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Abstract

While it is reasonable to assume that convex combinations on the level of random vari-
ables lead to a reduction of risk (diversification effect), this is no more true on the level
of distributions. In the latter case, taking convex combinations corresponds to adding a
risk factor. Hence, whereas asking for convexity of risk functions defined on random vari-
ables makes sense, convexity is not a good property to require on risk functions defined
on distributions. In this paper we study the interplay between convexity of law-invariant
risk functions on random variables and convexity/concavity of their counterparts on dis-
tributions. We show that, given a law-invariant convex risk measure, on the level of
distributions, if at all, concavity holds true. In particular, this is always the case under
the additional assumption of comonotonicity.
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1 Introduction

The concept of risk is nowadays used to describe and capture many phenomena, different both
by nature and for the context in which they arise. Therefore, when talking of risk measurement,
one should first specify to which framework one refers. A risk measure is usually intended as a
function f defined on the set X of the accordingly identified risky elements, associating to each
element x ∈ X a value f(x) which expresses the riskiness of the “situation” described by x.
Here we consider the case where X is intended to model the set of all possible financial positions.
The two most prominent approaches to describe these positions are either by random variables
on some probability space, or by probability distributions, usually referred to as lotteries in
decision theory. To be in line with the traditional notation, to indicate the elements in X ,
we will use X,Y, . . . to denote random variables, and µ, ν, . . . for distributions. One property
which is often required on risk measures defined on random variables is the so-called law-
invariance, meaning that positions sharing the same distribution are equally risky. We have
for example in mind expected losses, certainty equivalents, law-invariant coherent and convex
risk measures as introduced by Artzner, Delbaen, Eber and Heath [2, 3] and by Föllmer
and Schied [8] and Frittelli and Rosazza Gianin [11, 12], deviation measures in the sense of
Rockafellar, Uryasev and Zabarankin [16], and quantile-based measures. Under the paradigm
of law-invariance, there is a one-to-one relation between risk functions defined on some space
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of random variables and risk functions defined on the corresponding space of distributions.
Nevertheless, some care is needed when translating features from one setting to the other. In
particular, we will illustrate how the properties of convexity and concavity are not transferable
between the two settings. The reason is that the randomization αµX+(1−α)µY of the lotteries
µX and µY corresponding to the laws of the random variables X and Y under a probability
measure generally differs from the lottery µαX+(1−α)Y corresponding to the law of the state-
wise convex combination αX + (1−α)Y . A prominent example is the Value at Risk, which is
not quasi-convex on random variables, while the corresponding risk measure on distributions
is. On this matter we recall that Frittelli, Maggis and Peri [10] prove that convexity is not
compatible with translation invariance on the space of probability distributions, which is the
reason why they require quasi-convexity. However, note that concavity is compatible with
translation invariance.

On the level of random variables it is well understood that convex combinations corre-
sponding to a diversification in the portfolio should reduce the overall risk. However, on the
level of distributions a convex combination corresponds to an additional randomization. In-
deed, αµ+(1−α)ν can be interpreted as the sampling of a lottery between µ and ν, depending
on the outcome of a simultaneous independent toss with probabilities α and (1 − α). Hence,
we have an additional factor of risk coming from the toss. Thus requiring that a risk function
φ on distributions be (quasi-) convex has not the diversification interpretation, and is not
necessarily a natural property.

This paper is meant to analyse the interplay between convexity of law-invariant risk func-
tions on random variables and convexity/concavity of their counterparts on distributions. We
show that, given a law-invariant convex risk measure, on the level of distributions, if at all,
concavity holds true. This is for example always the case under the additional assumption of
comonotonicity; see Section 3. Under the assumption of translation invariance, Frittelli, Mag-
gis and Peri [10] and Drapeau and Kupper [6] study quasi-convex risk measures over lotteries,
as counterparts to convex risk measures on random variables, providing robust representations.
Our analysis shows that replacing quasi-convexity on distributions by concavity (these prop-
erties do not exclude each other) could probably be more appropriate. Of course this would
also provide nicer robust representations. Our results are illustrated by several examples using
well-know risk functions.

The remainder of the paper is organized as follows. In Section 2 we specify our setting
and prove how, in general, a risk measure φ defined on distributions is not convex (Proposi-
tion 2.1). To the contrary, under positive homogeneity we show a weak form of concavity for φ
(Proposition 2.4). Moreover, we provide a dual characterization of concavity of φ. In Section 3
we work under the assumption of comonotonicity, and show that in this case concavity of φ is
completely determined by the preservation of the convex order (Proposition 3.5).

