ω) for all ω ∈ NC , where NC denotes the complement of N .

Proof. Consider the sets B := {(x, y) ∈ Q2d : Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s.} and

N(x,y) := {ω ∈ Ω : Λ̃G (x, ω) < Λ̃G (y, ω)} for (x, y) ∈ B. By definition N(x,y) is a
P-nullset for all (x, y) ∈ B, but since B has only countable many elements, the
same holds true for the union N :=

⋃
(x,y)∈B N(x,y).

Now consider x, y ∈ Rd such that Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s. We can always find
sequences (xn)n∈N, (yn)n∈N ∈ QN such that xn ↓ x and yn ↑ y for n → ∞. The

isotonicity of Λ̃G yields Λ̃G (xn, ω) ≥ Λ̃G (x, ω) ≥ Λ̃G (y, ω) ≥ Λ̃G (yn, ω) a.s., thus
(xn, yn) ∈ B for all n ∈ N. Therefore we get for all ω ∈ NC that

Λ̃G (x, ω) = lim
n→∞

Λ̃G (xn, ω) ≥ lim
n→∞

Λ̃G (yn, ω) = Λ̃G (y, ω) ,

where we have used that Λ̃G (·, ω) is continuous for every ω ∈ Ω. As Λ̃G (x, ω) =

Λ̃G (y, ω) a.s. implies Λ̃G (x, ω) ≥ Λ̃G (y, ω) a.s. and Λ̃G (x, ω) ≤ Λ̃G (y, ω) a.s., the
assertion follows.
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Note that the P-nullset N in Lemma 3.2 is universal in the sense that it does
not depend on the pair (x, y) ∈ R2d.

Proof of Theorem 2.9. For the rest of the proof let X, Y ∈ L∞d (F).
”⇐”:
Suppose that Λ̃G : Rd × Ω → R is a CAF with extended CAF ΛG : L∞d (F) →
L∞(F), and that ηG : Im ΛG → L∞(G) is a CBRM which is constant on Λ̃G.
Moreover, define the function

ρG : L∞d (F)→ L∞(G), X 7→ ηG (ΛG (X)) .

First we will show that ρG is antitone (and thus in particular antitone on con-

stants): To this end, let X ≥ Y . As Λ̃G (·, ω) is isotone for all ω ∈ Ω we know
from (2.5) that also the extended CAF is isotone, i.e. ΛG (X) ≥ ΛG (Y ). By the
antitonicity of ηG we can conclude that

ρG (X) = ηG (ΛG (X)) ≤ ηG (ΛG (Y )) = ρG (Y ) .

Next we will show that there exists a realization of ρG with continuous paths and
which fulfills the risk-antitonicity. From (2.8) and Lemma 3.2 it can be readily
seen that we can always find a realization of ηG and a universal P-nullset N such
that for all ω ∈ NC

ηG (ΛG (x) , ω) = −Λ̃G (x, ω) for all x ∈ Rd. (3.3)

Given this realization of ηG we consider in the following the realization ρG(·, ·) of
ρG given by

ρG (X,ω) := ηG (ΛG (X) , ω) , X ∈ L∞d (F), ω ∈ Ω.

The function ρ̃G : Rd × Ω → R; x 7→ ρG(x, ω) has continuous paths (a.s.)

because Λ̃G has continuous paths. As for the risk-antitonicity, let ρ̃G (X(ω), ω) ≥
ρ̃G (Y (ω), ω) a.s. By rewriting this in terms of the decomposition, i.e.
ηG
(
ΛG (X(ω)) , ω

)
≥ ηG

(
ΛG (Y (ω)) , ω

)
, we realize by (3.3) that

Λ̃G (X(ω), ω) ≤ Λ̃G (Y (ω), ω) a.s. (3.4)

Note that our application of (3.3) relies on the fact that the nullset N in (3.3)
does not depend on x ∈ Rd. As (3.4) is equivalent to ΛG (X) ≤ ΛG (Y ), we
conclude that

ρG(X) = ηG(ΛG (X)) ≥ ηG(ΛG (Y )) = ρG(Y ),

where we used the antitonicity of ηG. Hence, we have proved that ρG is a CSRM.

Next we treat the special cases when ηG and/or Λ̃G satisfy some extra properties.
Risk-regularity : Suppose ηG is constant on constants. Then we have

ρG(X) = −ΛG (X) for all X ∈ L∞d (G),
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and thus we obtain for the realization ρG (·, ·) that for all X ∈ L∞d (G)

ρG (X,ω) = −Λ̃G (X(ω), ω) a.s.

As above (3.3) implies that for all ω ∈ NC

−Λ̃G (X(ω), ω) = ηG (ΛG (X(ω)) , ω) = ρ̃G (X(ω), ω) .

