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Abstract

We study the market implications of ambiguity sensitive preferences using the α-maxmin

expected utility (α-MEU) model. In the standard Ellsberg framework we prove that α-MEU

preferences are equivalent to either maxmin, maxmax or subjective expected utility (SEU).

We show how ambiguity aversion impacts equilibrium asset prices, and revisit the laboratory

experimental findings in Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010). Only when

there are three or more ambiguous states, α-MEU, maxmin, maxmax and SEU models induce

different portfolio choices. We suggest criteria to discriminate among these models in labora-

tory experiments and show that ambiguity seeking agents may prevent the existence of market

equilibrium. Our results indicate that ambiguity matters for portfolio choice and does not wash

out in equilibrium.
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1 Introduction

Over the past decades the impact of Knightian uncertainty (Knight 1921), or ambiguity, on finan-

cial decision making has received significant attention in the academic community.1 Models with

ambiguity averse agents can capture a variety of empirical phenomena such as non-participation,

portfolio inertia and excess volatility of asset returns.2 These models are also supported by exper-

imental laboratory evidence that agents’ preferences are heterogeneous and well approximated by

ambiguity sensitive preferences with different degrees of ambiguity aversion; e.g., Bossaerts et al.

(2010), and Ahn, Choi, Gale, and Kariv (2014).

The workhorse model to study the impact on financial markets of ambiguity aversion has been

the maxmin expected utility model (Gilboa and Schmeidler 1989). The α-maxmin expected utility

(α-MEU) model generalizes the maxmin model and has a number of appealing features.3 Being a

convex combination of the maxmax (0-MEU) and the maxmin (1-MEU) models, it can represent

a large spectrum of preferences, ranging from the ambiguity seeking attitude of the 0-MEU to

the ambiguity aversion attitude of the 1-MEU. Assuming that the set of priors that describes the

uncertainty of the setting is known, the one-dimensional parameter α can be used to assess the

agent’s ambiguity aversion. As a consequence, the α-MEU has been used in many theoretical and

experimental studies on agents’ ambiguity attitudes.4

Despite the popularity of the α-MEU model, an in-depth analysis of its portfolio choice and

equilibrium asset price implications has not been carried out,5 although such analysis is central to

1See Gilboa and Marinacci (2013), and Machina and Siniscalchi (2014) for recent discussions of ambiguity and
ambiguity aversion.
2Several studies investigate how agents’ nonparticipation may arise in the presence of ambiguity averse agents; see
Dow and Werlang (1992), Epstein and Miao (2003), Cao, Wang, and Zhang (2005), Easley and O’Hara (2009),
Illeditsch (2011) and Dimmock, Kouwenberg, and Wakker (2016). Studies relating ambiguity aversion to other
market phenomena include Chen and Epstein (2002), Uppal and Wang (2003), Trojani and Vanini (2004), Epstein
and Schneider (2008), Cao, Han, Hirshleifer, and Zhang (2011), and Boyle, Garlappi, Uppal, and Wang (2012). For
a survey on this topic see Epstein and Schneider (2010). Ambiguity averse preferences have been used to address
long-standing puzzles in Economics regarding the conflict between efficiency and incentive compatibility, see for e.g.
He and Yannelis (2015) and De Castro and Yannelis (2016), and the existence of Rational Expectations Equilibrium,
see for e.g. De Castro, Pesce, and Yannelis (2017).
3The α-maxmin expected utility is a generalization of the Hurwicz’s model introduced by Hurwicz (1951a,b); see also
Arrow and Hurwicz (1972) and Jaffray (1988).
4Theoretical properties of the α-MEU model have been studied by Ghirardato, Klibanoff, and Marinacci (1998) and
Marinacci (2002). For characterizations of subclasses of the α-MEU preferences see Ghirardato, Maccheroni, and
Marinacci (2004), Olszewski (2007), Eichberger, Grant, Kelsey, and Koshevoy (2011), and Klibanoff, Mukerji, and
Seo (2014). Chen, Katuščák, and Ozdenoren (2007) focus on sealed bid auctions and use the α-MEU to derive the
equilibrium bidding strategy for α-MEU bidders. For recent experimental studies see, Ahn et al. (2014), Cubitt,
van de Kuilen, and Mukerji (2014) and reference therein.
5Bossaerts et al. (2010), and Ahn et al. (2014) derive the α-MEU model portfolio choice in the standard Ellsberg
framework. However, as we show in Proposition 3.1, in that framework α-MEU preferences coincide with either
maxmin, maxmax or SEU preferences.
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understand the attitudes towards ambiguity that a model represents. One reason could be that the

α-MEU portfolio optimization is involved. In fact, while the maxmin utility is always concave if

the agent is risk averse, this is not in general the case for the α-MEU utility.

This paper theoretically studies the implications for optimal portfolio choice and equilibrium

asset prices of the α-MEU model. We carry out this study in a complete Arrow–Debreu market

model where the future states of the economy correspond to draws from Ellsberg-type urns. A

complete market is an ideal framework to study the optimal portfolio choice implied by a model

because agents can attain the desired amount of portfolio risk and ambiguity exposures, given their

budget constraints. Moreover, the separation between risky and ambiguous states and interchange-

ability of the latter in the Ellsberg frameworks allow to pin down the different attitudes towards

ambiguity of α-MEU agents as a function of α.

First we consider the standard Ellsberg (1961) framework where the state space consists of three

future states of the economy, one risky and two ambiguous. We find that in this setting, α-MEU

preferences are equivalent to either maxmin (when α > 1/2), maxmax (when α < 1/2), or subjective

expected utility (SEU) (when α = 1/2) preferences.6 Hereafter we refer to this result as the

equivalence result. This shows that the popular standard Ellsberg framework is not the right setting

to study α-MEU preferences as a generalization of the maxmin, maxmax and SEU preferences, and

has implications for experimental studies. For instance, it rationalizes empirical evidence from

recent laboratory experiments carried out in the standard Ellsberg framework that use the α-MEU

model to conclude that their experimental evidence point to a substantial heterogeneity in aversion

to ambiguity; e.g., Bossaerts et al. (2010), and Ahn et al. (2014).7 The equivalence result shows

that these experimental studies could had come to the same conclusion by using the maxmin

model, and varying the size of the set of priors to measure varying degrees of aversion to ambiguity.

Moreover, the discovered equivalence between α-MEU with α > 1/2 and maxmin preferences allows

us to theoretically justify and enhance Bossaerts et al. (2010)’s experimental findings that ambiguity

impacts equilibrium asset prices. First, we derive the equilibrium state prices for a market populated

by SEU agents and maxmin agents, who optimally choose portfolios with no exposure to ambiguity,

and we show theoretically through which channels ambiguity aversion impacts equilibrium state

prices. Then we observe that the theoretical rankings of the state-price/state-probability ratios

6This result holds true for any number of risky states as long as that there are only two ambiguous states.
7Bossaerts et al. (2010) and Ahn et al. (2014) run portfolio choice lab-experiments in the standard Ellsberg framework
and provide evidence of considerable heterogeneity in agents’ preferences. They find that one half of the agents are
well approximated by SEU preferences, while the remaining half has a significant degree of ambiguity aversion and
prefers portfolios with no exposure to ambiguity.
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fully explain the Bossaerts et al. (2010) empirical rankings.8 This remarkable matching between

theory and data clearly indicates that ambiguity aversion does not wash out in equilibrium.9

Next, we consider an extended Ellsberg framework where the state space contains three or

more ambiguous states. We show that in this setting the α-MEU preferences do not reduce to

and imply portfolio choices that are not observationally equivalent to maxmin, maxmax or SEU

preferences. To show this we study the portfolio choice implied by the α-MEU model as a function

of α ∈ (0, 1) when the α-MEU set of priors is fixed to be the one that describes the uncertainty

(risk and ambiguity) in the extended Ellsberg framework. We denote this set by Cmax and the

corresponding class of models by α-Cmax-MEU. Fixing Cmax as the α-MEU set of priors allows to

interpret the parameter α as a measure of the agent’s aversion towards ambiguity. This allows us

to study the α-MEU portfolio choice as a function of the different degrees of ambiguity aversion

and make meaningful comparisons between α-Cmax-MEU and maxmin preferences using a utility

specification common to the two classes of models.10

We show that the α-Cmax-MEU agents with α ∈ (0, 1) optimally choose only two types of

portfolios: either an unambiguous portfolio (with no exposure to ambiguity, allocating equal wealth

to all ambiguous states), or an ambiguous portfolio with a specific exposure to ambiguity: this

ambiguous portfolio corresponds to an unambiguous portfolio plus a bet on one of the cheapest

ambiguous states. If there is only one ambiguous state with cheapest price, then the optimal

portfolio is unique. If there are n ≥ 1 ambiguous states with cheapest price, then there are n

optimal portfolios as the α-Cmax-MEU agent finds equally optimal to bet on any of the n cheapest

ambiguous states.

The choice between unambiguous and ambiguous optimal portfolios only depends on α and

the ratio of the cheapest price to the total sum of prices of the ambiguous states. The larger is

α relative to the ratio above, the less the optimal portfolio is exposed to ambiguity. The set of

8To rationalize their experimental findings Bossaerts et al. (2010) use a theoretical market model populated by α-
MEU agents with α > 1/2 and SEU agents. Unaware that in the standard Ellsberg framework α-MEU utilities with
α > 1/2 reduce to concave maxmin utilities, Bossaerts et al. (2010) do not derive the equilibrium state prices but
make conjectures. Our theoretical findings in Section 3.1 complete the Bossaerts et al. (2010) model and show that
their experimental findings are much closer to the theory than they could conclude based on their analysis.
9To further strengthen this result we remark that while the maxmin portfolio choice explains the fraction of portfolios
with no exposure to ambiguity observed in the Bossaerts et al. (2010) experiments, the portfolio choice of a SEU
agent cannot, even if the SEU agent is endowed with a non-smooth utility. The intuitive reason is that a kink of a
non-smooth SEU utility does not discriminate between risky and ambiguous states, while a kink of the maxmin-utility,
consequence of the multiple priors evaluation of the maxmin agent, it does.
10Studies of agent’s ambiguity aversion based on the α-MEU model typically assume, as we do here, that the set
of priors describing the uncertainty of the setting is known; see, e.g., Chen et al. (2007), and Ahn et al. (2014).
This assumption has been debated in the literature, but it appears to be necessary to achieve specific behavioral
predictions which are amenable to testing in an experimental setting.
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state prices for which an α-Cmax-MEU agent chooses an unambiguous portfolio increases with the

ambiguity aversion parameter α. The limiting case is the 1-Cmax-MEU agent who always chooses

an unambiguous portfolio.

We show that any α-Cmax-MEU agent with an α smaller than (l − 1)/l, where l is the number

of ambiguous states, shows an ambiguity seeking behavior. These agents always prefer a portfolio

exposed to ambiguity, even when the prices of ambiguous states are all equal and the ambiguous

states are thus indistinguishable one another. Only when α is larger than (l − 1)/l, α-Cmax-MEU

agents do not exhibit ambiguity seeking behavior, and when the ambiguous state prices are all

equal prefer the unambiguous portfolios.11 In this case, we show that an unambiguous portfolio is

also the optimal choice of maxmin agents, irrespectively of the size of their sets of priors.

Our theoretical findings can inform laboratory experiments to disentangle between ambiguity

seeking α-Cmax-MEU agents and agents who are not ambiguity seeking, and among the latter,

between α-Cmax-MEU and maxmin agents. We propose a multiple-stage experiment. In the first

stage, setting the prices of ambiguous states all equal allows to identify the ambiguity seeking agents

from their portfolio choices. Subsequent stages only involve the non-ambiguity seeking agents, and

exploit the fact that optimal portfolios of α-Cmax-MEU agents are not unique, while the optimal

portfolio of maxmin agents is typically unique.

Finally, we study the equilibrium in a market populated by ambiguity sensitive and SEU agents.