2 Setup and first results

In all that follows, we work on a non-atomic standard probability space (Ω,F ,P). Note that
many of our results also hold on more general probability spaces. However, the assumption
that the probability space is standard and non-atomic is in particular useful in Section 2.3
where we present a dual characterization of the concavity of φ based on results from [7, 9, 17]
which require our assumptions on the probability space. For any random variables X, Y and

a distribution µ, we write X
d
= Y to indicate that X and Y are equally distributed under
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P, and X ∼ µ to indicate that the distribution of X under P is µ. We do our analysis on
L1 := L1(Ω,F ,P). It will be obvious from the results and proofs that most of them carry
over to any law-invariant Banach spaces of (equivalence classes of) random variables, such as
the Lp := Lp(Ω,F ,P) spaces for p ∈ [1,∞] equipped with the p-norm ‖ · ‖p := E[| · |p]1/p for
p ∈ [1,∞) and ‖ · ‖∞ := inf{m ∈ R | P(| · | ≥ m) = 0} for p =∞.

Let Φ : L1 → [−∞,+∞] be a law-invariant function, that is, Φ(X) = Φ(Y ) for all X,Y ∈
L1 with Y

d
= X. Then Φ induces a function φ :M1 → [−∞,+∞] on the set M1 of all Borel

probability measures on R with finite first moment by

(2.1) φ(µ) = Φ(X) for any X with X ∼ µ.

Vice versa, any function φ : M1 → [−∞,+∞] induces a law-invariant function on L1 by
(2.1). Our main aim is to study how convexity properties of Φ on L1 are related to convexity
properties of φ on M1. We recall that a function f : X → [−∞,+∞], where X = L1 or
X =M1, is quasi-convex if f(αx+ (1− α)y) ≤ f(x) ∨ f(y) and convex if f(αx+ (1− α)y) ≤
αf(x) + (1 − α)f(y) for all α ∈ (0, 1) and all x, y ∈ X . The function f is (quasi-) concave if
−f is (quasi-) convex. Throughout this paper we will always treat the case that Φ is (quasi-)
convex. This corresponds to the risk measurement point of view. The corresponding results for
utility criteria, i.e. (quasi-) concave Φ, are then obvious. Φ is said to be lower semicontinuous
(lsc) if the level sets Ek := {X ∈ L1 | Φ(X) ≤ k}, k ∈ R, are all closed in (L1, ‖ · ‖1). This is
equivalent to Φ(X) ≤ lim infn→∞Φ(Xn) whenever (Xn)n∈N ⊂ L1 is a sequence converging to
X in (L1, ‖·‖1). It is shown in [7] that, for a law-invariant convex risk function Φ on L1, lsc (in
contrast to continuity) is a natural property. Indeed, in most examples that we have in mind,
such as convex risk measures, Φ|L∞ is lsc (even continuous) with respect to the convergence
in the ‖ · ‖∞-norm. Then it is shown in [7] that there exists a canonical lsc extension of Φ|L∞
to L1. Thus requiring lsc basically means that Φ should equal its canonical lsc extension from
L∞ to L1. As a lsc convex function which takes the value −∞ cannot take any finite value,
and as the value −∞ does not make much sense from a risk perspective, we reduce our studies
to the case Φ : L1 → (−∞,+∞]. Note that an infinitely risky position makes sense, as it is
can be interpreted to be so bad that it cannot be hedged at any finite cost. Whereas to assume
that there is a position which is infinitely good (risk −∞) is clearly not reasonable since it
would imply that we could withdraw any amount of money and still face no risk.

For the remainder of this paper Φ : L1 → (−∞,+∞] will always be a law-invariant function
and the relation between the function Φ and φ :M1 → (−∞,+∞] will be given by (2.1).

Prominent examples of law-invariant risk functions are

• expected losses E[l(−X)] or certainty equivalents l−1(E[l(−X)]) where the loss function
l : R→ R is convex and strictly increasing;

• convex risk measures, that is, convex functions which also are antitone (i.e. X ≥ Y P-a.s.
implies Φ(X) ≤ Φ(Y )) and translation invariant: Φ(0) ∈ R and Φ(X + x) = Φ(X) − x
for all x ∈ R;

• coherent risk measures, that is, convex risk measures which are also positively homoge-
neous: Φ(tX) = tΦ(X) for all t ≥ 0;

• quantile-based risk measures;

• deviation measures, that is, convex, positively homogeneous functions which are positive
on non-constants, and constant-absorbing: Φ(X + x) = Φ(X) for all x ∈ R.
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2.1 In general φ is not convex

Let us recall the definition of the convex order �: for X,Y ∈ L1,

(X � Y ) ⇐⇒ (E[c(X)] ≥ E[c(Y )] for every convex function c : R→ R).