Risk-quasiconvexity/convexity : Suppose that ηG is quasiconvex. We show that
ρG is risk-quasiconvex. To this end, suppose there exist X, Y, Z ∈ L∞d (F) and an
α ∈ L∞(G) with 0 ≤ α ≤ 1 such that

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

Then, as above, by using (3.3), it follows that

ΛG (Z) = αΛG (X) + (1− α)ΛG (Y ) .

Hence the quasiconvexity of ηG yields

ρG(Z) = ηG (ΛG (Z)) = ηG (αΛG (X) + (1− α)ΛG (Y ))

≤ ηG (ΛG (X)) ∨ ηG (ΛG (Y ))

= ρG(X) ∨ ρG(Y ).

Similarly it follows that ρG is risk-convex whenever ηG is convex.
Risk-positive homogeneity : Finally, if ηG is positively homogeneous, then it is
straightforward to see that also ρG is risk-positively homogeneous.
Properties on constants: Suppose that Λ̃G is concave or positive homogeneous,
then it is an immediate consequence of (3.3) that ρG is convex on constants or
positive homogeneous on constants, resp.
”⇒”:
Let ρG (·, ·) denote a realization of the CSRM ρG such that ρ̃G has continuous

paths and the risk-antitonicity holds. We define the function Λ̂G : Rd × Ω → R
by

Λ̂G (x, ω) := −ρ̃G (x, ω) . (3.5)

We show that Λ̂G(·, ω) is a DAF for almost all ω ∈ Ω, i.e. that it is isotone
and continuous. The continuity is obvious by (3.5). For the isotonicity consider

the sets B :=
{

(x, y) ∈ Q2d : x ≥ y
}

and A
(1)
(x,y) := {ω ∈ Ω : Λ̂G (x, ω) <

Λ̂G (y, ω)} for (x, y) ∈ B. Since ρG is antitone on constants we obtain that A(1) :=⋃
(x,y)∈B A

(1)
(x,y) is a P-nullset. Moreover, let A(2) denote the P-nullset on which

Λ̂G has discontinuous sample paths. Consider x, y ∈ Rd such that x ≥ y, and let
(xn, yn) ∈ BN be a sequence which converges to (x, y) for n→∞. Then we get

for all ω ∈
(
A(1) ∪ A(2)

)C
that

Λ̂G (x, ω) = lim
n→∞

Λ̂G (xn, ω) ≥ lim
n→∞

Λ̂G (yn, ω) = Λ̂G (y, ω) ,
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and thus the paths Λ̂G (·, ω) are isotone a.s.

The fact that the paths Λ̂G (·, ω) are concave (positively homogeneous) a.s.
whenever ρG is convex on constants (positively homogeneous on constants) fol-
lows by a similar approximation argument on the continuous paths which are
concave (positively homogeneous) on Qd.

Given the above considerations, we choose a modification Λ̃G of Λ̂G such that
Λ̃G(·, ω), is a (concave/positively homogeneous) DAF for all ω ∈ Ω. Note that

for Λ̃G relation (3.5) is only valid a.s., that is there is a P-nullset N such that for
all x ∈ Rd and ω ∈ NC

Λ̃G (x, ω) = −ρ̃G (x, ω) . (3.6)

As −ρ̃G (x, ·) ∈ L∞(G) and thus also Λ̃G (x, ·) ∈ L∞(G) for all x ∈ Rd (note

that N ∈ G), we have shown that Λ̃G is indeed a CAF.

Next, we will construct a CBRM ηG : Im ΛG =: X → L∞(G) such that ρG =

ηG ◦ ΛG where ΛG is the extended CAF of Λ̃G. For F ∈ X we define

ηG(F ) := ρG(X), (3.7)

where X ∈ L∞d (F) is given by

ΛG (X) = F. (3.8)

Since F ∈ X the existence of such X is always ensured. By (3.8) and (3.7) we
obtain the desired decomposition

ηG (ΛG (X)) = ρG(X),

if ηG is well-defined. In order to show the latter, let X(1), X(2) ∈ L∞d (F) such
that

ΛG
(
X(1)

)
= ΛG

(
X(2)

)
= F,

which by definition of ΛG in (2.4) can be rewritten as

Λ̃G
(
X(1)(ω), ω

)
= F (ω) = Λ̃G

(
X(2)(ω), ω

)
a.s.

By (3.6) this can be restated in terms of ρ̃G (·, ·) as

ρ̃G
(
X(1)(ω), ω

)
= ρ̃G

(
X(2)(ω), ω

)
a.s.

Now the risk-antitonicity of ρG yields ρG
(
X(1)

)
= ρG

(
X(2)

)
, so ηG in (3.7) is

indeed well-defined.
Next we will show that ηG is a CBRM. For this purpose, let in the following

F,G ∈ X and X, Y ∈ L∞d (F) be such that ΛG (X) = F , ΛG (Y ) = G.
Antitonicity : Assume F ≥ G. Then, by (3.6) for almost every ω ∈ Ω

−ρ̃G (X(ω), ω) = Λ̃G (X(ω), ω) = F (ω) ≥ G(ω) = Λ̃G (Y (ω), ω) = −ρ̃G (Y (ω), ω) .
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Hence, risk-antitonicity ensures that ρG(X) ≤ ρG(Y ). But by (3.7) this is equiv-
alent to ηG(F ) ≤ ηG(G).

