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1. Introduction

A substantial driver in the development of mathematical economics has been the theory of

general equilibrium, surveyed, among many others, by Debreu [16] and Mas-Colell & Zame

[29]. It mainly analyses whether and how a pure exchange economy populated by a finite

number of agents can share a commodity in an efficient way. Efficiency is always to be

understood against the backdrop of potentially varying individual preferences the agents

have concerning the shares of the commodity they receive.

We shall refer to such such sharing schemes as allocations. The most prominent notion

of their efficiency is Pareto efficiency, a systemic notion of stability and efficiency of an

economy which means that no agent can improve her share without worsening the share of

another agent. Formally, suppose the agents are represented by the set {1, ..., n}, share a

common good X, and entertain preferences �i, i ∈ {1, ..., n}, concerning the share they are

to receive. Then a sharing X = (X1, ..., Xn) is Pareto efficient if any other sharing scheme

Y = (Y1, ..., Yn) which satisfies Xi ≺ Yi for some agent i necessarily satisfies Yj ≺ Xj for

another agent j 6= i.

Pareto efficient allocations can be analysed particularly well if the individual preferences �i,
i ∈ {1, ..., n}, admit a numerical representation: if X denotes the set of commodities agent

i accepts as her share, a function Ui : X → [−∞,∞) is a numerical representation of the

preference relation �i if i weakly prefers Y to X if, and only if, Ui(X) ≤ Ui(Y ). We will

refer to Ui as a utility function.1

Let us assume now that the commodity space involved in such a problem is a vector space X .

Given a good X ∈ X which is to be shared, an allocation of X is any vector X = (X1, ..., Xn)

with the property X1 + ...+Xn = X. This assumption of perfect substitution means that in

principle, any sharing of X is hypothetically feasible for the agents. Suppose furthermore that

each individual preference relation �i can be numerically represented by a utility function

Ui : X → [−∞,∞), i ∈ {1, ..., n}.
A key observation which will be the guiding thread of our investigations, initially due to

Negishi, is the following: suppose that suitable positive weights w1, ..., wn > 0 can be found

such that the allocation X∗ = (X∗1 , ..., X
∗
n) satisfies

n∑
i=1

wiUi(Xi) ≤
n∑
i=1

wiUi(X
∗
i ) ∈ R,

where X = (X1, ..., Xn) ∈ X n is an arbitrary allocation of X. Then X∗ is indeed a Pareto

efficient allocation of X.

Let us abstract this this example which we shall get back to at a later stage of the paper.

The allocation X∗ is a maximiser for the optimisation problem

Λ(U(X))→ max subject to X ∈ ΓX , (1)

1 As usual, we exclude the case of infinite utility, whereas infinite disutility cannot be excluded a priori.
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where ΓX is the set of all allocations X ∈ X n with the property X1 + ...+Xn = X, whereas

U(X) := (U1(X1), ...,Un(Xn)) denotes the vector of individual utilities resulting for the agents

from the sharing X. These individual utilities are aggregated to a single quantity using the

aggregation function

Λ(y) :=

n∑
i=1

wiyi, −∞ ≤ yi <∞, (2)

and the optimal value is finite. As the aggregation function Λ in problem (1) may be cho-

sen freely, it introduces substantial flexibility which we shall exploit in Section 5. Given a

parameter 0 < α ≤ 1, we will use the aggregation function

Λα(y) := α min
1≤i≤n

yi + (1− α) max
1≤i≤n

yi, −∞ ≤ yi <∞,

to obtain (biased) weakly Pareto efficient allocations as maximisers for problem (1). Similarly,

if we choose the aggregation function

Ξα(y) :=
∑

∅6=S⊂{1,...,n}

α min
1≤i≤n

yi + (1− α) max
i∈S

yi, −∞ ≤ yi <∞,

maximisers will be so-called core allocations, which reflect certain notions of fairness in game

theory. The reader should keep in mind that both the optimal value and the optimisation

problem itself will be of secondary importance.

We shall assume throughout our study that all goods are risky future quantities or Savage

acts, i.e. real-valued random variables contingent on a measurable space (Ω,F) of future

states of the world. One may also think of them in the interpretation of Mas-Colell &

Zame [29] as consumption patterns. Riskiness in the realisation of the states ω ∈ Ω is

assumed to be governed by a reference probability measure P such that the probability space

(Ω,F ,P) is non-atomic.2 As usual, we shall identify two Savage acts X and Y if the event

{ω ∈ Ω | X(ω) = Y (ω)} has full P-probability. Substantial results have been achieved solving

problem (1) with aggregation function Λ chosen as in (2) in a framework of Savage acts and

involving law-invariant preferences, c.f. [1, 6, 10, 15, 17, 22, 31].