Note that due to Jensen’s inequality the expectations E[c(X)] and E[c(Y )] are well defined,
possibly taking the value +∞. It is proved in [4, Theorem 4.1] that if Φ is lsc, convex and
law-invariant, then it is automatically preserving the convex order (see also [17]), which means
that Φ(X) ≥ Φ(Y ) whenever X � Y . Hence, when considering convex Φ, it is also natural
to assume that Φ is �-preserving. As X � Y only depends on the distributions of X and
Y , we may also see � as an order on M1. Clearly, Φ is �-preserving if and only if φ is
�-preserving. Another natural request on a risk function (on discounted payoffs) is to be
invariant on constants, that is, Φ(x) = −x for every x ∈ R ⊂ L1. Indeed, when there is
no randomness involved, i.e., when we are facing a deterministic scenario X ∼ δx (where δx
denotes the Dirac-measure), it seems natural to assign it the value x, thus the risk −x. For
instance translation invariant risk functions are, apart from the constant Φ(0), invariant on
constants.

Having the mentioned typical properties of risk functions in mind, the message of the
following proposition is that convexity is not a good property to require on φ.

Proposition 2.1. Let Φ be lsc, �-preserving, invariant on constants (resp. translation in-
variant), and let φ be convex. Then Φ(X) = −E[X], i.e. φ(µ) = −

∫
xdµ (resp. Φ(X) =

Φ(0)− E[X]).

Proof. We only prove the case when Φ is invariant on constants. The proof in case of translation
invariance similarly follows. Recall that E[X] � X. As Φ is �-preserving and invariant on
constants, we have Φ(X) ≥ Φ(E[X]) = −E[X]. For x1, . . . , xn ∈ R, α1, . . . , αn > 0 such
that

∑n
i=1 αi = 1, and a partition A1, . . . , An ∈ F of Ω with P(Ai) = αi, we have that∑n

i=1 xi1Ai ∼
∑n

i=1 αiδxi and

φ

(
n∑
i=1

αiδxi

)
= Φ

(
n∑
i=1

xi1Ai

)
≥ −E

[
n∑
i=1

xi1Ai

]

= −
n∑
i=1

αixi =

n∑
i=1

αiΦ(xi) =

n∑
i=1

αiφ(δxi).

As φ is convex, the inequality in the computation must be an equality. Hence, φ(X) = −E[X]
for all simple random variables X. Now let X ∈ L1 be arbitrary and choose a sequence of
simple random variables (Xn)n∈N converging to X in (L1, ‖ · ‖1). Then

−E[X] = lim
n→∞

−E[Xn] = lim inf
n→∞

Φ(Xn) ≥ Φ(X) ≥ −E[X],

where the first inequality follows by lsc of Φ.

Corollary 2.2. The only normalized (Φ(0) = 0) lsc law-invariant convex risk measure which
is convex on distributions is Φ(X) = −E[X].

Note also that if Φ is a deviation measure, then X 7→ E[−X]+Φ(X) is translation invariant.
Hence, supposing that the deviation measure Φ is lsc, �-preserving and that φ is convex,
Proposition 2.1 implies that Φ(X) ≡ Φ(0).
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As mentioned in the introduction, a typical requirement when defining risk measures on
M1 is quasi-convexity. The following Lemma 2.3 shows that starting from a quasi-convex and
�-preserving φ on M1 also Φ must be quasi-convex, and thus even convex if φ and thus also
Φ is translation invariant (see e.g. [9, p. 178]). This further justifies our approach to study the
convexity/concavity problem through the lens of a (quasi-) convex Φ. In order to prove this
result we fix two independent sub-σ-algebras G0,F0 of F such that (Ω,G0,P) and (Ω,F0,P)
are non-atomic standard probability spaces. Then, for any X,Y ∈ L1(Ω,F ,P) there exist

G0-measurable X̃, Ỹ such that (X̃, Ỹ )
d
= (X,Y ). Moreover, for any α ∈ (0, 1) there is A ∈ F0

such that P(A) = α, and thus if X and Y are G0-measurable with X ∼ µ, Y ∼ ν, then

(2.2) 1AX + 1AcY ∼ αµ+ (1− α)ν and αX + (1− α)Y = E[1AX + 1AcY | G0].

Relation (2.2) will turn out to be useful throughout the paper.