Constancy on Λ̃G: Constancy on Λ̃G is an immediate consequence of (3.6)-(3.8),
since for x ∈ Rd

ηG (ΛG (x)) = ρG(x) = −ΛG (x) .

Hence, the decomposition (2.9) is proved.

Uniqueness : Let η
(1)
G , η

(2)
G be CBRM’s and Λ̃

(1)
G , Λ̃

(2)
G be CAF’s such that η

(1)
G and

η
(2)
G are constant on Λ̃

(1)
G and Λ̃

(2)
G resp. and it holds that

η
(1)
G

(
Λ

(1)
G (X)

)
= ρG(X) = η

(2)
G

(
Λ

(2)
G (X)

)
for all X ∈ L∞d (F).

Then it follows from the constancy on the respective CAF’s that for all x ∈ Rd

Λ
(1)
G (x) = Λ

(2)
G (x), i.e.

Λ̃
(1)
G (x, ω) = Λ̃

(2)
G (x, ω) a.s. (3.9)

Note that by a similar argumentation as in the proof of Lemma 3.2 (3.9) holds

true on a universal P-nullset N for all x ∈ Rd. In order to show that Λ
(1)
G and Λ

(2)
G

are not only equal on constants let X ∈ L∞d (F). Then X can be approximated
by simple F -measurable random vectors, i.e. there exists a sequence (Xn)n∈N
with Xn → X P-a.s. and Xn =

∑kn
i=1 x

n
i 1An

i
for all n ∈ N, where xni ∈ R and

Ani ∈ F , i = 1, ..., kn are disjoint sets such that P(Ani ) > 0 and P
(⋃kn

i=1A
n
i

)
= 1.

Denote by M the P-nullset on which (Xn)n∈N does not converge. Then by the
continuity property of a CAF and (3.9) we have for all ω ∈ (N ∪M)C that

Λ̃
(1)
G (X(ω), ω) = Λ̃

(1)
G

(
lim
n→∞

Xn(ω), ω
)

= lim
n→∞

Λ̃
(1)
G (Xn(ω), ω)

= lim
n→∞

kn∑
i=1

Λ̃
(1)
G (xni , ω)1An

i
(ω) = lim

n→∞

kn∑
i=1

Λ̃
(2)
G (xni , ω)1An

i
(ω)

= Λ̃
(2)
G (X(ω), ω) ,

and thus Λ
(1)
G (X) = Λ

(2)
G (X) for all X ∈ L∞d (F). Finally for all F ∈ Im Λ

(1)
G =

Im Λ
(2)
G there is an X ∈ L∞d (F) such that Λ

(1)
G (X) = Λ

(2)
G (X) = F and hence

η
(1)
G (F ) = ρG(X) = η

(2)
G (F ).

Next we consider the cases when ρG fulfills some additional properties.
Constant on constants : Let ρG be risk-regular. Then (3.6) implies that for all
X ∈ L∞d (G)

ρG (X,ω) = ρ̃G (X(ω), ω) = −Λ̃G (X(ω), ω) a.s.

and hence ρG(X) = −ΛG (X). Let now F ∈ X ∩ L∞(G). By the definition of X
and Lemma 3.1 we know that there exists a X ∈ L∞d (G) such that ΛG (X) = F .
We thus obtain by (3.7) that

ηG(F ) = ρG(X) = −ΛG (X) = −F.
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Quasiconvexity/convexity : Let ρG be risk-quasiconvex. Let α ∈ L∞(G) with
0 ≤ α ≤ 1 and set H := αF + (1 − α)G, where F,G ∈ X , and X, Y ∈ L∞d (F)
are such that ΛG (X) = F , ΛG (Y ) = G. Note that since X is G-conditionally
convex, H ∈ X and thus there exists a Z ∈ L∞d (F) with ΛG (Z) = H. Then

Λ̃G (Z(ω), ω) = H(ω) = α(ω)F (ω) + (1− α(ω))G(ω)

= α(ω)Λ̃G (X(ω), ω) + (1− α(ω))Λ̃G (Y (ω), ω) a.s.

Thus it follows by (3.6)

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) + (1− α(ω))ρ̃G (Y (ω), ω) a.s.,

which in conjunction with the risk-quasiconvexity of ρG results in

ηG(H) = ρG(Z) ≤ ρG(X) ∨ ρG(Y ) = ηG(F ) ∨ ηG(G).

Similarly one shows that ηG is convex if ρG is risk-convex.
Positive homogeneity : Let ρG be risk-positively homogeneous. Further let F ∈ X ,
X ∈ L∞d (F) with ΛG (X) = F , and let α ∈ L∞(G) with α ≥ 0 and αF =: G ∈ X .