We show that the existence of equilibrium depends on whether ambiguity seeking agents are or are

not in the market. More precisely, we find that the ambiguity seeking α-Cmax-MEU agents may

prevent the existence of market equilibrium that otherwise exists if together with SEU agents the

non-ambiguity seeking α-Cmax-MEU or maxmin agents populate the market. Intuitively, ambiguity

seeking agents may take positions that cannot be offset by the SEU agents.

The structure of the paper is as follows. Section 2 introduces the setup. Section 3 shows that

in the standard Ellsberg framework α-MEU preferences coincide with maxmin, maxmax and SEU

preferences, derives equilibrium state prices, and revisits the experimental findings in Bossaerts

et al. (2010). Section 4 studies the optimal portfolio choice of the α-Cmax-MEU model in the

extended Ellsberg framework, and the different attitudes towards ambiguity. Section 5 studies

the impact of ambiguity seeking behaviors on equilibrium asset prices. Section 6 concludes. The

11In contrast to the standard Ellsberg framework, in the extended Ellsberg frameworks (i.e. when l ≥ 3) the value of
α that separates ambiguity seeeking from ambiguity averse agents is not anymore α = 1/2 but α = (l − 1)/l: when
l = 3, α = (l − 1)/l = 2/3 and increases towards 1 when l increases. Moreover, (l − 1)/l-Cmax-MEU preferences do
not reduce to SEU preferences; see Section 4.3.
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Appendix collects proofs and technical results.

2 Setup

The utility of an α-MEU agent from some state dependent wealth w = (wσ)σ∈S is

U(w) = αmin
π∈C

∑
σ∈S

u(wσ)πσ + (1− α) max
π∈C

∑
σ∈S

u(wσ)πσ(2.1)

where u : R → R is a utility function, the set of priors C is a closed and convex set on the finite

state space S, and α can take any value between [0, 1]. For α = 1, (2.1) reduces to the maxmin-

expected utility (1-MEU) model, for α = 0 to the maxmax-expected utility (0-MEU) model. All

utility functions u : R → R are differentiable, strictly concave and strictly increasing. To keep

the analysis tractable we assume that u is defined on the whole real line. The majority of results

in this paper (e.g., the α-MEU portfolio characterization in Proposition 4.1) holds true also when

u has a bounded domain, as long as the set of feasible portfolios remain convex and the utility

differentiable.12

The market model considered in this paper is an Arrow–Debreu complete market for contingent

claims with two dates, t = 0 and t = 1. S is the finite state space containing all possible states of

the economy at time t = 1, and | S | is the number of states. At time t = 0 the agents face both

uncertainty (risk) and ambiguity since they neither know which state in S will realize at time t = 1

(uncertainty), nor what is the probability of the occurrence of some of the states in S (ambiguity).

For any state there is an Arrow security traded in the market which pays at time t = 1 one unit

of currency in that state and nothing in the other states. Pricing rules p = (pσ)σ∈S ∈ R|S|+ are

normalized so that the price of the risk-free and unambiguous portfolio w = (1, . . . , 1) is 1, that is∑|S|
s=1 pi = 1.

Given N agents in the market, each agent n is characterized by an initial endowment en ∈ R|S|,

where the ith coordinate of en corresponds to the number of Arrow securities that pay in the

state i, and by a criterion Un representing her preferences, n = 1, . . . , N . The total endowment

in the market is W :=
∑N

1 en = (W1, . . . ,W|S|), where := denotes definition. Let · denote the

scalar product x · y =
∑|S|

i=1 xiyi, x, y ∈ R|S|. Given the pricing rule p on the Arrow securities, a

portfolio wn = (wnσ)σ∈S ∈ R|S| is said to be optimal for agent n if wn satisfies the budget constraint

12These properties can be insured, for instance, by requiring that the feasible portfolios are in the interior of the
utility domain.
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p · wn ≤ p · en and maximizes the utility Un over all portfolios w ∈ R|S| subject to the budget

constraint p · w ≤ p · en, i.e.

Un(wn) = max{Un(w) | w ∈ R|S|, p · w ≤ p · en}.

An equilibrium (p;w1, . . . , wN ) consists of a pricing rule p and individual portfolio choices wn such

that

– for each n = 1, . . . , N the portfolio wn is optimal for agent n given the pricing rule p, and

– the market clears:
∑N

1 wn =
∑N

1 en.

3 Standard Ellsberg framework

Throughout this section we consider a standard Ellsberg framework, that is a state space S =

{R,G,B} where the states correspond to draws from the Ellsberg (1961) urn. The probability of

the state R (red) is known and equal to πR ∈ (0, 1), while the probabilities of the two ambiguous

states G (green) and B (blue) are unknown. Any closed convex set of priors D, consistent with the

above information on the Ellsberg framework, can be written as

(3.1) D = {(πR, q, 1− q − πR) : q ∈ [a, b]}

where πR, q, and 1 − q − πR are the probability weights on the states R, G, and B, respectively,

corresponding to a given prior in D, and 0 ≤ a ≤ b ≤ 1− πR. Thus, any α-MEU utility U in (2.1)

on the portfolio w = (wR, wG, wB) ∈ R3 reads as

U(w) = α min
q∈[a,b]

[πR u(wR) + q u(wG) + (1− q − πR)u(wB)] +(3.2)

(1− α) max
q∈[a,b]

[πR u(wR) + q u(wG) + (1− q − πR)u(wB)]

for some α ∈ [0, 1].

3.1 Equivalence result

In the following Proposition 3.1, we show that α-MEU preferences are equivalent to either 1-MEU,

0-MEU or SEU preferences. The proof is provided in Appendix B.
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Proposition 3.1. Consider the utility U in (3.2) and let c := αa+(1−α)b and d := (1−α)a+α b.

(i) If α > 1/2, then U is a maxmin expected utility (1-MEU), i.e.

(3.3) U(w) = min
q∈[c,d]

[πR u(wR) + q u(wG) + (1− q − πR)u(wB)]

with set of priors C = {(πR, q, 1− q − πR) : q ∈ [c, d]} ⊂ D.

(ii) If α = 1/2, then U is a subjective expected utility (SEU) with subjective prior

(3.4) (πR, (a+ b)/2, 1− πR − (a+ b)/2).

(iii) If α < 1/2, then U is a maxmax expected utility (0-MEU), i.e.

(3.5) U(w) = max
q∈[d,c]

[πR u(wR) + q u(wG) + (1− q − πR)u(wB)]

with set of priors C = {(πR, q, 1− q − πR) : q ∈ [d, c]} ⊂ D.

Proposition 3.1 shows that any α-MEU utility with α > 1/2 (α < 1/2) and a generic set of

priors D is equivalent to a unique maxmin utility (respectively, maxmax utility) over a set of priors

C, which is smaller than D, and univocally characterized by α and D.13 Consequently,

• the α-MEU preferences in the standard Ellsberg framework are indistinguishable from maxmin,

maxmax or SEU preferences

• doing comparative statics with respect to α ∈ (1/2, 1) (α ∈ (0, 1/2)) in the α-MEU model

with a fixed set of prior is equivalent to doing comparative statics with respect to the size of

the set of priors in the maxmin (respectively, maxmax) model.

These findings provide new insights into the implications of ambiguity for portfolio choice and

have implications for experimental studies. For instance, they show that the standard Ellsberg

framework is not the right setting to study the α-MEU model if one wants to use this model as a

generalization of the maxmin, maxmax or SEU preferences.14 Moreover, they clarify some recent

13The set of priors C equals D when α = 1 (α = 0), and when α decreases (increases) to 1/2 shrinks up to only
containing the prior (3.4).
14Section 4 shows that when there are more than two ambiguous states the equivalence result does not hold anymore:
the α-MEU model induces different portfolio choice and expresses different attitude towards ambiguity than the
maxmin maxmin, maxmax and SEU models.
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experimental studies carried out in the standard Ellsberg framework in which the α-MEU model

is used to conclude that the experiment outcomes suggest a substantial heterogeneity in aversion

to ambiguity; e.g. Bossaerts et al. (2010), and Ahn et al. (2014). Proposition 3.1 shows that these

studies could have come to the same conclusions by using maxmin preferences and varying the

size of the set of priors instead of α to measure varying degrees of aversion to ambiguity. For the

implications of the equivalence result on equilibrium asset prices see Section 3.4.

The converse of Proposition 3.1 was already known from Siniscalchi (2006), namely that a

maxmin model with a given set of priors C can be rewritten as less parsimonious α-MEU models,

with set of priors D larger than C, for many different (α,D).

The α-MEU preferences coincide with maxmin, maxmax, or SEU preferences also in a state

space setting with more than one risky states, or with no risky states, as long as there are only

two ambiguous states. When there are no risky states, Proposition 3.1 holds true by setting

πR = 0. When there are m ≥ 1 risky states, R1, . . . , Rm, with known probabilities πRi ∈ (0, 1)

which satisfy
∑m

i=1 πRi < 1, Proposition 3.1 holds true by replacing the prior in (3.4) by the

prior (πR1 , . . . , πRm , (a + b)/2, 1 −
∑m

i=1 πRi − (a + b)/2), and πR u(wR) in (3.3) and (3.5) by∑m
i=1 πRiu(wRi).

3.2 Market equilibrium with ambiguity averse and SEU agents

Motivated by recent experimental evidences that investor’s preferences are well approximated by

ambiguity averse and SEU preferences, we study a simple market model populated by maxmin

agents (or equivalently by α-MEU agent with α > 1/2, see Proposition 3.1 (i)) and SEU agents. We

derive equilibrium asset prices and show theoretically how ambiguity aversion impacts equilibrium

asset prices.

Let denote by w = (wR, wG, wB) the optimal portfolio of a maxmin agent and by y = (yR, yG, yB)

the optimal portfolio of a SEU agent. Depending on the distribution of the total endowment

W = (WR,WG,WB) in the market, only particular rankings of state-price/state-probability ratios

can occur in equilibrium. The interesting case to study is when maxmin agents take an unambigu-

ous portfolio, i.e. wG = wB, and the total endowment is WG 6= WB. Without loss of generality in

the following we assume that WG > WB.

Appendix A provides the proof of Proposition 3.2 and a concise treatment of maxmin and SEU

portfolio choice.
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Proposition 3.2. Suppose the market is in equilibrium and populated by maxmin agents (equiv-

alently α-MEU preferences with α > 1/2) who take unambiguous portfolios and SEU agents with

prior π = (πR, πG, πB), with πR, πG, πB > 0. Denote by W = (WR,WG,WB) ∈ R3 the total

endowment of the market.

1) If WR > WG > WB, then two rankings of the state-price/state-probability ratios are possible:

(3.6)
pB
πB

>
pR
πR

>
pG
πG

and the optimal portfolios y of any SEU agent and w of any maximin agent satisfy

yG > yR > yB and wR > wG = wB.

The other possible ranking is:

(3.7)
pB
πB

>
pG
πG

>
pR
πR

(
or

pB
πB

>
pG
πG

=
pR
πR

)

and the optimal portfolios y of any SEU agent and w of any maxmin agent satisfy

yR > yG > yB (or yR = yG > yB) and wR > wG = wB.

2) If WG > WR > WB, then the only possible ranking of the state-price/state-probability ratios

is:

(3.8)
pB
πB

>
pR
πR

>
pG
πG

and the optimal portfolios y of any SEU agent and w of any maxmin agent satisfy

yG > yR > yB and wR > wG = wB or wR < wG = wB.

3) If WG > WB > WR, then two rankings of the state-price/state-probability ratios are possible:

(3.9)
pB
πB

>
pR
πR

>
pG
πG

10



and the optimal portfolios y of any SEU agent and w of any maximin agent satisfy

yG > yR > yB and wR < wG = wB.