Lemma 2.3. If φ is (quasi-)convex and �-preserving, then Φ is (quasi-)convex.

Proof. Let φ be quasi-convex. Fix X,Y ∈ L1 and α ∈ [0, 1], and let (X̃, Ỹ ) be a G0-measurable

random vector such that (X̃, Ỹ )
d
= (X,Y ), and thus also αX + (1 − α)Y

d
= αX̃ + (1 − α)Ỹ .

Moreover, let A ∈ F0 be such that P(A) = α. Using that for any random variable X we have
E[X | G0] � X, and that with φ also Φ must be �-preserving, we obtain

Φ(αX + (1− α)Y ) = Φ(αX̃ + (1− α)Ỹ ) = Φ(E[1AX̃ + 1Ac Ỹ | G0])

≤ Φ(1AX̃ + 1Ac Ỹ ) = φ(αµ+ (1− α)ν)

≤ φ(µ) ∨ φ(ν) = Φ(X) ∨ Φ(Y ).

The case of φ convex follows in a similar way.

In particular, this implies that the quasi-convex risk measures on distributions studied
in [10] either correspond to quasi-convex risk measures on random variables or they are not
�-preserving.

Consider the Value at Risk at level λ, i.e.

Φ(X) = VaRλ(X) = inf{m ∈ R | P(X +m ≤ 0) ≤ λ}, where λ ∈ (0, 1).

It is easily verified that the corresponding risk measure φ on distributions is quasi-convex (see
[10]). Since it is also well-known that Φ is not quasi-convex, Lemma 2.3 implies that VaRλ

cannot preserve �. So in particular there are payoff profiles X,Y such that every expected
utility agent prefers X to Y , but under VaRλ the profile Y is strictly less risky than X.
Indeed, recall that a utility function is a concave and increasing function. Then note that
X � Y implies X �uni Y , where the uniform order �uni is defined as follows: for X,Y ∈ L1,

(X �uni Y ) ⇐⇒ (E[u(X)] ≥ E[u(Y )] for every utility function u : R→ R).

(This order is well defined since the expectations E[u(X)], E[u(Y )] are well defined due to
Jensen’s inequality, possibly taking the value −∞.) From this we see that since VaRλ does
not preserve �, it cannot be �uni-reverting (X �uni Y implies Φ(X) ≥ Φ(Y )). The same is
true for any other risk measure which does not preserve �.
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2.2 A weak form of concavity for φ

The next proposition shows that a weak form of concavity holds for φ when Φ is convex and
positively homogeneous. In what follows we write A ⊥ X to indicate that 1A is independent
of X.

Proposition 2.4. Let Φ be lsc, convex, and positively homogeneous, then

(2.3)
Φ(1AX)

P(A)
≥ Φ(X) for all X ∈ L1 and A ⊥ X with P(A) > 0.

In the positively homogeneous case (where automatically Φ(0) = φ(δ0) = 0), condition (2.3)
can be seen as a weak form of concavity of φ since it implies that φ(αµ+(1−α)δ0) ≥ αφ(µ) for
all µ ∈ M1 and α ∈ [0, 1]. However, Example 2.8 shows that there are convex and positively
homogeneous Φ which are not ‘truly’ concave.

Proof. Being law-invariant, lsc, convex, and positively homogeneous, Φ may be represented as

Φ(X) = sup
Z∈Q

E[ZX] = sup
Z∈Q|X

E[ZX],

whereQ ⊂ L1 is a σ(L1, L∞)-closed convex set (see e.g. [5]), andQ | X := {E[Z | X] | Z ∈ Q}.
Note that by law invariance it follows that Q | X ⊂ Q; see [13, Lemma 4.2]. Thus, if A ⊥ X
we obtain

Φ(1AX) = sup
Z∈Q

E[1AZX] ≥ sup
Z∈Q|X

E[1AZX] = P(A) sup
Z∈Q|X

E[ZX] = P(A)Φ(X).

From the proof of Proposition 2.4 it is also clear that φ is actually concave in case

Z1A + Z̃1Ac ∈ Q for all Z ∈ Q | X and Z̃ ∈ Q | Y with X,Y ∈ L1.

Note that (2.3) is a reasonable property because conditional on A the random variable

X̂ = X1A has the same distribution as X. Thus the conditional risk Φ(1AX)
P(A) should be at least

Φ(X). Clearly, for Φ(·) = E[·] equality holds in (2.3).