Then there is also a Y ∈ L∞d (F) with ΛG (Y ) = G. Moreover, Λ̃G (Y (ω), ω) =

α(ω)Λ̃G (X(ω), ω) a.s. Hence, by (3.6) in conjunction with the risk-positive ho-
mogeneity we obtain that ρG(Y ) = αρG(X). Consequently,

ηG(αF ) = ρG(Y ) = αρG(X) = αηG(F ).

Proof of Theorem 2.11. As ρG is risk-antitone and antitone on constants, it is
obvious that ρG also fulfills (2.10). Furthermore, we already showed, based on
the antitonicity on constants and continuous paths requirements, in the proof
of Theorem 2.9 that ω 7→ ρ̃G (x, ω) (= −Λ̂G(x, ω)) has almost surely antitone
paths. Hence, we have for all X, Y ∈ L∞d (F) with X ≥ Y , that ρ̃G (X(ω), ω) ≤
ρ̃G (Y (ω), ω) a.s. and thus the risk-antitonicity yields ρG(X) ≤ ρG(Y ). Hence we
conclude that ρG is antitone.
For the converse implication let ρG be antitone and let ρG (·, ·) be a realization
with corresponding restriction ρ̃G (·, ·) which fulfills (2.10). The antitonicity on
constants is an immediate consequence of the much stronger antitonicity on L∞

of ρG. By reconsidering the proof of Theorem 2.9, we observe that we may
replace the risk-antitonicity by (2.10) when extracting the aggregation function.
Hence, (2.10) is sufficient to construct a modification of ρG (·, ·) and thus of
ρ̃G (·, ·) such that ρ̃G (·, ·) has surely continuous and antitone paths. Therefore,
suppose that ρG (·, ·) is already this realization. Now let X, Y ∈ L∞d (F) with

ρ̃G (X(ω), ω) ≤ ρ̃G (Y (ω), ω) a.s. According to Lemma 3.1 with Λ̃G as in (3.6)
there are F,G ∈ L∞(F) such that

ρ̃G (F (ω)1d, ω) = ρ̃G (X(ω), ω) ≤ ρ̃G (Y (ω), ω) = ρ̃G (G(ω)1d, ω) a.s.
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As the paths of ρ̃G (·, ·) are antitone, it can be readily seen that F ≥ G on A :=
{ω ∈ Ω : ρ̃G (X(ω), ω) < ρ̃G (Y (ω), ω)}. Now set H := G1A + F1AC ∈ L∞(F).
Then F ≥ H and ρ̃G (Y (ω), ω) = ρ̃G (H(ω)1d, ω) a.s. Hence it follows from (2.10)
and the antitonicity of ρG that

ρG(X) = ρG(F1d) ≤ ρG(H1d) = ρG(Y ).

This completes the proof of the first equivalence in Theorem 2.11.
Let ρG be risk-positive homogeneous and positive homogeneous on constants.

Since all requirements of Theorem 2.9 are met, we also have that Rd 3 x 7→
ρ̃G (x, ω) is almost surely positive homogeneous. Therefore we obtain for all
X ∈ L∞d (F) and α ∈ L∞(G) with α ≥ 0 that

ρ̃G (α(ω)X(ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s.,

and hence the risk-positive homogeneity implies ρG(αX) = αρG(X) which is
positive homogeneity of ρG.
Conversely, if ρG is positive homogeneous, then it is also positive homogeneous
on constants as well as for almost all paths of the realization. Hence, if there
exists X,Z ∈ L∞d (F) and α ∈ L∞(G) with α ≥ 0 such that

ρ̃G (Z(ω), ω) = α(ω)ρ̃G (X(ω), ω) a.s.,

then the right-hand-side equals ρ̃G (α(ω)X(ω), ω) a.s. Using (2.10) and the pos-
itive homogeneity of ρG we conclude that

ρG(Z) = ρG(αX) = αρG(X).

Let ρG be risk-convex and convex on constants. First we will show that risk-
convexity is equivalent to the following property: If for X, Y, Z ∈ L∞d (F) there
exists a α ∈ L∞(G) with 0 ≤ α ≤ 1 such that

ρ̃G (Z(ω), ω) ≤ α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s., (3.10)

then ρG(Z) ≤ αρG(X) +
(
1− α

)
ρG(Y ).

On the one hand, it is obvious that (3.10) implies risk-convexity. On the other
hand, let Z(1) ∈ L∞d (F) such that

ρ̃G
(
Z(1)(ω), ω

)
≤ α(ω)ρ̃G (X(ω), ω) +

(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

We know by Lemma 3.1 that there is a Z(2) ∈ L∞d (F) such that

α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) = ρ̃G

(
Z(2)(ω), ω

)
a.s.