The other possible ranking is:

(3.10)
pR
πR

>
pB
πB

>
pG
πG

(
or

pR
πR

=
pB
πB

>
pG
πG

)

and the optimal portfolios y of any SEU agent and w of any maxmin agent satisfy

yG > yB > yR (or yG > yB = yR) and wR < wG = wB.

Proposition 3.2 shows that when the total endowment W = (WR,WG,WB) satisfies WR >

WG > WB or WG > WB > WR, two rankings of the state-price/state-probability ratios of the SEU

agents are possible in equilibrium. In the examples of Section 3.3 we show that all these rankings

can indeed occur.

The actual occurrence of ranking (3.6) when WR > WG > WB, and of ranking (3.9) when

WG > WB > WR, show that ambiguity aversion strongly impacts equilibrium prices. In these

cases, the SEU agents in the market and the SEU representative agent (who rationalizes the market

equilibrium) rank state-price/state-probability ratios in equilibrium differently.15 Since the maxmin

agents take an unambiguous portfolio, i.e. wG = wB, and WG > WB, the market clearing implies

that SEU agents have to hold portfolios which in aggregate pay strictly more on state G than on

state B16. To induce the SEU agents to clear the supply difference WG−WB, the price of the Arrow

security G in larger supply has to be comparatively lower and the price of the Arrow security in

lower supply B has to comparatively higher than, for instance, in a market populated only by SEU

agents sharing the same prior. When the supply differences WG−WB will be above a certain level,

the SEU agents will have to hold in equilibrium a state dependent portfolio that does not rank as

the state dependent total endowment W, and consequently their state-price/state-probability ratios

will not be ranked opposite to W . For instance, when WG > WB > WR and WG −WB is “too

15Rankings (3.6) and (3.9) of the state-price/state-probability ratio of SEU agents in the market are not opposite to
the ranking of the corresponding total endowments. By contrast, the state-price/state-probability of the SEU repre-
sentative agent who rationalizes the market equilibrium is ranked opposite to total endowment: the representative
agent has to hold the total endowment of the economy as optimal portfolio, thus (A.3) has to hold.
16This occurs if and only if pB

πB
> pG

πG
(See (A.3) in Appendix A) and excludes all state-price/state-probability rankings

in which pB
πB
≤ pG

πG
.

11



large” compared to WB −WR, the optimal portfolio of the SEU agents will be yG > yR > yB and

the ranking (3.9). The examples in Section 3.3 illustrate the mechanism through which ambiguity

averse agent impacts prices in the CARA and Quadratic cases.

An ambiguity averse representative agent who rationalizes the market equilibrium may also be

possible. However, the representative agent will need to be less ambiguity averse (that is, to have

a smaller set of priors) than the maxmin agents acting in the market.17

3.3 Illustrating equilibrium results

We now illustrate Proposition 3.2 in the case of exponential and quadratic utilities. We recall that

the market is populated by SEU agents with prior π = (πR, πG, πB), with πR, πG, πB > 0, and by

maxmin agents in (3.3) who are sufficiently ambiguity averse to hold an unambiguous portfolio, i.e.

wG = wB.18 The total endowment W = (WR,WG,WB) is such that WG > WB.

3.3.1 CARA utility

There are L SEU agents and M maxmin agents, all having exponential utilities u(z) = 1− e−δz

δ . Let

δ = β and δ = γ be the risk aversion parameter of the SEU agents and maxmin agents, respectively.

Then, the equilibrium state prices are:

pR =
πR

πR + e
βγ(WR−WG)

βM+γL π
γL

βM+γL

G q
βM

βM+γL + e
βγ(WR−WB)

βM+γL π
γL

βM+γL

B (1− πR − q)
βM

βM+γL

pG =
π

γL
βM+γL

G q
βM

βM+γL

π
γL

βM+γL

G q
βM

βM+γL + πRe
βγ(WG−WR)

βM+γL + e
βγ(WG−WB)

βM+γL π
γL

βM+γL

B (1− πR − q)
βM

βM+γL

pB =
π

γL
βM+γL

B (1− πR − q)
βM

βM+γL

π
γL

βM+γL

B (1− πR − q)
βM

βM+γL + πRe
βγ(WB−WR)

βM+γL + e
βγ(WB−WG)

βM+γL π
γL

βM+γL

G q
βM

βM+γL

17Suppose there exists a maxmin representative agent characterized by the set of priors {(πR, q, 1 − πR − q) | q ∈
[cR, dR])} who rationalizes the market equilibrium. Let {(πR, q, 1 − πR − q) | q ∈ [c, d])} be the set of priors of the
maxmin agents in the market. Since the maxmin agents in the market choose the unambiguous portfolio and the
representative agent has to hold the total endowment W of the economy as optimal portfolio, (A.5) implies that: If
WG > WB then,

c

1− πR − c
≤ pG
pB

<
cR

1− πR − cR
,

has to hold true and thus cR > c. With a similar reasoning, if WG < WB , then dR < d has to hold true.
18From (A.5) and the results that follow in this section (specifically equalities (3.12)) one can see that maxmin agents
hold an unambiguous portfolio, i.e. wG = wB if and only if q in (3.11) satisfies c ≤ q < πG < d.
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where

(3.11) q := πG
πG + πB

πG + πBe
β
L

(WG−WB)
.

The dependence of q on WG−WB illustrates one channel through which ambiguity aversion affects

asset prices. The impact of an increases of β
L(WG −WB) on the securities prices that pay in the

ambiguous states is clear: an increase of β
L(WG −WB) decreases q and increases (1− πR − q), and

consequently decreases pG, and increases pB thus making the SEU agents to absorb the imbalance

WG −WB.19 The equilibrium price ratios

pG
pB

=
πG
πB

e−
β
L

(WG−WB)

pG
pR

=
πG
πR

(
πG + πB

πG + πBe
β
L

(WG−WB)

) βM
βM+γL

e
− βγ
βM+bL

(WG−WR)
(3.12)

pB
pR

=
πB
πR

(
πG + πB

πGe
−β
L

(WG−WB) + πB

) βM
βM+γL

e
− βγ
βM+γL

(WB−WR)

show that all rankings of the state-price/state-probability ratios that are possible according to

Proposition 3.2 can indeed occur. For instance, consider the case WG > WB > WR. The first two

equations in (3.12) show that always pB
πB

> pG
πG

and pR
πR

> pG
πG

. The third equation in (3.12) shows

that both pB
πB

> pR
πR

and pB
πB

< pR
πR

can occur and, consequently, the corresponding rankings (3.9)

and (3.10).

The above formulae show that the same equilibrium could also be obtained in a market popu-

lated by expected utility maximizers only, but this under the condition that together with the L

SEU agents with prior (πR, πG, πB) the remaining M agents are expected utility maximizers with

the unusual prior (πR, q, 1− πR − q). The prior (πR, q, 1− πR − q) is unusual because depends on

(and thus changes with) the aggregate endowment on the ambiguous states, and on the number and

the risk aversion of the different agents acting in the market.20 This prior has to be such to make

the M expected utility maximizers behave as maxmin agents who always choose the unambiguous

portfolio. Bossaerts et al. (2010, Section 4) also argue against such priors.

19Depending on the particular rank of the total endowment W = (WR,WB ,WG), the price of the Arrow security
that pays in the state R will increase or decrease with β

L
(WG −WB).

20The fact that q does not depend neither on the number of M of maxmin agents nor on their risk aversion γ is a
peculiarity of the exponential utility.
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3.3.2 Quadratic utility

The quadratic utility with parameter c > 0 reads

(3.13) uc(x) =


x− cx2/2, x ≤ 1/c

1/(2c), x > 1/c

and feasible portfolios live on the strictly increasing part of the utility function. Suppose the SEU

agents have utility ua, the maxmin agents utility ub and a, b > 0. The fixed point equations for the

equilibrium prices are

pR =
πR(c−WR)

c− π ·W

pG =
πG(c−WG)

c− π ·W

(
D − (1

b −X
MEU)(c− π ·W )(1 + WG−WB

c−WG

πB
1−πR )

D − (1
b −XMEU)(c− π ·W )

)

pB =
πB(c−WB)

c− π ·W

(
D − (1

b −X
MEU)(c− π ·W )(1− WG−WB

c−WB

πG
1−πR )

D − (1
b −XMEU)(c− π ·W )

)

where c := 1
a + 1

b , D := πR(c−WR)2 + (1− πR)(c− πGWG+πBWB
1−πR )2 and XMEU is the initial wealth

of the maxmin agents. Note that pG is lower (pB is higher) than the price πG(c−WG)
c−π·W (respectively

πB(c−WB)
c−π·W ) that would result in a market equilibrium with SEU agents sharing the same prior

(πR, πG, πB).

Let WG > WB > WR. Figure 1 shows the state-price/state-probability ratios of the equilibrium

prices as a function of the difference WB−WR, computed for fixed WG = 272 and WR = 8121. The

parameters a and b in (3.13) are set to 0.001 in the left graph, and to a = 0.0015 and b = 0.001 in

the right graph.

In both cases there is a clear change of rankings of state-price/state-probability ratios: as

WB −WR increases, the ranking switches from (3.9) to (3.10).

3.4 Revisiting laboratory experimental findings

Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010) run a series of laboratory experiments that

reproduce a competitive financial market in the standard Ellsberg framework. The comparison

between the experimental cross sectional distribution of the security holdings and empirical state-

21These values of the aggregate endowment W are the same values used by Bossaerts et al. (2010) in one of their
experiments that we discuss in Section 3.4 and which empirical rankings are summarized in Figure 2 in our paper.
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(b) a = 0.0015 and b = 0.001.

Figure 1: State-price/state-probability ratios (y-axis) of the equilibrium prices as a function of the difference

WB−WR (x-axis), computed for fixed WG = 272 and WR = 81, as in Figure 2. The line marked with circles

represents pR/πR, the one marked with arrows pointing to the right represents pB/πB , and the one marked

with arrows pointing to the left represents pG/πG. The SEU prior is πR = πG = πB = 1/3. The parameters

a and b in (3.13) are set to 0.001 in the left graph, and to a = 0.0015 and b = 0.001 in the right graph.

price/state-probability ratios with and without ambiguity, provide clear evidence that ambiguity

aversion matters for portfolio choices and equilibrium prices, and does not wash out in aggregate.

To support their experimental findings Bossaerts et al. (2010) use a theoretical market model

involving ambiguity averse α-MEU agents with α > 1/2 and SEU agents. Bossaerts et al. (2010)

do not derive the equilibrium prices but make conjectures about the equilibrium state-price/state-

probability ratio. Our theoretical findings in Section 3.1 complete the Bossaerts et al. (2010) model

22 and show that their experimental findings are much closer to the theory than they could conclude

just from the analysis in their paper.23

In the following we show that the rankings of the state-price/state-probability ratios in Proposi-

tion 3.2 resulting in a market equilibrium with maxmin agents who optimally choose unambiguous

portfolios and SEU agents, fully explain and theoretically justify all empirical rankings documented

by Bossaerts et al. (2010).

Bossaerts et al. (2010) summarize their experimental findings about equilibrium asset prices

in Figures 6–8; Bossaerts et al. (2010, pages 1349 and 1350). These figures show the empirical

distribution functions of the state-price/state-probability ratios obtained from experimental sessions

with different total endowments.

22Note that the market model for which we derive the theoretical rankings is the same theoretical market model
proposed by Bossaerts et al. (2010) to explain the experimental market. Relative to Bossaerts et al. (2010), from the
equivalence result (Proposition 3.1) in addition we know that in the standard Ellsberg framework risk averse α-MEU
preferences with α > 1/2 are equivalent maxmin preferences with concave utility.
23The analysis in the Bossaerts et al. (2010) not always could explain the experimental findings, as discussed by the
authors; see the Conclusion in Bossaerts et al. (2010).
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Figure 6 in Bossaerts et al. (2010), where the total endowment W = (WR,WG,WB) is such

WG > WR > WB, provides evidence of one ranking of the empirical state-price/state-probability

ratio, which is exactly the ranking (3.8) predicted by our Proposition 3.2. Proposition 3.2 confirms

the conjecture in Bossaerts et al. (2010, page 1339) that ranking (3.8) is more likely to occur when

WG > WR > WB, which is indeed the only theoretically possible ranking. Moreover, Proposition 3.2

shows that the theoretically possible rankings of the state-price/state-probability ratio do depend

on the ranking of WR with respect to WG and WB.