2.3 Dual characterization of the concavity of φ

In this section we provide an alternative way to check concavity of φ by looking at the dual
side. This approach turns out to be useful in the case when the Fenchel-Legendre transform
Φ∗ of Φ is easier to study than Φ itself. In what follows, qX(s) := inf{x ∈ R | P(X ≤ x) ≥ s},
s ∈ (0, 1), denotes the (left continuous) quantile function of a random variable X.

Proposition 2.5. Let Φ be lsc and convex. Then φ is concave if and only if φ∗ : M∞ →
(−∞,∞] is convex, where

(2.4) φ∗(µ) := Φ∗(Z) = sup
X∈L1

∫ 1

0
qX(t)qZ(t)dt− Φ(X) for Z ∼ µ

and M∞ := {µ ∈M1 | µ has compact support}.
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Proof. The equality in (2.4) for the dual function Φ∗ of Φ holds by law-invariance, like in [9,
Theorem 4.59]. In particular, Φ∗ is itself a law-invariant convex function on L∞.

Being a law-invariant, lsc, convex function, Φ may be represented as

Φ(X) = sup
Z∈L∞

E[ZX]− Φ∗(Z) = sup
Z∈L∞(σ(X))

E[ZX]− Φ∗(Z)

= sup
h∈Mb

E[h(X)X]− Φ∗(h(X)),

where Mb denotes the set of measurable and bounded h : R→ R. Here we used that E[Z | X] �
X and that the lsc convex law-invariant function Φ∗ is automatically �-preserving. Similarly,
using [7, Theorem 2.2] for the second equality, we also derive the following representation for
Φ∗:

Φ∗(Z) = sup
X∈L1

E[ZX]− Φ(X) = sup
X∈L∞

E[ZX]− Φ(X)

= sup
X∈L∞(σ(Z))

E[ZX]− Φ(X) = sup
h∈Mb

E[Zh(Z)]− Φ(h(Z)), Z ∈ L∞.

Now suppose that φ is concave and let µ, ν ∈M∞ and α ∈ [0, 1]. Choose the random variables
X,Y and A ∈ F0 as in (2.2). Then

φ∗(αµ+ (1− α)ν) = Φ∗(1AX + 1AcY )

= sup
h∈Mb

E[(1AX + 1AcY )h(1AX + 1AcY )]− Φ(h(1AX + 1AcY ))

= sup
h∈Mb

αE[Xh(X)] + (1− α)E[Y h(Y )]− Φ(h(X)1A + h(Y )1Ac)

≤ sup
h∈Mb

αE[Xh(X)] + (1− α)E[Y h(Y )]− αΦ(h(X))− (1− α)Φ(h(Y ))

≤ αΦ∗(X) + (1− α)Φ∗(Y ) = αφ∗(µ) + (1− α)φ∗(ν),

where we used the concavity of φ in the first inequality since

h(X)1A + h(Y )1Ac ∼ α law(h(X)) + (1− α) law(h(Y ))

where law(Z) denotes the distribution of a random variable Z.
Suppose that φ∗ is convex and let µ, ν ∈ M1, α ∈ [0, 1], X,Y ∈ L1 and A ∈ F0 be as in

(2.2). In this case we have

φ(αµ+ (1− α)ν) = Φ(1AX + 1AcY )

≥ sup
h,g∈Mb

E[(1AX + 1AcY )(1Ah(X) + 1Acg(Y ))]− Φ∗(1Ah(X) + 1Acg(Y ))

≥ sup
h,g∈Mb

αE[Xh(X)] + (1− α)E[Y g(Y )]− αΦ∗(h(X))− (1− α)Φ∗(g(Y ))

= αΦ(X) + (1− α)Φ(Y ) = αφ(µ) + (1− α)φ(ν),

where we used the convexity of φ∗ in the second inequality.

So if Φ is convex and φ is concave then the primal ordering is as follows:

Φ(αX + (1− α)Y ) ≤ αΦ(X) + (1− α)Φ(Y ) = αφ(µ) + (1− α)φ(ν) ≤ φ(αµ+ (1− α)ν),
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whereas for the dual we have

Φ∗(αX + (1− α)Y ) ≤ φ∗(αµ+ (1− α)ν) ≤ αφ∗(µ) + (1− α)φ∗(ν)

= αΦ∗(X) + (1− α)Φ∗(Y ).

If Φ is lsc, convex and positively homogeneous, then

φ∗(µ) = δ(µ | dom φ∗) =

{
0, if µ ∈ dom φ∗

∞, else,

where dom φ∗ = {µ ∈ M∞ | ∃Z ∈ dom Φ∗ : Z ∼ µ}; see for instance [9, Corollary 4.19].
Hence, we obtain:

Corollary 2.6. If Φ is lsc, convex and positively homogeneous, then φ is concave if and only
if dom φ∗ is convex.