By the risk-convexity we obtain that

ρG(Z
(2)) ≤ αρG(X) + (1− α)ρG(Y ).
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As risk-antitonicity implies ρG(Z
(1)) ≤ ρG(Z

(2)), we conclude that risk-convexity
and (3.10) are equivalent. Next we show the convexity of ρG. To this end let
X, Y ∈ L∞d (F) and α ∈ L∞(G) with 0 ≤ α ≤ 1. Once again we can reason as
in the proof of Theorem 2.9 that Rd 3 x 7→ ρ̃G (x, ω) is almost surely convex,
because ρG has continuous paths and is convex on constants. Thus we have that

ρ̃G ((αX + (1− α)Y )(ω), ω) ≤ α(ω)ρ̃G (X(ω), ω) +
(
1− α(ω)

)
ρ̃G (Y (ω), ω) a.s.

Now (3.10) implies that

ρG(αX + (1− α)Y ) ≤ αρG(X) + (1− α)ρG(Y ),

which is the desired convexity of ρG.
The other assertion concerning risk-quasiconvexity follows in a similar way.

4 Examples

Example 4.1. As already mentioned in the introduction a typical aggregation
function when dealing with multidimensional risks is

Λ̃sum(x) =
d∑
i=1

xi, x ∈ Rd.

However, such an aggregation rule might not always be reasonable when mea-
suring systemic risk. The main reason for this is the limited transferability of
profits and losses between institutions of a financial system. An alternative pop-
ular aggregation function which does not allow for a subsidization of losses by
other profitable institutions is given by

Λ̃loss(x) =
d∑
i=1

−x−i , x ∈ Rd,

where x−i = −min{xi, 0}; see Example 4.8. Obviously, both Λ̃sum and Λ̃loss are
DAF’s which are additionally concave and positive homogeneous.

Example 4.2 (Countercyclical regulation). Risk charges based on systemic risk
measures typically will increase drastically in a distressed market situation which
might even worsen the crisis further. Therefore one might argue that, for instance
in a recession where also the real economy is affected, the financial regulation
should be relaxed in order to stabilize the real economy, cf. Brunnermeier and
Cheridito (2013). In our setup we can incorporate such a dynamic countercyclical
regulation as follows:

Let (Ω,F , (Ft)t∈{0,...,T},P) be a filtered probability space, where FT = F .
Let (x, y) ∈ R2d be the profits/losses of the financial system, where the first d
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components x are the profits/losses from contractual obligations with the real
economy and y are the profits/losses from other obligations. Moreover let Y (t),
t = −1, 0, ..., T − 1 be the gross domestic product (GDP) process with Y (t) ∈
L∞(Ft), t = 0, ..., T − 1, and Y (−1) ∈ R+\{0}. Suppose that the regulator
sees the economy in distress at time t, if the GDP process Y (t) is less than
(1 + θ)Y (t− 1) for some θ ∈ R. We assume that in those scenarios the regulator
is interested to lower the regulation in order to give incentives to the financial
system for the supply of additional credit to the real economy. This policy
might lead to the following dynamic conditional aggregation function from the
perspective of the regulator

Λ̃
(
(x, y), t, ω) := −

d∑
i=1

(
α1A(t)(ω) + 1A(t)C (ω)

)
x−i + y−i , t = 0, ..., T − 1,

where α ∈ [0, 1) and A(t) = {Y (t) ≤ (1 + θ)Y (t− 1)} for t = 0, ..., T − 1. Obvi-

ously, Λ̃
(
(x, y), t, ω) is a CAF with respect to Ft which is positive homogeneous

and concave.

Example 4.3 (Too big to fail). In this example we will consider a dynamic con-
ditional aggregation function which depends on the relative size of the interbank
liabilities. For instance, Cont et al. (2013) find that for the Brasilian banking
network there is a strong connection between the size of the interbank liabilities
of a financial institution and its systemic importance. This fact is often quoted
as ’too big to fail’.

Let (Ω,F , (Ft)t∈{0,...,T},P) be a filtered probability space, where FT = F .
Moreover, let Li(t) ∈ L∞(Ft) denote the sum of all liabilities at time t of
institution i ∈ {1, . . . , d} to any other banks. Then

αi(t) :=
Li(t)∑d
j=1 Lj(t)

, t = 0, ..., T − 1,

is the relative size of its interbank liabilities. Now consider the following condi-
tional extension of an aggregation function which was proposed in Brunnermeier
and Cheridito (2013):

Λ̃BC(x, t, ω) =
d∑
i=1

−αi(t, ω)x−i + βi(θi − xi)−, t = 0, ..., T − 1,

where β, θ ≥ 0. Firstly, this conditional aggregation function always takes losses
into consideration, whereas profits of a financial institution i are only accounted
for if they are above a firm specific threshold θi. Secondly, profits are weighted by
the deterministic factor β and the losses are weighted proportional to the liability
size of the corresponding financial institution at time t. Therefore losses from
large institutions, which are more likely to be systemically relevant, contribute
more to the total risk.
Λ̃BC(·, t, ·) is a CAF which, however, in general is neither quasiconvex nor posi-
tively homogeneous as it may be partly flat depending on θ.
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Example 4.4. Suppose that the regulator of the financial system has certain
preferences on the distribution of the total loss amongst the financial institutions.
For instance he might prefer a situation when a number of financial institutions
face a relatively small loss each in front of a situation in which one financial insti-
tution experiences a relatively large loss. Such a preference can be incorporated
by the following aggregation function