Figure 2 below is a copy of Figure 8, right panel, in Bossaerts et al. (2010) where WG >

WB > WR. The experimental findings summarized in Figure 2 provide evidence of two rankings:

Figure 2: Empirical distribution functions of state-price/state-probability ratios from the experimental

session of eight trading periods in Bossaerts et al. (2010) with WG = 272, WB = 162, and WR = 81. The

distribution function with circles is for pR/πR; the one with arrows pointing to the right is for pB/πB ; the

one with arrows pointing to the left is for pG/πG. This figure is a copy of Figure 8, right panel, in Bossaerts

et al. (2010).

pR/πR > pB/πB > pG/πG, and pB/πB > pR/πR > pG/πG.24 Remarkably, Proposition 3.2 shows

that these are exactly the two rankings possible, namely (3.9) and (3.10), when WG > WB > WR.

The proof of Proposition 3.2 further shows that the ranking (3.10) prevails when WB −WR is

large enough to imply an optimal portfolio of the SEU agents with more Arrow securities that pay

in the ambiguous state B than in the risky state R. This provides a potential explanation why

in Figure 2 the prices do not settle in favor of one of the two rankings: the values WR, WG, and

24Bossaerts et al. (2010, Page 1351) report that “the rankings appear anomalous,” because they only expect to see
the second ranking (Bossaerts et al. 2010, Page 1339).
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WB in the experimental section in Figure 2 are close to the point at which the change from (3.9)

to (3.10) takes place. Example 3.3.2 illustrates this point: When WB −WR is approximately 81,

the switch of the rankings occurs as in Figure 1. This confirms that to observe only one ranking

of state-price/state-probability ratios in laboratory experiment, the difference in aggregate wealth

WB −WR should be chosen either relatively large or small.

Bossaerts et al. (2010) perform other experimental sessions in which WG > WB > WR, summa-

rized in Figure 7 in Bossaerts et al. (2010). Although the most common ranking of state-price/state-

probability ratios is (3.9), the empirical distribution functions of pR/πR and pB/πB are very close.

Proposition 3.2 predicts that to observe a clear separation of the rankings in (3.9) and (3.10), the

aggregate wealth WB should be chosen closer to WR or WG, respectively.

4 Extended Ellsberg framework

In this section we consider an extended Ellsberg framework, that is a state space S where the

future states of the economy correspond to draws from an extended Ellsberg (1961) urn with m

risky states with known probability, and l ≥ 3 ambiguous states. A ⊂ S denotes the set that

contains the ambiguous states, thus |A| = l. The known probabilities πR ∈ (0, 1) of risky states

R ∈ S \A satisfy
∑

R∈S\A πR < 1.

In this setting the α-MEU model (2.1) represents a large spectrum of preferences that include,

but do not reduce to, maxmin, maxmax, SEU preferences. In fact, when l ≥ 3, a α-MEU utility

with α ∈ (0, 1) cannot be in general rewritten as a maxmin, maxmax or SEU utility, although

there are specific sets of priors C for which this is still the case. The following proposition provides

examples of α-MEU utilities with α ∈ (0, 1) that reduce to maxmin, maxmax or SEU utility. The

proof is provided in Appendix B.

Proposition 4.1. Consider a set of priors of the form

(4.1) C =

{
q ∈ Rk+l | qσ = πσ, σ ∈ S \A and qσ ∈ [aσ, bσ], σ ∈ A \ {η}, and qη = 1−

∑
σ 6=η

qσ

}

where η ∈ A is an arbitrary but fixed ambiguous state, 0 ≤ aσ < bσ, σ ∈ A\{η} and
∑

σ∈A\{η} bσ ≤

1−
∑

σ∈S\A πσ. Then, the α-MEU utility U with set of priors C equals

U(w) = u(wη) +
∑

σ∈S\A

(u(wσ)− u(wη))πσ +
∑

σ∈A\{η}

(u(wσ)− u(wη))
+cσ − (u(wσ)− u(wη))

−dσ
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where cσ := αaσ + (1− α)bσ, and dσ := αbσ + (1− α)aσ, σ ∈ A \ {η}.

(i) If α > 1/2, then cσ < dσ for all σ ∈ A \ {η} and U is a maxmin expected utility (1-MEU)

with set of priors Ĉ = {q ∈ C : qσ ∈ [cσ, dσ]}.

(ii) If α = 1/2, then U is a subjective expected utility (SEU) with subjective prior q̂ satisfying

q̂σ = πσ for all σ ∈ S \A, q̂σ = aσ+bσ
2 for all σ ∈ A \ {η}, and q̂η = 1−

∑
σ∈S\{η} q̂σ.

(iii) If α < 1/2, then dσ < cσ for all σ ∈ A \ {η} and U is maxmax expected utility (0-MEU) with

set of priors Ĉ = {q ∈ C : qσ ∈ [dσ, cσ]}.

Hence, to study the spectrum of preferences represented by the α-MEU model (2.1) beyond the

maxmin, maxmax and SEU preferences we have to specify a suitable set of priors. One typical choice

is to assume that the set of priors of α-MEU model is the one that describes the uncertainty (i.e.

the risk and the ambiguity) of the framework under study. The set that describes the uncertainty

of the extended Ellsberg framework is the one that contains all priors such that the probabilities on

the risky states equal the known probabilities πR, R ∈ S \A. We call this set Cmax and denote this

class of models by α-Cmax-MEU. Next section shows that indeed α-Cmax-MEU utilities do reduce

to maxmin, maxmax or SEU utilities. Moreover, the choice of Cmax as set of priors is suitable for

the aim of this paper as it allows to interpret the parameter α as a measure of the agent’s degree

of ambiguity aversion and thus allows us to study the α-MEU agent’s portfolio choice as a function

of the different degree of agent’s risk aversion; see Section 4.2.25

4.1 The α-Cmax-MEU model

The α-MEU utility in (2.1) with C = Cmax can be rewritten as

U(w) =
∑

R∈S\A

πR u(wR) + (1−
∑

R∈S\A

πR)
[
αu(wAmin) + (1− α)u(wAmax)

]
(4.2)

25The interpretation of α as a measure of ambiguity can be lost if the set of priors C is smaller than the set of
priors Cmax that describes the uncertainty of the setting. A C strictly smaller than Cmax can reflect both additional
information and less aversion towards ambiguity. However, in general the intuitive interpretation of α as an ambiguity
aversion parameter is not warranted. One of the reasons is the potential multiplicity of representations of preferences
as either α-MEU or maxmin/maxmax; see Section 3. The underlying subtle question is linked to the precise notion
of the ambiguity in a problem, which has been debated in the decision theory literature; see, e.g., Siniscalchi (2006),
Ghirardato et al. (2004), and Machina and Siniscalchi (2014).
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where wAmin and wAmax is respectively the smallest and the largest wealth in the portfolio w ∈ Rm+l

allocated among the l ambiguous states, that is

(4.3) wAmin := min
σ∈A

wσ, and wAmax := max
σ∈A

wσ.

The α-Cmax-MEU utility (4.2) shows that when l ≥ 3 and α ∈ (0, 1), α-MEU utilities do not reduce

to maxmin, maxmax nor to SEU utilities.26 For instance, while SEU and maxmin utilities are

always concave if u is concave, the α-Cmax-MEU utility is concave if and only if α = 1 (for a proof

see Appendix C).27 Thus the equivalence result (Proposition 3.1) only holds with two ambiguous

states. In Section 4.4 we show that the α-Cmax-MEU model and the maxmin model also imply

different portfolio choices. Thus, in contrast to the standard Ellsberg framework, in the extended

Ellsberg framework ambiguity averse α-Cmax-MEU and maxmin portfolio choices are not anymore

observationally equivalent.

4.2 The α-Cmax-MEU portfolio choice

Before stating the proposition that characterizes the portfolio choice of α-Cmax-MEU agents we

introduce few notations that we use hereafter. Given a pricing rule p ∈ Rm+l, pAmin denotes the

lowest (minimum) price among the ambiguous state prices, that is

pAmin := min
η∈A

pη

and I the set that contains all ambiguous states with lowest price, that is

I := {σ ∈ A | pσ = pAmin}.

Finally, by π̃ we denote the prior which assigns to the risky states the corresponding known prob-

abilities πR, R ∈ S \A, and to each ambiguous state equal probability π̃a :=
∑
R∈S\A πR

l .

26It easy to see that also when the set of priors C is a strict subset of Cmax, the α-MEU utility cannot in general be
rewritten neither as 1-MEU, 0-MEU nor SEU, and is not concave.
27Another way to see this is to observe that the α-Cmax-MEU utility from a portfolio w ∈ Rm+l on the ambiguous
states only depends on wAmin and wAmax. This is not the case for a maxmin (maxmax) utility model, as long as the
state space contains more than two ambiguous states. The utility of the maxmin model from a portfolio w ∈ Rm+l

will be a function of the portfolio’s smallest wealth wAmin (respectively, the portfolio’s largest wealth wAmax) and then,
depending on the set of priors, of the second smallest wealth (respectively, the second largest wealth) and so on, until
the sum of the probabilities of the states in which these wealths are allocated reaches (1−

∑
R∈S\A πR).

19



Proposition 4.2. Suppose that the state price vector p satisfies pσ > 0 for all σ ∈ S. Consider an

α-Cmax-MEU agent. Let α ∈ (0, 1] and suppose there is an optimal portfolio.

• If

α < 1− pAmin

1−
∑

R∈S\A pR
= 1− pAmin∑

ν∈A pν
(4.4)

there are |I| optimal portfolios: all optimal portfolios coincide on the risky states whereas

on the ambiguous states they only take two different values w ∈ R and w ∈ R with w < w,

which are the same for all optimal portfolios. Every optimal portfolio is obtained by choosing

a single ambiguous state ν ∈ I (pν = pAmin) among the cheapest ones and then setting

 wν = w

wη = w for the remaining (l − 1) ambiguous states η ∈ A \ {ν}.
(4.5)

Hence, for all optimal portfolios wAmin = w and wAmax = w.

• If

α ≥ 1− pAmin∑
ν∈A pν

or equivalently α ≥ 1− pη∑
ν∈A pν

,∀η ∈ A,(4.6)

the optimal portfolio w is unique and unambiguous, i.e. wAmax = wAmin. In particular, when

α = 1, the optimal portfolio w is always unique and unambiguous.

If α = 0, there is no optimal portfolio.

Corollary 4.3. The α-Cmax-MEU model implies portfolio inertia both at the unambiguous and at

the ambiguous portfolio (4.5).

The proof of Proposition 4.2 is provided in Appendix D. The arguments used in the proof show

that Proposition 4.2 holds true for any α ∈ (0, 1] also when the utility u in (2.1) has a bounded

domain, as long as the set of feasible portfolios remains convex and the utility is differentiable.28

The only difference that a utility with bounded domain would bring is the existence of optimal

28These properties are used in the proofs of Lemmas D.1–D.5 that in turns prove Proposition 4.2, and can be ensured
for instance by requiring that the feasible portfolios are in the interior of the utility domain.
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portfolios of the 0-MEU agent.29

The proof of Corollary 4.3 is straightfoward. For simplicity, suppose m = 0. Since the optimal

portfolio choice depends only on α and pAmin (see (4.4) and (4.6)), the optimal portfolio remains

optimal whenever the state price vector changes but the ambiguous state with price pAmin and the

price pAmin remain the same.