In general, without any request on Φ, convexity of φ∗ is clearly equivalent to convexity of

epi φ∗ := {(µ, a) ∈M∞ × R | φ∗(µ) ≤ a},

which corresponds to (1AZ + 1AcZ̃, αa + (1 − α)b) ∈ epi Φ∗ whenever (Z, a), (Z̃, b) ∈ epi Φ∗

and A ⊥ (Z, Z̃) with P(A) = α.

Examples 2.7. 1. The entropic risk measure: Φ(X) = γ lnE[exp(−X/γ)], γ > 0. In this
case it is known that φ∗(µ) = γ

∫
(−x) log(−x)µ(dx) whenever µ ∈ M∞ has support on R−

and
∫
xµ(dx) = −1 (i.e. µ is apart from the sign the distribution of a probability density), and

φ∗(µ) =∞ otherwise. Being linear on its convex support, φ∗ is convex on M∞, and thus φ is
concave which is of course also easily verified directly.

2. The Average Value at Risk: Φ(X) = AVaRλ(X) := − 1
λ

∫ λ
0 qX(t)dt, λ ∈ (0, 1]. In this case

dom φ∗ is the set of all µ ∈M∞ which have support on [−1/λ, 0] and satisfy
∫
xµ(dx) = −1.

Clearly, dom φ∗ is convex, so φ is concave.

3. The mean-variance evaluation principle: Φ(X) = −E[X] + δVar(X), δ > 0. In this
case φ∗(µ) = 1

4δ

(∫
x2µ(dx)− 1

)
whenever µ has support on R−, finite second moment and∫

xµ(dx) = −1, and φ∗(µ) =∞ otherwise. Hence φ∗ is convex, and so φ is concave. 3

In the following example we construct coherent risk measures Φ for which the corresponding
functions φ are not concave.

Example 2.8. Let µ, ν ∈M∞ be nondegenerate such that
∫
xµ(dx) = −1 and

∫
xν(dx) = 0.

In particular, neither µ � ν nor ν � µ, because either of the relations would imply equal
expectation. Let C(µ) := {Z ∈ L∞ | law(Z) � µ} and define C(ν) analogously. Recalling
that the convex order is indeed an order on the distributions clarifies the definition of C(µ)
and C(ν). Note that the convex sets C(µ) and C(ν) seen as subsets of L1 are weakly compact
(see e.g. [17]) and thus the convex hull C := co(C(µ) ∪ C(ν)) is weakly closed (even weakly
compact) in L1; see [1, Lemma 5.29]. As C is a convex set it must also be closed in the norm
topology on L1. This also implies that C is closed in (L∞, ‖ · ‖∞) and thus, as a convex set,
also in σ(L∞, L1). Now

Φ(X) := sup
Z∈C

E[ZX], X ∈ L1
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is lsc, law-invariant, convex and positively homogeneous. The law invariance follows from the
law invariance of the set C; see [9, Theorem 4.59]. Moreover, we have that Φ∗ = δ(· | C), thus
dom Φ∗ = C. In the following we will show that dom φ∗ = {η ∈ M∞ | ∃Z ∈ C : Z ∼ η} is
not convex. Suppose it were, then there would exist a convex combination λZ+ (1−λ)Z̃ ∈ C,
with Z and Z̃ being elements of C(µ) or C(ν), such that Ẑ := λZ + (1 − λ)Z̃ ∼ 1

2(µ + ν).

Apparently it cannot happen that Z and Z̃ are both in C(µ) or both in C(ν), as 1
2(µ+ ν) 6� µ

and 1
2(µ + ν) 6� ν. Therefore, we may assume that Z ∈ C(µ) and Z̃ ∈ C(ν). Computing the

expectation of Ẑ and noting that E[Z] = −1 and E[Z̃] = 0, we deduce that λ = 1/2. Without
loss of generality we may assume that Z, Z̃ are G0-measurable where G0 and F0 are as in (2.2).
Otherwise we find a two dimensional G0-measurable random vector with the same distribution
as (Z, Z̃) and such that the corresponding convex combination has the same distribution as
Ẑ. Then, for A ∈ F0 with P(A) = 1/2, we have that Ẑ = E[1AZ + 1AcZ̃ | G0], and Jensen’s
inequality for strict convex functions shows that Ẑ � 1AZ + 1AcZ̃ but not Ẑ � 1AZ + 1AcZ̃.
This fact contradicts Ẑ ∼ 1

2(µ+ν), since 1AZ+1AcZ̃ ∼ 1
2(µ+ν). Hence dom φ∗ is not convex,

which in turn implies that φ is not concave by Corollary 2.6.