We adopt the assumption that the agents involved have law-invariant preferences, i.e. the

values of the utility functions Ui, i ∈ {1, ..., n}, only depend on the distribution of the

commodity under the reference probability measure P: if two Savage acts X and Y induce

the same lottery over the real line under P, i.e. if the Borel probability measures P◦X−1 and

P ◦ Y −1 on R are identical, then Ui(X) = Ui(Y ) holds for all i = 1, ..., n, the reasoning being

that utility only depends on statistical properties of the commodity. Along the lines of Dana

[15] and Jouni et al. [22], we shall refer to such utility assessments law-invariant. Under the

name of probabilistic sophistication it is a well-known property of preference relations which

was introduced by Machina & Schmeidler [28]; we refer to Cerreia-Vioglio et al. [8] as well as

the references in [8, footnote 2]; however, these references typically study preference relations

in an Anscombe-Aumann framework with general sets of consequences. Strzalecki [33], on

2 That is, there is a random variable U whose distribution function R 3 x 7→ P(U ≤ x) is a continuous

function.
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the other hand, studies probabilistic sophistication for general finitely additive reference

probabilities. We use the term law-invariance to emphasise that we are working in a Savage

setting with a numerical representation of a preference relation whose values only depend on

the law under a countably additive reference probability measure.

Normatively, law-invariance can be interpreted as a form of consequentialism of the agents

in that they are indifferent between two Savage acts yielding the same consequences — by

inducing the same lottery under the reference probability measure P. Practically, this con-

sequentialism mostly relies on the fact that Savage acts can be grasped only in terms of

empirical distributions of certain quantities, an observation which also explains the require-

ment of non-atomicity of the state space (Ω,F ,P). There is a one-to-one correspondence

between law-invariant utility functions over Savage acts contingent on a non-atomic space

and preference relations on (suitable sets of) lotteries on the real line.

Preferences expressed by law-invariant utility functions have another economically appealing

feature. Under a mild continuity assumption and quasi-concavity of the utility function Ui
— that is, convexity of the preference relation expressed by Ui — law-invariance of Ui is

equivalent to two standard notions of risk aversion: (i) monotonicity in the concave order

which was introduced to the economics literature by Rothschild & Stiglitz [32]: if every

risk averse expected utility agent weakly prefers X to Y , agent i with utility Ui weakly

prefers X to Y ; (ii) dilatation monotonicity: if Π is a finite measurable partition of the state

space, agent i weakly prefers the act associated to more information encoded by Π, i.e. the

conditional expectation EP[X|σ(Π)], to X itself. This will be discussed in detail in Theorem

18, to the best of our knowledge the most general version of this result in the literature and

one of the main results of the paper.

Our established equivalence between law-invariance and concave order monotonicity has the

important consequence that, in many situations, comonotone maximisers for (1) can be

found. An allocation X of X ∈ X is comonotone if there are n non-decreasing functions

fi : R → R summing up to the identity — f1(x) + ... + fn(x) = x holds for all x ∈ R —

such that Xi = fi(X), i = 1, ..., n. The commodity fi(X) can be interpreted as a contract

contingent on the common risk driver X. Such comonotone allocations are desirable and have

been widely studied. Empirical investigations of comonotonicity as a property of (optimal)

allocations can be found in Attanasio & Davis [4] and Townsend [36]. According to Carlier

et al. [7], who study multivariate comonotonicity, it is a property which — statistically — is

“testable and tractable”. Key to solving (1) are so-called comonotone improvement results as

given by Landsberger & Meilijson [25], Ludkovski & Rüschendorf [26], Carlier et al. [7], and

Filipović & Svindland [17]. For comonotonicity in a multivariate setting we refer to Carlier

et al. [7] and the references therein. For its use beyond the risk sharing problem, see Cheung

et al. [12] and Jouini & Napp [21] as well as the references therein.

Before we outline our main contributions, we give a brief overview of the rich existing litera-

ture of sharing problems as described above. For its treatment in general equilibrium theory,

we refer to the survey articles by Debreu [16] and Mas-Colell & Zame [29] as well as the

monograph Khan & Yannelis [23]. More closely related and involving law-invariant criteria
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are the problems studied by Carlier & Dana [6], which focuses on Rank Dependent Expected

Utility agents and uses additional conditions, and Dana [15], which studies optimal alloca-

tions and equilibria for concave, monotone and law-invariant preferences with strong order

continuity properties on bounded wealths. Jouini et al. [22] and Acciaio [1] study the problem

for law-invariant utility functions under the additional assumption of cash-additivity. The

comonotonicity of solutions to such sharing problems has been subject of, e.g., Chateauneuf

et al. [9] for Choquet expected utility agents, Strzalecki & Werner [34] in the case of more

general ambiguity averse preferences, and Ravanelli & Svindland [31] who study agents with

variational preferences as axiomatised by Maccheroni et al. [27]. There is also a rich strand of

literature on sharing problems when the objective is not to maximise utility, but to minimise

risk. The functionals involved are thus not utility functions, but risk measures. The case of

agents with convex law-invariant and cash-additive risk measures has been studied by Fil-

ipović & Svindland [17] on Lebesgue spaces, and by Chen et al. [10] on general rearrangement

invariant spaces. While Acciaio & Svindland [2] treat the case of law-invariance for different

reference probability measures, Liebrich & Svindland [24] consider the problem for convex

risk measures beyond law-invariance of the involved functionals. Finally, Mastrogiacomo &

Rosazza Gianin [30] study weak Pareto optima involving quasi-convex risk measures.