The following example illustrates Proposition 4.2 when the state space S contains m = 1 risky

state and l = 3 ambiguous states. Note that l = 3 yields pAmin ≤
1−pR

3 which is equivalent to

1 − pAmin
1−pR ≥ 2/3. From the last inequality and Condition (4.4), it follows that any agent with

α ∈ (0, 2/3) prefers an ambiguous portfolio30.

Example 4.4. Let S = {R} ∪ A where A = {G,B, Y }. Consider an α-Cmax-MEU agent and let

w = (wR, wG, wB, wY ) ∈ R4 be her optimal portfolio. Without loss of generality, let 0 < pG ≤ pB ≤

pY .

• Let α ∈ (0, 2/3). Then the optimal portfolio is always exposed to ambiguity. In particular

there are wR, w, w ∈ R with w > w such that:

(i) if pG < pB (pAmin = pG and I = {G}), the optimal portfolio is unique and reads w =

(wR, w, w,w)

(ii) if pG = pB < pY (pAmin = pG = pB and I = {G,B}), then there are two optimal

portfolios, namely (wR, w, w,w) and (wR, w, w,w)

(iii) if pG = pB = pY (pAmin = pG = pB = pY = 1−pR
3 and I = A), then there are three

optimal portfolios: (wR, w, w,w), (wR, w, w,w), and (wR, w, w,w).

• Let α ∈ [2
3 , 1]. The optimal portfolio w is unambiguous (i.e. wG = wB = wY ) if and only if

α ≥ 1 − pAmin
1−pR or equivalently α ≥ 1 − pη

1−pR ,∀η ∈ A = {G,B, Y }. This is always the case if

pG = pB = pY or if α = 1. Otherwise, i.e. if α < 1− pAmin
1−pR , either (i) or (ii) holds.

Proposition 4.2 and Example 4.4 show that an α-Cmax-MEU agent with α ∈ (0, 1), facing a

state price vector p ∈ Rm+l, optimally chooses only two type of portfolios: either an unambiguous

portfolio (with no exposure to ambiguity, allocating equal wealth in each ambiguous state), or an

29The non-existence of the optimal portfolio of 0-MEU agent is due to the fact that when the utility is defined on the
whole real line, the agent can go arbitrarily long in one of the ambiguous states and still satisfy the budget constraint
by going arbitrarily short in another ambiguous state. A utility with bounded domain would imply the existence of
an optimal portfolio for the 0-MEU agent as the bounded domain will prevent the agent from going arbitrarily short;
see Lemma D.5.
30The dependence of the portfolio choice on the number of ambiguous states l is discussed in Section 4.2.3.
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ambiguous portfolio with the specific exposure to ambiguity in (4.5), i.e. allocating more wealth w

to one of the cheapest ambiguous state and less equal wealth w to each of the remaining (l − 1)

ambiguous states. This portfolio can be seen as an unambiguous portfolio with equal wealth w

in each ambiguous state, plus a bet of (w − w) > 0 on one of the cheapest state. The larger the

difference w − w, the more the portfolio is exposed to ambiguity.

The choice between unambiguous and ambiguous portfolios only depends on α and the ratio of

the lowest price among the ambiguous state prices pAmin, to the total sum of the ambiguous state

prices,
∑

η∈A pη. If (4.6) holds, the optimal portfolio is unambiguous and unique. Otherwise if

(4.4) holds, the optimal portfolio is ambiguous. The ambiguous portfolio, when optimal, is unique

if there is only one ambiguous state with price pAmin, i.e. |I| = 1. If the ambiguous states with price

pAmin are more than one, i.e. |I| > 1, then there are |I| optimal ambiguous portfolios. The α-Cmax-

MEU agent finds equally optimal to bet w−w on any of the |I| cheapest ambiguous states, because

ambiguous states with equal prices are indistinguishable from an informational point of view. All

optimal portfolios provide the same exposure to ambiguity. For an illustration, see Example 4.4.

In the following we discuss the dependence of the α-Cmax-MEU agent’s optimal portfolio on the

ambiguity aversion, risk aversion and number of ambiguous states.

4.2.1 Impact of ambiguity aversion on portfolio choice

To understand how the ambiguity aversion parameter α determines the optimal exposure to ambi-

guity, we rewrite the α-Cmax-MEU utility (4.2) from portfolio w ∈ Rm+l as

U(w) =
∑

R∈S\A

πRu(wR) + (1−
∑

R∈S\A

πR)
[
u(wAmin) + (1− α)(u(wAmax)− u(wAmin))

]
.(4.7)

This equation shows that the coefficient (1 − α) weights the utility (u(wAmax) − u(wAmin)) that the

α-Cmax-MEU agent derives from the maximal exposure to ambiguity of the portfolio w, that is from

wAmax −wAmin. When α increases the utility from the exposure to ambiguity decreases: when α = 0

this utility is highest, when α = 1 the utility is zero. This implies that, the higher is α, the smaller

is the exposure to ambiguity of the agent’s optimal portfolio.

We now study how the parameter α and the utility u determine the optimal allocation of wealth

to risky and ambiguous states. Note that the optimal allocation of wealth among the risky states

only depend on the utility u; see (4.2).

Let R denote the risky state, and set m = 1 for simplicity. The following holds true.
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• An increase of α decreases the demand for the ambiguous portfolio.

Inequalities (4.6) show that an increase of α decreases the set of prices for which an α-Cmax-

MEU agent prefers an ambiguous portfolio. The limit case is α = 1 in which the optimal

portfolio is always unambiguous.

• An increase of α decreases the exposure to ambiguity of the ambiguous portfolio.

This can be deduced from the first order conditions satisfied by the optimal ambiguous port-

folio (see (D.2) in Lemma D.4 when m = 1)

u′(w)

u′(w)
=

∑
ν∈A\{σ} pν

pσ

(1− α)

α
(4.8)

u′(wR)

u′(w)
=

(1− α)(1− πR)pR
pσπR

and
u′(wR)

u′(w)
=

α(1− πR)pR∑
ν∈A\{σ} pνπR

where σ denotes (one of) the cheapest state among the ambiguous states, i.e. σ ∈ I and

pσ = pAmin, wσ = w and wη = w for all η ∈ A \ {σ}.

The closer α is to 0, the larger is w−w.31 When α increases, the exposure to ambiguity of the

agent’s optimal portfolio w−w decreases (as the ratio (1−α)
α decreases). When α ↑ 1− pAmin∑

ν∈A pν
,

the bet w−w ↓ 0, that is the ambiguous portfolio becomes unambiguous; see Condition (4.6).32

• When the ambiguous portfolio is optimal, an increase of α always leads to an increase in the

risk premium for the cheapest ambiguous state.

An α-Cmax-MEU agent chooses an ambiguous portfolio if and only if among the ambiguous

states there is at least one state σ (one of the chepaest ambiguous states) that satifies pσ <

(1 − α)(1 − pR); see (4.4). Hence, the larger is α, the smaller pσ must be in order to make

the agent choose an ambiguous portfolio.

Equalities (4.8) also show how α impacts the allocation of wealth between the risky state R and

the ambiguous states. An increase of α decreases the difference w−wR. When α ↑ 1− pAmin∑
ν∈A pν

the

optimal portfolio tends to the unambiguous portfolio, and the optimal allocation of wealth between

the risky and the ambiguous states is the same as that of an SEU with the prior π̃.

Figure 3 illustrates the impact of the parameter α on the α-Cmax-MEU agent’s optimal portfolio

when the agent’s utility u in (4.2) is a CARA utility when m = 1 and l = 4.

31In the limit, when α→ 0, w − w →∞, and thus there is no optimum; see discussion after Proposition 4.2.
32When α ↑ 1− pAmin∑

ν∈A pν
, 1− α ↓ pAmin∑

ν∈A pν
and thus u′(w)

u′(w)
↓ 1.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
198

199

200

201

202

203

204

205

Ambiguity aversion α

S
ta

te
 d

ep
en

de
nt

 w
ea

lth

 

 
w

R

w
G

w
B
 = w

Y
 = w

Z

Figure 3: Optimal state dependent wealth α-Cmax-MEU agent as a function of the degree of ambiguity

aversion α, when the number of risk states m = 1, the number of ambiguous states l = 4, R is the risky

state, and G, B, Y , Z are the ambiguous states. State prices are pR = 0.2, pG = 0.1, and pB , pY , pZ such

that pB + pY + pZ = 1 − pR − pG and pG = minν∈{G,B,Y,Z} pν . The agent’s utility u in (4.2) is a CARA

utility, u(z) = 1− e−δz/δ, where δ = 1.

4.2.2 Impact of risk aversion on portfolio choice

The utility function u in (4.2) that characterizes the risk aversion of the α-Cmax-MEU agent also

affects the extent to which the ambiguous portfolio in (4.5) is exposed to ambiguity. Equalities

(4.8) show that, given a state price vector p and α ∈ (0, 1), the more the utility function u is

concave (i.e. the faster u′ decreases) the smaller is the portfolio exposure w − w to ambiguity and

the difference wR −w. The dependence of the ambiguity exposure on risk aversion is illustrated in

Figure 4 assuming CARA utility. When risk aversion increases, the agent eventually invests in the

risk free asset.

4.2.3 Portfolio choice and number of ambiguous states

We now show that an α-Cmax-MEU agent with α ∈ (0, l−1
l ) always prefers the ambiguous portfolio

(4.5) and never chooses an unambiguous portfolio. The reason is that in a complete finite state

space model when α ∈ (0, l−1
l ), Condition (4.4) is automatically satisfied. The normalization∑

η∈A pη +
∑

S\A pR = 1 yields

pAmin ≤
∑

η∈A pη

l
and pAmin =

∑
η∈A pη

l
⇔ pν = pη ∀ν, η ∈ A.(4.9)
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Figure 4: Optimal state dependent wealth of the α-Cmax-MEU agent as a function of the degree of risk

aversion δ, when the ambiguity aversion coefficient α = 0.3, the number of risk states m = 1, the number

of ambiguous states l = 4, R is the risky state, and G, B, Y , Z are the ambiguous states. State prices are

pR = 0.2, pG = 0.1, and pB , pY , pZ such that pB + pY + pZ = 1 − pR − pG and pG = minν∈{G,B,Y,Z} pν .

The agent’s utility u in (4.2) is a CARA utility, u(z) = 1− e−δz/δ.

As pAmin ≤
∑
η∈A pη
l is equivalent to 1− pAmin∑

η∈A pη
≥ l−1

l , any α ∈ (0, l−1
l ) satisfies Condition (4.4).

When ambiguous states have equal price, from the equality in (4.9) and Proposition 4.2 it follows

that the optimal portfolio of any α-Cmax-MEU agent with α ∈ [ l−1
l , 1] is unique and unambiguous.

We formalize these concepts in the following corollaries.

Corollary 4.5. In the setting of Proposition 4.2, any α-Cmax-MEU agent with α ∈ (0, l−1
l ) always

chooses a portfolio exposed to ambiguity of the type described in (4.5).

Corollary 4.6. In the setting of Proposition 4.2, suppose that the prices of the ambiguous states

are all equal, i.e. pν = pη for all ν, η ∈ A.

(i) If α ∈ (0, l−1
l ), the optimal portfolios are the ambiguous portfolios in (4.5). Since |I| = |A| = l,

the number of optimal portfolios equals the number of ambiguous states.

(ii) If α ∈ [ l−1
l , 1], the optimal portfolio is unique and unambiguous, i.e. wAmax = wAmin.

An increase of the number l of ambiguous states increases the interval of α-values (0, l−1
l ) for

which the corresponding α-Cmax-MEU agent always chooses a portfolio exposed to ambiguity. The

reason is that increasing l lowers the upper bound of pAmin in (4.9) and consequently increases the

interval of α-values that satisfy (4.4). For example, setting m = 0 for simplicity, when l = 4,
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pAmin ≤ 0.25 and the interval of α-values for which the α-Cmax-MEU agent prefers exposure to

ambiguity is (0, 0.75). While when l = 20, pAmin ≤ 0.05 and the interval of α-values is (0, 0.95).