Similarly, we can also construct a lsc, translation invariant, convex, and positively homo-
geneous Φ, i.e. a coherent risk measure, such that φ is not concave. To this end, choose
nondegenerate µ, ν ∈M∞ such that the support of µ and ν is contained in R− and such that∫
xµ(dx) =

∫
xν(dx) = −1, but neither µ � ν nor ν � µ. Construct Φ as above, and suppose

that there are elements Z and Z̃ of C(µ) or C(ν), such that Ẑ := λZ + (1− λ)Z̃ ∼ 1
2(µ+ ν).

Again we may assume that Z ∈ C(µ) and Z̃ ∈ C(ν). For any convex function c : R → R we
obtain that

1

2
(

∫
c(x)µ(dx) +

∫
c(x)ν(dx)) = E[c(Ẑ)] ≤ λE[c(Z)] + (1− λ)E[c(Z̃)]

≤ λ

∫
c(x)µ(dx) + (1− λ)

∫
c(x)ν(dx).

As there must exist some convex functions c1, c2 : R→ R such that∫
c1(x)µ(dx) <

∫
c1(x)ν(dx) and

∫
c2(x)µ(dx) >

∫
c2(x)ν(dx),

we conclude that λ = 1/2. Finally, the same arguments as above show that dom φ∗ is not
convex. 3

3 The comonotonic case

In many situations the risk of a combined position X+Y turns out to be lower that the sum of
the risks given by the individual positions. This is due to the fact that one position may serve
as a hedge against unfavourable outcomes of the other. However, if this hedge is not possible
because the two random variables are perfectly positively correlated, then the situation looks
very different. This concept is what is captured by the so-called comonotonicity property. Φ is
said to be comonotonic if it is linear on comonotone elements, that is Φ(X+Y ) = Φ(X)+Φ(Y )
whenever X,Y satisfy (X(ω)−X(ω′))(Y (ω)− Y (ω′)) ≥ 0 for all (ω, ω′) P× P-a.s.

The main message of this section is that under comonotonicity, concavity of φ is completely
determined by the preservation of the convex order (Proposition 3.5).
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Lemma 3.1. If Φ is comonotonic and �-preserving, then φ is concave.

Proof. Suppose that Φ is comonotonic and �-preserving. Let µ, ν ∈M1 and α ∈ [0, 1]. Recall
the sub-σ-algebras G0 and F0 from (2.2). Let U be a G0-measurable (0, 1)-uniform random
variable, and set X := qµ(U) ∼ µ and Y := qν(U) ∼ ν, so that X,Y are G0-measurable and
comonotone. Here qη(s) := inf{x ∈ R | η(−∞, x] ≥ s}, s ∈ (0, 1), is the quantile function of
the distribution η. Moreover, take A ∈ F0 such that P(A) = α. Then we obtain

φ(αµ+ (1− α)ν) = Φ(1AX + 1AcY ) ≥ Φ(E[1AX + 1AcY | G0])

= Φ(αX + (1− α)Y ) = αΦ(X) + (1− α)Φ(Y )

= αφ(µ) + (1− α)φ(ν)

where the comonotonicity of Φ enters in the second but last equality.

Corollary 3.2. Every lsc law-invariant comonotonic convex risk measure is concave on dis-
tributions.

Kusuoka’s representation [15] of law-invariant convex risk measures shows what goes wrong
in the general non-comonotone case:

(3.1) ρ(X) = sup
µ∈M(0,1]

∫
(0,1]

AVaRλ(X)µ(dλ)− ρ∗(µ),

where M(0, 1] is the set of all probability measures on (0, 1], and ρ∗ is the Fenchel-Legendre
transform of ρ seen as a function on M(0, 1]. On the level of distributions we see that the
building blocks

∫
(0,1] AVaRλ(X)µ(dλ) in (3.1) are all comonotonic and �-preserving, so the

corresponding risk measures on distributions are concave according to Lemma 3.1. However,
when taking the supremum, the concavity of the risk measure on distributions that corresponds
to ρ does not necessarily follow.

The following lemma translates convexity of Φ to property (3.2) of φ. This will prove to
be useful later on.