Λ̃exp(x) =
d∑
i=1

−x−i 1{xi>θi} +

(
1

γi

(
1− eγi(x

−
i +θi)

)
+ θi

)
1{xi≤θi},

where θi ≤ 0 and γi > 0 for i = 1, ..., d. That is, if the losses of firm i exceed a
certain threshold θi, e.g. a certain percentage of the equity value, then the losses
are accounted for exponentially.

Example 4.5 (Stochastic discount). Suppose that D ∈ L∞(F) is some G-
measurable stochastic discount factor. A typical approach to define monetary
risk measurement of some future risk is to consider the discounted risks. Consider
any (conditional) aggregation function Λ̃, which does not discount in aggregation,

such as Λ̃sum, Λ̃loss, or Λ̃BC, etc. Then the discounted monetary aggregated risk
is DΛ̃(X). If Λ̃ is positively homogeneous, then DΛ̃(X) = Λ̃(DX) which is the

aggregated risk of the discounted system DX. However, if Λ̃ is not positively
homogeneous - such as Λ̃BC or Λ̃exp - then the discounted aggregated risk can
only be formulated in terms of the conditional aggregation function

Λ̃G (x, ω) := Λ̃(x)D(ω).

Example 4.6 (CoVaR). In this example we will consider the CoVaR proposed
in Adrian and Brunnermeier (2011); see (1.2). To this end, we first recall the
(conditional) Value at Risk: We denote the Value at Risk at level q ∈ (0, 1) by

VaRq(F ) = − inf
x∈R
{P(F ≤ x) > q}.

Furthermore, the conditional VaR at level q ∈ (0, 1) is defined as

VaRq(F |G) := − essinf
α∈L∞(G)

{
P
(
F ≤ α

∣∣ G) > q
}
,

c.f. Föllmer and Schied (2011). The conditional VaR is positive homogeneous,
antitone, and constant on constants. Thus it is a CBRM which is constant on
every possible CAF. Note that, as is well-known for the unconditional case, the
conditional VaR is not quasiconvex. By composing VaRq(·|G) with a CAF Λ̃G
we obtain a CSRM

ρG(X) = VaRq (ΛG(X)| G) , X ∈ L∞d (F), (4.1)

which is risk-positive homogeneous and risk-regular.
Now we consider the case where X represents a financial system and the CAF
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in (4.1) is Λ̃sum. Moreover consider the sub-σ-algebra G := σ(A) of F , where
A := {Xj ≤ −VaRq(Xj)} for a fixed j ∈ {1, ..., d}. Then the CSRM ρG(X) from
(4.1) evaluated in the event A equals

VaRq

(
d∑
i=1

Xi

∣∣∣∣∣ {Xj ≤ −VaRq(Xj)}

)
(4.2)

which is the CoVaR proposed in Adrian and Brunnermeier (2011).
As we have already pointed out in the introduction, it is more reasonable to use
an aggregation function which incorporates an explicit contagion structure. We
will modify the CoVaR in this direction in Example 4.9.

Example 4.7 (CoES and SES). The conditional Average Value at Risk at level
q ∈ (0, 1) is given by

AVaRq(F |G) := esssup
Q∈Pq

EQ [−F | G] , F ∈ L∞(F),

where Pq is the set of probability measures Q on (Ω,F) which are absolutely
continuous w.r.t. P such that Q|G = P and dQ

dP
≤ 1/q a.s. AVaRq(·|G) is a convex

and positive homogeneous CBRM. Notice that the conditional Average Value at
Risk can also be written as

AVaRq(F |G) =
1

q
EP
[
(F + VaRq(F |G))−

∣∣ G]+ VaRq(F |G), (4.3)

cf. Föllmer and Schied (2011), where VaRq(·|G) is discussed in Example 4.6.

As in Example 4.6 let G = σ (A) with A = {Xj ≤ −VaRq(Xj)} for a fixed
j ∈ {1, ..., d} and q ∈ (0, 1). Using (4.3), if

P(F ≤ −VaRq(F |G)| G) = q,

then

AVaRq(F |G) = EP [−F | {F ≤ −VaRq(F |A)} ∩ A]1A

+ EP
[
−F | {F ≤ −VaRq(F |AC)} ∩ AC

]
1AC . (4.4)

Therefore, ρG(X) = AVaRq(Λ̃sum(X)|G) evaluated in the event A equals

EP

[
−

d∑
i=1

Xi

∣∣∣∣∣
{

d∑
i=1

Xi ≤ −VaRq

(
d∑
i=1

Xi

∣∣∣∣ A
)}
∩ A

]
.