In Sections 4.3 and 4.4 we show how these results can be used in laboratory experiments to

test the α-MEU model, measure the agent’s degree of ambiguity aversion and distinguish between

α-Cmax-MEU agents and maxmin agents.

4.3 Attitudes towards ambiguity of the α-Cmax-MEU model

To understand the different attitudes towards ambiguity expressed by the α-Cmax-MEU model we

start with the optimal portfolio choice when the prices of the ambiguous states are all equal. In

this setting all the ambiguous states are equivalent from an informational point of view, and thus

indistinguishable.33 From Corollary (4.6) we know that when l ≥ 3 and ambiguous state prices are

equal:

• any α-Cmax-MEU agent with α ∈ (0, l−1
l ) optimally chooses an ambiguous portfolio allocating

equal wealth w on each ambiguous state plus a bet of size w − w > 0 made indifferently on

one of the l ambiguous states. The number of optimal portfolios is equal to the number l of

ambiguous states.

• any α-Cmax-MEU agent with α ∈ [ l−1
l , 1] optimally chooses an unambiguous portfolio with

equal wealth in each ambiguous state. The optimal portfolio is unique.

The fact that α-Cmax-MEU agents with α < l−1
l makes a bet on one among the l ambiguous

states despite these states are all indistinguishable shows an ambiguity loving (or seeking) behavior

of these agents. The ambiguity seeking behavior becomes more pronounced when α decreases.

Indeed, as shown in Section 4.2.1, the smaller is α the larger is the exposure to ambiguity w − w

in the agent’s optimal portfolio.

In contrast, α-Cmax-MEU agents, with α ≥ l−1
l , do not show any ambiguity seeking behavior.

When facing indistinguishable ambiguous states they optimally choose an unambiguous portfolio

with equal wealth on each ambiguous state.

We observe that when α = l−1
l , the α-Cmax-MEU agent is not equivalent, not even observation-

ally, to an ambiguity neutral SEU agent.34 The l−1
l -Cmax-MEU agent and the SEU agent with prior

33A comparatively high price in one of the ambiguous state may make the agents believe that this state has a higher
probability of occurrence than the other ambiguous states, even though in the Ellsberg framework an exact knowledge
of the probabilities is not available and the ambiguous states are “equally ambiguous”.
34In Standard Ellsberg framework, when l = 2, any α-MEU utility with α = l−1

l
= 1

2
reduces to a SEU utily; see

Proposition 3.1.
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π̃ choose the same unambiguous portfolio when ambiguous state prices are equal. However, the two

agents choose different portfolios when the ambiguous states with cheapest price are more than one

and less than l− 1 (i.e., 1 <| I |< l− 1).35 For example, when m = 0, l = 3, and two cheapest am-

biguous states, G and B, there are two 2
3 -Cmax-MEU optimal portfolios: (wG, wB, wY ) = (w,w,w)

and (wG, wB, wY ) = (w,w,w), for some w > w. While the SEU optimal portfolio is unique and

equals (yG, yB, yY ) = (y, y, y) for some y > y.

4.4 Disentangling between α-Cmax-MEU and maxmin agents

The utility of a maxmin agent from some state dependent wealth w ∈ Rl+m is

(4.10) U(w) =
∑

R∈S\A

πR u(wR) + min
π∈C

∑
σ∈A

πσ u(wσ)

where C ⊆ Cmax is a convex and closed set of priors. When C = Cmax this utility is equal to the

α-Cmax-MEU utility (4.2) when α = 1, and provides the maximal degree of ambiguity aversion.

Shrinking the set of priors C in (4.10) decreases the exposure to ambiguity of the maxmin optimal

portfolio, like decreasing the parameter α in (4.2) decreases the exposure to ambiguity of the

α-Cmax-MEU optimal portfolio.

The equivalence result in Proposition 3.1 shows that in the standard Ellsberg framework (two

ambiguous states, i.e., |A| = l = 2) α-MEU utilities with α > 1
2 are maxmin utilities, and thus

α-MEU preferences cannot be distinguished from maxmin preferences. In the following we show

that in an extended Ellsberg framework (three or more ambiguous states, i.e., |A| = l ≥ 3) this

distinction can instead be achieved.36 To disentangle α-MEU from maxmin preferences we exploit

the α-Cmax-MEU portfolio choice derived in Section 4.2 and the following lemma.

Lemma 4.7. Suppose that pσ = pη for all σ, η ∈ A. Then any maxmin agent (4.10) with a set of

priors C such that π̃ ∈ C takes an unambiguous portfolio.

This lemma shows that when facing ambiguous states with equal prices, any maxmin agent

with a set of priors C that includes π̃ chooses a portfolio with no exposure to ambiguity. In Ellsberg

frameworks where the ambiguous states are all “equally ambiguous” (i.e., indistinguishable from

35In fact, when 1 <| I |< l − 1, the optimal portfolio of any α-Cmax-MEU agent with α ∈ [0, 1] is different from the
SEU optimal portfolio.
36In Section 4.2 we observe that the equivalence result does not hold when the number of ambiguity states is larger
than two. However, the fact that α-MEU utilities cannot be rewritten as 1-MEU utilities does not imply that their
portfolio choice may not be observationally equivalent.
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a probabilistic point of view) it is natural that the prior π̃ belongs to the maxmin agent’s set of

priors.37

In the following we point out the differences between the α-MEU optimal portfolio and the

maxmin optimal portfolio that may be used in a multiple-stage laboratory experiment to disentangle

ambiguity seeking from non-ambiguity seeking agents, and among the latter, α-Cmax-MEU from

maxmin agents.

4.4.1 Ambiguity seeking and non-ambiguity seeking agents

The identification of ambiguity seeking α-Cmax-MEU agents, α ∈ (0, l−1
l ), and non-ambiguity seek-

ing agents, α-Cmax-MEU agents with α ∈ [ l−1
l , 1) and the maxmin agents, can be achieved by

observing their different portfolio choices. For example, when m = 1, l = 3, and the ambiguous

states have equal prices, ambiguity seeking α-Cmax-MEU agents (α < 2
3) should choose and be indif-

ferent among the following three portfolios: (wR, w, w,w), (wR, w, w,w) and (wR, w, w,w) for some

w > w. While α-Cmax-MEU agents with α ≥ 2
3 and maxmin agents should choose one (unique)

unambiguous portfolio.

4.4.2 Non-ambiguity seeking and maxmin agents

Once the distinction between agents with and without ambiguity seeking attitudes is achieved,

additional experiments involving only the agents with non-ambiguity seeking attitude can be carried

out to disentangle maxmin agents from α-Cmax-MEU agents with α ∈ [ l−1
l , 1). This distinction can

be achieved observing that the maxmin optimal portfolio is typically unique, while the α-Cmax-MEU

ambiguous optimal portfolios are not unique when there are more than one ambiguous states with

cheapest price and less than l − 1, i.e., 1 <| I |< l − 1.38 For example, when m = 1, l = 3, and

the state price vector p ∈ R1+3 is such that pAmin = pG = pB < pY , any α-Cmax-MEU agent with

α ∈ [ l−1
l , 1−

pG
1−pR ] = [2

3 , 1−
pG

1−pR ] chooses and is indifferent between the two portfolios (wR, w, w,w)

and (wR, w, w,w).39 Thus, for instance by asking the agents in a sequence of experimental sections

to choose their optimal portfolios without changing the prices, we expect to see the α-Cmax-MEU

agent switching its choice between the two optimal portfolios, while the maxmin agent chooses the

37If a set of priors C is symmetric (i.e., permutation invariant) in the ambiguous coordinates then π̃ ∈ C. Thus, if
π̃ /∈ C some ambiguous states will be systematically overweighted and other underweighted. Note that Cmax includes
π̃ and is symmetric in the ambiguous states.
38The optimal portfolio of a maxmin agent is typically unique. In particular this is always the case when the maxmin
utility is strictly concave.
39When pB = pG approach zero the right-hand side of the interval [ 2

3
, 1− pG

1−pR
] approaches 1.
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same portfolio in any section.

The distinction between α-Cmax-MEU agents with α ∈ [ l−1
l , 1) and the maxmin agents cannot

be achieved via the observation of one single portfolio choice. The reason is that depending on

her set of priors a maxmin agent may also optimally choose one of the two portfolios which are

optimal for the α-Cmax-MEU agent with α ∈ [2
3 , 1−

pG
1−pR ], i.e., either the portfolio (wR, w, w,w) or

(wR, w, w,w). Indeed, one can show that for any given portfolio there exists a set of priors C for

which the associated maxmin agent chooses that portfolio as optimal.

5 Ambiguity seeking behaviors and market equilibrium

In this section we consider a simple market populated by SEU and ambiguity sensitivity agents and

show that the existence of the market equilibrium depends on whether ambiguity seeking agents are

or not present in the market. In fact, as we show in the following, the ambiguity seeking α-Cmax-

MEU agents may prevent the existence of the equilibrium that otherwise exists if, together with

the SEU agents, the non-ambiguity seeking α-Cmax-MEU or maxmin agents populate the market.

Example 5.1. Consider a market with two agents and suppose that the state dependent total

endowment W ∈ Rm+l is such that Wη = Wν , for all η, ν ∈ A.

(i) First suppose that in the market there is a SEU agent with prior π̃ and a non-ambiguity

seeking agent, i.e. either an α-Cmax-MEU agent with α ∈ [ l−1
l , 1), or a maxmin agent with

π̃ ∈ C.40 It is easy to see that in this market the equilibrium exists. Specifically, the state price

vector in equilibrium is p ∈ Rl+m with pη =
1−

∑
S\A pR
l , ∀η ∈ A; the SEU optimal portfolio

is y ∈ Rm+l with yη = yν , ∀η, ν ∈ A, and the ambiguity averse agent’s optimal portfolio is

w ∈ Rm+l with wη = wν , ∀η, ν ∈ A, where y and w are such that yη + wη = Wη, ∀η ∈ A.41

(ii) Now suppose that in the market, together with the SEU agent, there is an ambiguity seeking

α-Cmax-MEU agent, i.e. α ∈ (0, l−1
l ). This agent only chooses ambiguous portfolio of the

type (4.5) (see Corollary 4.5), that is w ∈ Rl+1 such that wσ = w, wη = w, ∀η ∈ A \ {σ},

w > w, where σ is (one of the) the cheapest ambiguous state, i.e. pσ ≤ pη, ∀η ∈ A \ {σ}. If

the equilibrium exists, to clear the market, the SEU optimal portfolio y ∈ Rl+1 has to satisfy

yσ = Wσ − w < Wη − w = yη, yη = Wη − w = Wν − w = yν , ∀η, ν ∈ A \ {σ}, that is

40A necessary condition for the existence of the equilibrium is that beliefs are consistent across agents in the market.
We recall that π̃ is in the set of prior Cmax of the α-Cmax-MEU.
41When the ambiguous states have equal prices, the unambiguous portfolio is optimal both for the α-Cmax-MEU (see
Corollary 4.6) and the maxmin agent (see Lemma 4.7).
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yσ < yη = yν , ∀η, ν ∈ A \ {σ}. This portfolio will is optimal for the SEU agent only if (see

(A.3)) the equilibrium state prices satisfy pσ > pη = pν , ∀η, ν ∈ A \ {σ}, but this condition is

in contradiction with the α-Cmax-MEU portfolio optimality condition pσ ≤ pη, ∀η, ν ∈ A\{σ}.

This implies that there is no equilibrium for this market.

To derive some economic intuition as to why the presence of ambiguity seeking α-Cmax-MEU

agents may prevent the existence of market equilibrium, note that in the α-Cmax-MEU utility (4.2),

(1 −
∑

R∈S\A πR)(1 − α) plays the role of the “fictitious” probability of the state σ on which the

highest wealth wAmax is allocated. The more ambiguity seeking is the agent (i.e., the smaller is α),

the higher is the probability of the state σ, and (ceteris paribus) the higher should be the price

of state σ in equilibrium. However, the portfolio optimality condition of ambiguity seeking agents

requires that σ is one of cheapest ambiguous state in equilibrium. These potential contradicting

conditions may prevent the existence of the equilibrium.