Lemma 3.3. Let Φ be �-preserving. Then the following are equivalent:

(i) Φ is convex;

(ii) For all µ ∈M1, f, g : R→ R increasing such that µ ◦ f−1, µ ◦ g−1 ∈M1, and α ∈ [0, 1],
the following holds:

(3.2) φ(µ ◦ (αf + (1− α)g)−1) ≤ αφ(µ ◦ f−1) + (1− α)φ(µ ◦ g−1).

Proof. (i) ⇒ (ii): Let the random variable X ∈ L1 have distribution µ. Moreover, let f, g :
R → R be measurable functions such that µ ◦ f−1, µ ◦ g−1 ∈ M1, i.e. f(X), g(X) ∈ L1 since
f(X) ∼ µ ◦ f−1 and g(X) ∼ µ ◦ g−1, and let α ∈ [0, 1]. Then αf(X) + (1 − α)g(X) ∼
(µ ◦ (αf + (1 − α)g)−1) which also shows that µ ◦ (αf + (1 − α)g)−1 ∈ M1. Now it is clear
how (3.2) follows from the convexity of Φ.
(ii)⇒ (i): Let X,Y ∈ L1 and α ∈ [0, 1]. Recall the sub-σ-algebras G0 and F0 from (2.2). Let
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U be a G0-measurable (0, 1)-uniformly distributed random variable and call µ = law(U). Then

we have X
d
= qX(U) and Y

d
= qY (U), thus

αΦ(X) + (1− α)Φ(Y ) = αφ(µ ◦ q−1
X ) + (1− α)φ(µ ◦ q−1

Y )

≥ φ(µ ◦ (αqX + (1− α)qY )−1)

= Φ(αqX(U) + (1− α)qY (U))

≥ Φ(αX + (1− α)Y ),

where the last inequality follows from the fact that

αX + (1− α)Y � αXc + (1− α)Y c

for all Xc, Y c comonotone such that Xc d
= X,Y c d

= Y ; see [14, Theorem 6] and references
therein.

From the proof of Lemma 3.3 it is clear that if one replaces convexity with quasi-convexity,
then (3.2) needs to be replaced by

φ(µ ◦ (αf + (1− α)g)−1) ≤ φ(µ ◦ f−1) ∨ φ(µ ◦ g−1).

The Value at Risk is an example which shows that the request of being �-preserving in
Lemma 3.3 cannot be removed. Indeed, Varλ is comonotone and thus satisfies (3.2) according
to the following Lemma 3.4. However Varλ is not �-preserving and not convex.

Lemma 3.4. Let Φ be positively homogeneous. Then, Φ is comonotonic if and only if φ
satisfies (3.2) with equality.

Proof. The ‘only if’ implication is clear from the first part of the proof of Lemma 3.3 since for
increasing f and g the random variables f(X) and g(X) are comonotone. Now, let X,Y ∈ L1

be comonotone and U be a random variable which is uniformly distributed on (0, 1) such that
qX(U) = X and qY (U) = Y . If φ satisfies (3.2) with equality, then

Φ(αX + (1− α)Y ) = Φ(αqX(U) + (1− α)qY (U)) = φ(µ ◦ (αqX + (1− α)qY )−1)

= αφ(µ ◦ q−1
X ) + (1− α)φ(µ ◦ q−1

Y ) = αΦ(X) + (1− α)Φ(Y ).

Note that if Φ is comonotonic, then automatically Φ(rX) = rΦ(X) for all rational numbers
r ≥ 0. Thus, under some continuity condition on Φ, positive homogeneity automatically
follows.

Proposition 3.5. Let Φ be comonotonic, positively homogeneous, and �-preserving. Then Φ
is convex and φ is concave.

Proof. Convexity of Φ follows by Lemmas 3.3 and 3.4. Concavity of φ follows by Lemma 3.1.

Remark 3.6. Proving that the Average Value at Risk is convex is typically not an easy task;
see e.g. [9, Theorem 4.52]. However, by applying Proposition 3.5 we can deduce the con-
vexity of the AVaR quickly. Indeed, AVaR is �uni-reverting by [9, Theorem 2.57: (a)⇔(e)],
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hence it preserves the convex order. Moreover, it is continuous, comonotonic, and positively
homogeneous. Thus convexity follows by Proposition 3.5. Therefore, it admits dual repre-
sentation, and the definition of the Fenchel-Legendre transform easily excludes measures with
Radon-Nikodym derivatives greater than 1/λ. In this way the well-known dual representation
AVaRλ(X) = sup{EQ[−X] : dQ/dP ≤ 1/λ} readily follows (cf. [9, Theorem 4.52]). 3
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