In other words, ρG(X)|A is the expected loss of the financial system X given
that the loss Xj of institution j is below VaRq(Xj) and simultaneously the loss

of the system is below its CoVaR VaRq(
∑d

i=1Xi|A). (4.4) corresponds to the
conditional expected shortfall (CoES) proposed in Adrian and Brunnermeier
(2011).
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Now we change the point of view and consider the losses of a financial institution
Xj given that the financial system is in distress, that is if

d∑
i=1

Xi ≤ −VaRq

(
d∑
i=1

Xi

)
.

Let G := σ
(
{
∑d

i=1Xi ≤ −VaRq(
∑d

i=1Xi)}
)
. By composing the DAF Λ̃(x) := xj

and the CBRM ηG(F ) = EP [−F | G] we obtain a convex and positive homoge-
neous CSRM

ρG(Y ) = EP [Yj | G] , Y ∈ L∞d (F).

ρG(X) evaluated on the event {
∑d

i=1Xi ≤ −VaRq(
∑d

i=1Xi)} which is the so-
called systemic expected shortfall (SESj) introduced in Acharya et al. (2010).

Example 4.8 (DIP). In this example we recall the distress insurance premium
(DIP) proposed by Huang et al. (2012). It is closely related to CoES and SES

discussed in Example 4.7. However, instead of Λ̃sum, the aggregation function is
Λ̃loss, that is losses cannot be subsidized by profits from the other institutions.
The event representing the financial system in distress is {Λloss(X) ≤ θ} for a
fixed θ ∈ R, i.e. the financial system is in distress if the total losses fall below a
certain threshold θ. Let G := σ ({Λloss(X) ≤ θ}). As a CBRM choose ηG(F ) =
EQ [−F | G], where Q is a risk neutral measure which is equivalent to P. The
resulting positive homogeneous and convex CSRM evaluated in {Λloss(X) ≤ θ}
is given by

EQ

[
d∑
i=1

Y −i

∣∣∣∣∣ Λloss(X) ≤ θ

]
, Y ∈ L∞d (F),

which corresponds to the DIP for Y = X. Since the expectation is under a risk
neutral measure it can be interpreted as the premium of an aggregate excess loss
reinsurance contract.

Example 4.9 (Contagion model). In this example we want to specify an ag-
gregation function that explicitly models the default mechanisms in a financial
system and perform a small simulation study. For this purpose we will assume
the simplified balance sheet structure given in Table 4.1 for each of the d finan-
cial institutions. Let X ∈ L∞d (F) be the vector of equity values of the financial
institutions after some market shock on the external assets/liabilities. Moreover
let Π be the relative liability matrix of size d× d, i.e. the i, jth entry represents
the proportion of the total interbank liabilities of institution i which it owes to
institution j. We denote the d-dimensional vector of the total interbank liabilities
by L.

We now consider an extension of the aggregation function proposed by Chen
et al. (2013) which is based on the default model in Eisenberg and Noe (2001):

For a deterministic vector of equity values x ∈ Rd we define the DAF Λ̃CM1 by
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Assets Liabilities

External Assets
Equity

External Liabilities
Interbank Assets

Interbank Liabilities

Table 4.1: Stylized balance sheet.

the optimization problem:

Λ̃CM1(x) := max
y,b∈Rd

+

d∑
i=1

−
(
xi + bi − (Π>y)i

)− − γbi (4.5)

subject to y = max
(
min

(
Π>y − x− b, L

)
, 0
)
, (4.6)

where yi is the amount by which financial institution i decreases its total liabili-
ties to the remaining institutions and b ∈ Rd represents the option of an external
participant, e.g. a lender of last resort, to inject a capital amount bi into institu-
tion i. The cost of the injected capital of the lender of last resort is modeled by
the parameter γ > 1.
There are two possible ways a financial institution can default: First it might de-
fault due to the market shock right at the beginning (xi < 0). Secondly, if it still
has sufficient capital endowment after the market shock, the losses from other
institutions might force it into default by contagion effects (xi − (Π>y)i < 0).
The constraint (4.6) expresses that if a financial institution defaults, it can ei-
ther reduce its payments to other institutions or the lender of last resort has to
inject capital to cover the default losses. As opposed to the framework in Chen
et al. (2013) we are able to incorporate the limited liability assumption (y ≤ L)
proposed in Eisenberg and Noe (2001). Furthermore the lender of last resort
will only inject capital into a financial institution as long as the benefit from
preventing further contagion exceeds the costs of the injection of the lender of
last resort.
It can be readily seen that Λ̃CM1 is isotone and continuous. The aggregation
function Λ̃CM1 given in (4.5) is deterministic. One possible extension within our

framework is now to consider conditional modifications of Λ̃CM1. For example,
if there exists only partial information or uncertainty about the future of the
interbank liability structure then the relative liability matrix Π(ω) and/or the
total interbank liabilities L(ω) might be modeled stochastically. In this case it
can be easily seen that the corresponding aggregation function is a CAF.