As an illustration of this point, we specify Example 5.1 (ii) to the CARA case, i.e., when the

utility u of both the SEU and the ambiguity seeking α-Cmax-MEU agents equal u(z) = 1− e−z

z . In

this case, the existence of equilibrium requires the state prices to satisfy:

pσ
pη

=

(
(l − 1)(1− α)

α

) 1
2

, ∀η ∈ A \ {σ}

pσ
pη

≤ 1, ∀η ∈ A \ {σ}

pη
pν

= 1, ∀η, ν ∈ A \ {σ} ∀η ∈ A \ {σ}.

Any value of α ∈ (0, l−1
l ) implies a ratio of probability of the state σ to probability of the state

η ∈ A \ {σ} strictly larger than 1, i.e., (1−α)(l−1)
α > 1, and thus pσ > pη, which is in contradiction

with the α-Cmax-MEU portfolio optimality condition pσ
pη
≤ 1,∀η ∈ A \ {σ}.42

For a non-ambiguity seeking α-Cmax-MEU agent with α ∈ [ l−1
l , 1), the probability (1−

∑
R∈S\A πR)(1−

α) of the state on which wAmax is allocated is bounded from above by the probability π̃a, and de-

creases when α increases. This is also true in the maxmin model. Indeed a necessary condition for

having a maxmin agent to choose the ambiguous portfolio in (4.5) is that the prior π∗ that realizes

42The α-Cmax-MEU utility assigns probability (1 − α)(1 −
∑
R∈S\A πR) to the state σ on which the highest wealth

w is allocated, and probability
α(1−

∑
R∈S\A πR)

(l−1)
to each of the remaining states η ∈ A \ {σ}. The SEU-prior π̃ does

not apper in the inequalities characterizing the ambiguous state prices because π̃ assigns equal probability π̃a to each
ambiguous state and thus cancels out. The total endowment W also cancels out because Wη = Wν , for all η, ν ∈ A.
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the minimum in (4.10) is bounded from above by the probability π̃.43

Because non-ambiguity seeking agents have bounded probability of the state on which the

highest wealth is allocated, and their optimal portfolios may also be unambiguous facilitate the

equilibrium prices to settle, as in Example 5.1.

6 Conclusion

The α-MEU model has been used in many theoretical and experimental studies to describe the

behavior of agents under ambiguity. We show that in the standard Ellsberg framework (two am-

biguous states) α-MEU preferences coincide with either maxmin, maxmax or subjective expected

utility preferences, and derive equilibrium asset prices when the market is populated by ambiguity

averse and subjective expected utility investors. Our theoretical results are strikingly in agree-

ment with the laboratory experimental findings in Bossaerts et al. (2010), and show why ambiguity

aversion does not wash out in equilibrium.

In an extended Ellsberg framework (three or more ambiguous states) we show that the α-

MEU preferences do not coincide with maxmin, maxmax or subjective expected utility preferences

and induce portfolio choices that are not observationally equivalent. We characterize the optimal

portfolio choice of an α-Cmax-MEU agent. This agent optimally chooses only between two types of

portfolios: either an unambiguous portfolio, or an ambiguous portfolio with one specific exposure to

ambiguity (that allocates more wealth to one of cheapest ambiguous states and less equal wealth to

the other ambiguous states). The number of optimal ambiguous portfolios is equal to the number of

ambiguous states with cheapest price. Our theoretical findings can inform laboratory experiments

to disentangle between ambiguity seeking and non-ambiguity seeking agents, and among the latter,

between α-Cmax-MEU and maxmin agents. Finally, we find that when ambiguity seeking agents are

present in the market they may prevent the existence of market equilibrium that otherwise would

exist with non-ambiguity seeking agents.

43This can be shown by observing that wσ > wη, ∀η ∈ A \ {σ} implies u(wη)− u(wσ) < 0, ∀η ∈ A \ {σ}. Then the
optimal prior π∗ has to be a prior which maximizes the sum of the probability of the state η ∈ A \ {σ}. Therefore,

since π̃ ∈ C, then π∗ is such that
∑
η∈A\{σ} π

∗
η ≥

1−
∑
S\A πR
l

(l − 1) or equivalently π∗σ ≤
1−

∑
S\A πR
l

.
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A Proof of Proposition 3.2

In the following, we briefly summarize how the interaction among SEU and maxmin agents impacts
the equilibrium asset prices. This will provide us the tools to prove Proposition 3.2. Assume that
(p;w1, . . . , wn) is an equilibrium with pσ > 0 for all σ ∈ {R,G,B}. Then, the equilibrium price p
satisfies

(A.1) λnp ∈ ∂Un(wn)

for some λn > 0; see (F.3). Here ∂Un(w) denotes the supergradient of the criterion Un of agent n
at w ∈ R3. The supergradient of a SEU-agent with prior π = (πR, πG, πB) is simply the gradient

(A.2) ∂Un(w) = {
(
πRu

′(wR), πGu
′(wG), πBu

′(wB)
)
}.

From (A.2) and the strict concavity of the utility function, it follows the well known fact that the
optimal portfolio w = (wR, wG, wB) of a SEU agent is always such that the optimal choices of state
dependent wealth are ranked opposite to the state-price/state-probability ratios, i.e.

(A.3) wσ > wν ⇔
pσ
πσ

<
pν
πν
, σ, ν ∈ {R,B,G}.

The supergradient of an agent with maxmin (1-MEU) preferences represented as in (3.3) is

(A.4) ∂Um(w) =



{(πRu′(wR), cu′(wG), (1− πR − c)u′(wB))} if wG > wB

{(πRu′(wR), du′(wG), (1− πR − d)u′(wB))} if wG < wB

{(πRu′(wR), (λc+ (1− λ)d)u′(wG),
(1− πR − (λc+ (1− λ)d))u′(wB)) | λ ∈ [0, 1]} if wG = wB.

Using (A.1) and the shape of the supergradients we easily obtain the optimal portfolio choices that
were already derived in Bossaerts et al. (2010). In particular, from (A.4) and the strict concavity
of u it follows that 

wG > wB if and only if pG
pB

< c
1−πR−c

wG < wB if and only if pG
pB

> d
1−πR−d

wG = wB if and only if pG
pB
∈
[

c
1−πR−c ,

d
1−πR−d

](A.5)

where x/0 :=∞. The larger the set of priors C in (3.4), the more likely a maxmin agent will take
an unambiguous portfolio (wB = wG). In particular this will be always the case if C = Cmax :=
{(πR, q, 1− q − πR) : q ∈ [0, 1− πR]}, because then the second respectively third coordinate of the
supergradient in (A.4) will be 0 if either wG > wB or wG < wB. Hence, pσ > 0 for all σ ∈ {R,G,B}
and (A.1) imply that in equilibrium this agent will only take an unambiguous portfolios w. If c > 0
and/or d < 1− πR in (3.4), then the multiple prior agent may also take an ambiguous portfolio in
equilibrium. We observe that a maxmin agent holding an unambiguous optimal portfolio behaves
as a SEU-agent who is not differentiating between the ambiguous states G and B, but merges them
to an unambiguous state {G,B} with probability (1−πR). Indeed, from (A.4) and (A.1) it follows

32



that

p{G,B}

pR
=

(1− πR)u′(w{G,B})

πRu′(wR)

{
< (1−πR)

πR
iff w{G,B} > wR

> (1−πR)
πR

iff w{G,B} < wR
(A.6)

and thus

p{G,B}

(1− πR)
<
pR
πR

⇔ w{G,B} > wR(A.7)

p{G,B}

(1− πR)
>
pR
πR

⇔ w{G,B} < wR (compare this to (A.3)),(A.8)

where p{G,B} := pG + pB and w{G,B} := wG = wB.

Proof of Proposition 3.2
Case 1: Let WR > WG > WB. Since the 1-MEU agents take an unambiguous portfolio, the
optimal portfolio of some SEU agent must satisfy yG > yB which according to (A.3) is equivalent
to

(A.9)
pB
πB

>
pG
πG

which only leaves the ranking of pR/πR within (A.9) an open question. Suppose that the ranking
of the ratios state-price/state-probability is as follows:

(A.10)
pR
πR
≥ pB
πB

>
pG
πG

.

Then (A.3) implies that yG > yB ≥ yR for any SEU agent, and rearranging (A.10) yields

pG + pB
1− πR

=
pG + pB
πG + πB

<
pR
πR

.

Consequently, according to (A.6), we must have for each 1-MEU agent that wR < wG = wB. But
this contradicts the clearing of the market and WR > WG > WB. If the ranking is (3.6), then we
have yG > yR > yB for each SEU agent according to (A.3). Denote by yΣ = (yΣ

R, y
Σ
G, y

Σ
B) the sum

over all optimal portfolios of the SEU agents and similarly by wΣ = (wΣ
R, w

Σ
G, w

Σ
B) the sum over all

optimal portfolios of the 1-MEU agents. The market clearing condition says Wσ = yΣ
σ + wΣ

σ for
every σ ∈ {R,G,B}. Since yΣ

G > yΣ
R we conclude that

wΣ
R = WR − yΣ

R > WG − yΣ
G = wΣ

G.

Thus there must be at least one 1-MEU agent who’s portfolio w = (wR, wG, wB) satisfies wR >
wG = wB which implies that (pG + pB)/pR > (1− πR)/πR due to (A.6). But then, again by (A.6),
we must have wR > wG = wB for all 1-MEU agents. In case of (3.7) (A.3) and (A.6) imply the
claimed ranking of payoffs in the portfolios y and w.

Case 2: Let WG > WR > WB. As in case one we conclude that yG > yB. Assume that the ranking
of the ratio state-price/state-probability is as follows:

(A.11)
pR
πR
≥ pB
πB

>
pG
πG

.

Then as in case 1 it follows that yG > yB ≥ yR and wR < wG = wB which together with the
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clearing of the market contradicts WR > WB. Similarly it follows that the ranking

pB
πB

>
pG
πG
≥ pR
πR

is not possible, since it would imply that yR ≥ yG > yB and wR > wG = wB due to (A.6), again
contradicting the assumed ranking of the aggregate wealth.

Case 3: Let WG > WB > WR: Suppose that

pB
πB

>
pG
πG
≥ pR
πR

then, yR ≥ yG > yB, and in view of (A.6) we obtain wR > wG = wB for every 1-MEU agent which
again contradicts the market clearing and the assumed ranking WG > WB > WR. Again (A.3),
(A.6), and the clearing of the market imply the claimed ranking of payoffs in the portfolios y, w
for the remaining possible rankings.

B Proof of Propositions 3.1 and 4.1

Proposition 3.1 is a special case of Proposition 4.1 since every set of priors in the standard Ellsberg
framework is of the type C in (4.1), required in Proposition 4.1.

To prove Proposition 4.1 we observe that the maxmin utility with set of priors C can be written
as

(B.1) u(wη) +
∑

σ∈S\A

(u(wσ)− u(wη))πσ +
∑

σ∈A\{η}

(u(wσ)− u(wη))
+aσ − (u(wσ)− u(wη))

−bσ,

and the maxmax utility as

(B.2) u(wη) +
∑

σ∈S\A

(u(wσ)− u(η))πσ +
∑

σ∈A\{η}

(u(wσ)− u(wη))
+bσ − (u(wσ)− u(wη))

−aσ.

Consequently, the α-MEU utility is

U(w) = u(wη) +
∑

σ∈S\A

(u(wσ)− u(wη))πσ +
∑

σ∈A\{η}

(u(wσ)− u(wη))
+cσ − (u(wσ)− u(wη))

−dσ.

where cσ := αaσ + (1 − α)bσ, and dσ := αbσ + (1 − α)aσ, σ ∈ A \ {η}. If α > 1/2, then cσ < dσ;
if α < 1/2, then dσ < cσ; and finally cσ = dσ for α = 1/2. These facts, and comparing U for the
different cases (i), (ii) and (iii) with (B.1) and (B.2) prove Proposition 4.1.