We will complete this example by employing the aggregation function Λ̃CM1

in a small simulation study. The simulation serves illustration purposes only and
does not have the objective to represent a real world financial system. We begin
with the construction of network with 10 institutions as a realization of an Erdös-
Rényi graph with success probability p = 0.35, that is there exists a directed edge
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between institution i and j with a probability of 35% independent of the other
connections. Furthermore we assume that the exposures between financial insti-
tutions follow a half-normal distribution. So far we have only knowledge about
the size of the interbank assets/liabilities. For the remaining parts of the balance
sheet (see Table 4.1) we assume that the value of equity is a fixed proportion
of the total assets and that the external assets/liabilities are chosen such that
the balance sheet balances out. The resulting financial system can be found in
Figure 4.1.
In the following we want to investigate the impact on the financial system if the
institutions are exposed to a shock on their external, i.e. non-interbank, assets
and liabilities. For this purpose we add a shock to the initial equity which is
normally distributed with mean zero and a standard deviation which is propor-
tional to the financial institutions external assets/liabilities. The single shocks
are positively correlated with ρ = 0.1.
In Table 4.2 we list some comparative statistics of the financial system for 30’000
shock scenarios and for different costs of the regulator. The first two rows con-
sider the CSRM’s obtained by composing the aggregation function Λ̃CM1 with the
negative expectation and the VaR at level 5%, resp. Note that we also included
the asymptotic case of γ →∞, which corresponds to the situation in which the
regulator does not intervene.

γ 1.6 2.6 ’∞’
−E [ΛCM1(X)] 70.62 88.00 109.30
VaR0.05(ΛCM1(X)) 213.34 291.59 442.45∑
bi 23.01 10.67 0.00∑
x−i 52.33

Initially defaulted banks 2.57
Defaulted banks after contagion 2.87 3.25 3.58

Table 4.2: Statistics of the financial system for 30’000 shock scenarios.

We observe that with an increasing γ the regulator is less willing to inject capital
and thus the contagion effects increase which results in a higher risk in terms of
the expectation and the Value at Risk. Moreover without a regulator on average
round about one financial institution defaults due to contagion effects.

In the next step we want to investigate the systemic importance of the single
institutions. For this purpose we modify the CoVaR in Example 4.6, that is,
instead of the summing the losses we use the more realistic CAF Λ̃CM1. Thus we
define for a q ∈ (0, 1):

CoVaRj
q := VaRq (ΛCM2(X)|Xj ≤ −VaRq(Xj)) , j = 1, ..., d,
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Figure 4.1: Exemplary financial system.

where

Λ̃CM2(x) := max
y,b∈Rd

+

d∑
i=1

−yi − γbi

subject to y = max
(
min

(
Π>y − x− b, L

)
, 0
)
.

The difference between Λ̃CM2 and Λ̃CM1 is that losses in case of a default are only
taken into consideration up to the total interbank liabilities of this institution,
i.e. only the losses which spread into the system are taken into account. For
example consider an isolated institution in the system which has a huge exposure
to the outside of the system, then in order to identify systemically relevant
institution it is not meaningful to aggregate the losses from those exposures,
nevertheless from the perspective of the total risk of the system those losses
should also contribute as it was done in our prior study. As for Λ̃CM1 it can
be easily seen that Λ̃CM2 is a CAF. The results for this risk-consistent systemic
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risk measures CoVaRj
q, j = 1, ..., d can be found in Table 4.3. We observe that

γ
=

2.
6

FI j 2 3 6 4 7 1 10 9 5 8

CoVaRj
0.1 266.94 297.28 298.49 308.61 320.58 322.56 332.94 355.23 362.27 367.68

γ
=
∞ FI j 2 4 3 7 9 6 1 10 8 5

CoVaRj
0.1 397.73 419.11 423.18 459.33 471.81 473.61 481.40 548.21 563.60 601.09

FI j 2 6 10 3 1 7 5 9 8 4

-VaR0.1(Xj) 13.30 -7.67 -15.05 -17.01 -20.69 -22.98 -26.89 -30.48 -32.11 -33.41

FI j 4 3 7 9 1 6 2 10 8 5

Lj 34 63 66 69 147 171 227 255 256 320

Table 4.3: Systemic importance ranking based on CoVaRj
0.1.

the systemic importance is always a trade-off between the possibility of high
downward shocks and the ability to transmit them. For instance institution 2 can
transfer losses up to 227, but it is also the institution which is the least exposed
to the market, which makes it also the least systemic important institution.
Contrarily institution 4 is the most exposed institution, but does not have the
ability to transmit those losses which also results in a low position in the systemic
importance ranking. Finally institution 5 or 8 are very vulnerable to the market
and have the largest total interbank liabilities and are thus identified as the most
systemic institutions.
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