C Lack of concavity of the α-MEU utility

To see the lack of concavity of the α-Cmax-MEU utility when α 6= 1, consider portfolio w1 such
that w1

1 = 1, w1
2 = 4 and w1

j = 2,∀j = 2, . . . , l, and portfolio w2 such that w2
1 = 1, w2

2 = 2, w2
3 =

6 and w2
j = 2, ∀j = 4, . . . , l. Let wλ = (wλ1 , . . . , w

λ
l ) be their convex combination, i.e. wλj =

λw1
j + (1 − λ)w2

j , j = 1, . . . , l, λ ∈ [0, 1]. Take for instance λ = 1/2. Then wλ1 = 1, wλ2 = 3, wλ3 =
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4 and wλj = 2,∀j = 4, . . . , l, and using (4.2)

λU(w1) + (1− λ)U(w2) = αu(1) + (1− α)
1

2
(u(4) + u(6)) >

αu(1) + (1− α)u(4) = αu(wλAmin) + (1− α)u(wλAmax) = U(wλ) = U((λw1 + (1− λ)w2)).

D Proof of Proposition 4.2

Proposition 4.2 follows from Lemmas D.1–D.5 in the following.

Lemma D.1. Suppose that the state price vector p = (pσ)σ∈S satisfies pσ > 0 for all σ ∈ S.
Consider an α-Cmax-MEU agent with α ∈ (0, 1). Let w = (wσ)σ∈S ∈ Rn be an optimal portfolio
for the α-Cmax-MEU agent. Then, either w takes the same value on all ambiguous states, or there
exist two disjoint subsets A and A of the set of ambiguous states A such that A ∪ A = A and two
values w,w ∈ R such that wσ = w > w = wη for all σ ∈ A and all η ∈ A.

Proof. Note that the only portfolio values on the ambiguous states on which the utility U in (4.2)
depends are wAmax and wAmin. We order the set of ambiguous states A = {σ1, . . . , σl} such that

(D.1) wσ1 ≤ wσ2 ≤ . . . ≤ wσl .

Let s be the number of strict inequalities in (D.1). Consider states ν1, . . . νs+1 ∈ A such that
wν1 < wν2 < . . . < wνs+1 . Suppose there is a state η ∈ A such that wη 6= wAmax and wη 6= wAmin,
namely suppose that s ≥ 2. We now consider the function U in (4.2) as defined on Rm+s+1, where we
merge those ambiguous states in which w takes the same value. Let w̃ ∈ Rm+s+1 such that w̃R = wR
for all risky states R ∈ S \A and otherwise w̃σi = wσi for i = 1, . . . , s+ 1. Then, w̃ is a maximizer
for the function U restricted to the open set C := {x ∈ Rm+s+1 | xσ1 < xσ2 < . . . < xσs+1}, which
we call UC , given the budget constraint p̃ · w̃ ≤ p · e. Here e is the initial portfolio and p̃ ∈ Rm+s+1

is obtained from p by summing up the prices of those states which are merged when forming w̃. As
UC is concave, according to (F.3), a multiple of p̃ is in the supergradient of UC at w̃. However, this
supergradient is equal to zero in any xσi-direction, i ∈ {2, . . . , s}, because only the largest value
and the smallest value on the ambiguous states matter for U . This contradicts the assumption
pσi > 0 for i ∈ {2, . . . , s}.

Lemma D.2. Assume Lemma D.1. If pσ < pη for σ, η ∈ A, then the optimal portfolio w satisfies
wη ≤ wσ.

Proof. Suppose that the optimal portfolio w is such that wη > wσ. Let w̃ given by w̃ν = wν for
all ν ∈ S \ {σ, η} and w̃σ = wη and w̃η = wσ. Then U(w̃) = U(w), but p · w̃ < p · w because
p · (w− w̃) = (pη − pσ)(wη −wσ) > 0. This contradicts the optimality of w, because increasing the
wealth w̃σ one could achieve a strictly higher utility while still respecting the budget constraint.

Lemma D.3. Assume Lemma D.1. If the sets A and A associated to the optimal portfolio w are
not empty, then A = {σ} for a state σ ∈ I := {σ ∈ A | pσ = minη∈A pη}. Moreover, any portfolio
which equals w on the risky states and assigns the weight wAmax to a single state in I and wAmin to
all the other ambiguous states is optimal. Hence, there are |I| optimal portfolios.

Proof. By contradiction suppose that there are two different states σ1 and σ2 in A, i.e. that the
optimal portfolio w is such that wσ1 = wσ2 = wAmax, and without loss of generality we assume that
pσ1 ≤ pσ2 . Consider w̃ given by w̃η = wη for all η ∈ S \ {σ1, σ2} and w̃σ1 = 2wAmax − wAmin and
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w̃σ2 = wAmin. Then p · w̃ ≤ p · w, so w̃ satisfies the budget constraint, and U(w̃) > U(w) since
w̃Amax = w̃σ1 > wAmax and w̃Amin = wAmin. This is a contradiction to optimality of w. Lemma D.2
implies that σ ∈ I. The last statement of the lemma follows by observing that all these portfolios
share the same price and utility.

Lemma D.4. Assume Lemma D.1 and let α < 1. Then w is unambiguous, i.e. wσ = wν for all
σ, ν ∈ A, if and only if (4.6) holds. In this case w is the only optimal portfolio. Condition (4.6)
can only be satisfied if α ≥ l−1

l .

Proof. Suppose A = {σ} and thus A = A \ {σ}. Then, the first order conditions imply

(D.2)
pR

πRu′(wR)
=

pσ
(1− α)(1−

∑
R∈S\A πR)u′(wAmax)

=

∑
ν∈A\{σ} pν

α(1−
∑

R∈S\A πR)u′(wAmin)

where R denotes any risky state among the m ones. Thus,

(D.3)
pσ∑

ν∈A\{σ} pν
=

(1− α)u′(wAmax)

αu′(wAmin)
<

1− α
α

as wAmax > wAmin. Consequently, if there are no σ ∈ A for which (D.3) is satisfied, i.e. if the condition
(4.6) holds true, then w must be unambiguous. In order to prove necessity of (4.6), assume that
(D.3) holds for some σ ∈ A. In the following we show that in this case the unambiguous portfolio
cannot be optimal. To this end, suppose by contradiction that the unambiguous portfolio w is
optimal and let z := wAmax = wAmin. Then ε = 0 needs to maximize the function

F : R 3 ε 7→ αu(z − ε) + (1− α)u (z + δ(ε))

over all ε ≥ 0, where δ(ε) := ε
∑
σ∈A\{σ} pν

pσ
is chosen such that the portfolio which invests z − ε in

the states ν ∈ A, and z + δ(ε) in the state σ satisfies the budget constraint (while the investment
in the risky states is unaltered). F is a concave function and the first order condition reads

u′(z + δ(ε))

u′(z − ε)
=

α

(1− α)

pσ∑
σ∈A\{σ} pν

.

By assumption, the right hand side of the above equation is strictly smaller than 1. Hence, F
attains its optimum for ε > 0, which contradicts the optimality at 0 over all ε ≥ 0.

Finally, note that summing up (4.6) over all σ ∈ A yields:

α
∑
σ∈A

pσ ≥ (1− α)(l − 1)
∑
ν∈A

pν ⇔ α ≥ l − 1

l
.

Lemma D.5. Assume Lemma D.1. If α = 1, then w is unambiguous. If α = 0, then there is no
optimal portfolio.

Proof. If α = 1, then (4.2) is a maxmin agent and also π̃ ∈ Cmax. Hence, Lemma 4.7 proves the
claim.
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The optimization problem of a 0-MEU agent with the maximal set of priors Cmax is∑
R∈S\A

πRu(wR) + (1−
∑

R∈S\A

πR)u(wAmax)→ max(D.4)

subject to p · w ≤ p · e

where e denotes her initial endowment. Since the agent may go arbitrarily long in the ambiguous
state σ with wσ = wAmax and satisfy the budget constraint by going arbitrarily short in an other
ambiguous state, the optimal value in (D.4) cannot be attained.

E Proof of Lemma 4.7

Let w be an optimal portfolio of the maxmin agent and assume that wσ 6= wη for σ, η ∈ A. Consider
the portfolio ŵ given by ŵR = wR for any risky state R ∈ S \ A and ŵσ = z for any ambiguous
state σ ∈ A where

z :=

∑
σ∈A pσ wσ∑
σ∈A pσ

=
1

l

∑
σ∈A

wσ.

The portfolio ŵ satisfies the budget constraint and

U(ŵ) =
∑

R∈S\A

πR u(wR) + (1−
∑

R∈S\A

πR)u(z)

>
∑

R∈S\A

πR u(wR) +
1

l
(1−

∑
R∈S\A

πR)
∑
σ∈A

u(wσ) ≥ U(w)

where the strict inequality follows from the strict concavity of u and the last inequality is due to
π̃ ∈ C. This contradicts the optimality of w.

F Optimization in the partially concave case

Consider the optimization problem

(F.1) max
x∈C

U(x) subject to px ≤ pe

where C 6= ∅ is a convex subset of Rn, p, e ∈ Rn, and U : Rn → R ∪ {−∞} is a concave function
with dom U = C.

Lemma F.1. If the optimal value in (F.1) is not +∞ and if there exists at least one x̄ ∈ riC with
px̄ ≤ pe, then there is a multiplier λ ≥ 0 such that the supremum of hλ(x) = U(x) − λp(x − e),
x ∈ Rn, is finite and equal to the optimal value in (F.1). Moreover, suppose that λ > 0 and that D
is the set of points x ∈ Rn where h attains its maximum intersected with the set of points satisfying
px = pe, then D is the set of all optimal solutions to (F.1).

Proof. see Theorem 28.1 and Corollary 28.2.2 in Rockafellar (1997).

Now suppose that agent n with choice criterium Un : R|S| → R maximizes her utility over all
portfolios w ∈ R|S| satisfying the budget constraint pw ≤ pen for some p ∈ R|S| with pi > 0 for all
i = 1, . . . , |S|. Furthermore, assume that an optimal portfolio ŵ exists and that ŵ ∈ C for a convex
set C ⊂ R|S| such that the restriction UnC of Un to C is concave. Then, we may view UnC as defined
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on all R|S| by defining UnC(x) := −∞ for x 6∈ C, and we are thus in the setting of Lemma F.1 where
ŵ is a solution to problem (F.1) with U = UnC . Hence, if there exists x ∈ riC with px ≤ pen, which
is satisfied if for instance ŵ ∈ riC, then there exists a multiplier λ ≥ 0 such that

(F.2) UnC(ŵ) = sup
x∈Rn

hλ(x)

with hλ as in Lemma F.1. If C = C + R+ · (1, 0, . . . , 0) and given that the utility function u is
strictly increasing we deduce that λ > 0, since otherwise

hλ(ŵ + (1, 0, . . . , 0)) = UnC(ŵ + (1, 0, . . . , 0)) > UnC(ŵ).

Moreover, any solution x̂ to the right hand side of (F.2) with px̂ = pen is a solution to the portfolio
optimization problem, and in particular ŵ is such a solution. Additionally, for any solution x̂ to
the right hand side of (F.2) we have for all y ∈ R|S| that

UnC(y)− λp(y − en) ≤ UnC(x̂)− λp(x̂− en)

which shows that

(F.3) λp ∈ ∂UnC(x̂)

where ∂UnC(w) denotes the supergradient of UnC at w, i.e.

∂UnC(w) := {ν ∈ R|S| | ∀y ∈ R|S|, UnC(y) ≤ UnC(w) + ν · (y − w)}.
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