Our main contribution is to prove the existence of comonotone maximisers in (1), and thus

of economically desirable allocations, in a wide range of situations by laying the groundwork

in clear-cut meta results and then applying these in concrete cases which encompass, but

go beyond Pareto efficiency, such as the application in game theory mentioned above. We

prove that maximisers in problem (1) exist for agents with heterogeneous preferences as long

as their utilities are law-invariant with respect to the reference probability measure P and

suitable bounds hold on the one-dimensional subspace of riskless commodities. This approach

distinguishes it from other contributions in this direction which restrict preferences to certain

classes of law-invariant utilities. It therefore qualifies as unifying. We would like to point out

a few noteworthy directions in which we were able to obtain general results:

• The range of applications: By making suitable choices for the aggregation function

Λ in (1), we show the existence of comonotone biased weakly Pareto efficient, Pareto

efficient, and individually rational Pareto efficient allocations under mild assump-

tions. Moreover, we discuss applications in game theory and the systemic fairness of

allocations.

• Concavity assumptions: Apart from Mastrogiacomo & Rosazza Gianin [30], preceding

studies of instances of the optimisation problem (1) assume full concavity of the utility

functions Ui.
3 However, this requirement is a very strong form of convexity of the

preference relation �i on X , which means that diversification does (comparatively)

not decrease utility.4 Convexity of the preference relation is equivalently characterised

3 That is, for all i = 1, ..., n, for all X,Y ∈ X , and all 0 < λ < 1, Ui(λX+(1−λ)Y ) ≥ λUi(X)+(1−λ)Ui(Y )

holds.
4 That is, for all X,Y, Z ∈ X and 0 < λ < 1, X �i Y and X �i Z together imply X �i λY + (1− λ)Z.
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by quasi-concavity of the numerical representations Ui: all upper level sets {X ∈ X |
Ui(X) ≥ c}, c ∈ R, are convex sets.

• Monotonicity assumptions: Particularly in the financial context, law-invariant utili-

ties are widely assumed to be monotone in the P-a.s. order : if for two Savage acts X

and Y the event {ω ∈ Ω | X(ω) ≤ Y (ω)} has P-probability 1, the individual utility

assessments satisfy Ui(X) ≤ Ui(Y ). This assumption of “more is better” is not al-

ways convincing, in particular in light of finiteness of ressources as well as the adverse

collateral and ecological effects of economic activity. Our analysis does therefore not

rely on monotonicity whatsoever. In all our applications, we only assume that the

utility of strictly negative riskless commodities satisfies

lim
c↓−∞

Ui(c) = −∞.

Such an assumption of loss aversion does not seem far-fetched.

Non-monotonicity of individual preferences is also the reason why we distinguish

between sharing with and without free disposal. In the first case, the aggregated

good X ∈ X has to be shared without any remainder, i.e. one considers allocations

X = (X1, ..., Xn) ∈ X n with the property X1 + ... + Xn = X. In the second case,

a unanimously rejected remainder term may be left aside in the sharing scheme, i.e.

relevant allocations have the property X1 + ... + Xn ≤ X with P-probability 1. In

other words, we will study the problem

Λ(U(X))→ max subject to X ∈ Γ̂X := {X ∈ X n | P(X1 + ...+Xn ≤ X) = 1}.

• Choice of the commodity space: Most applications — apart from Chen et al. [10]

— assume order continuity of the model space norm, or, even more specifically, the

commodity space being an Lp-space of random variables. We show that any re-

arrangement invariant Banach lattice of P-integrable random variables containing all

riskless commodities may be considered. This is a consequence of law-invariance in

conjunction with slight regularity assumptions, a combination which implies that the

problem in question may be viewed as the localised version of a problem posed on the

space L1 of all integrable random variables. To phrase this differently, the problem

can be solved on the level of all integrable random variables if, and only if, it can be

solved on any rearrangement invariant commodity space. In this sense, Section 4 and

Proposition 20 contain some of the main results of our investigations.

• Methodology: Throughout our investigations, we will solve problem (1) in the most

classical fashion: we show that a maximising sequence of allocations has a subsequence

which converges to a maximiser. This seems interesting against the backdrop of

general equilibrium theory in infinite dimensional spaces. As elaborated in Mas-

Colell & Zame [29], infinite dimensionality poses multiple challenges which are usually

overcome using fixed point arguments. Whereas it is not clear if the fixed point

argument works in our setting, the methodology we use is a powerful addition to the

toolkit of general equilibrium theory.
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Structure of the paper. In Section 2, we thoroughly describe the setting in which we

shall study the sharing problem. In Section 3, we study the problem on the commodity

space L1 of all P-integrable random variables. We isolate the core difficulties of the problem,

find powerful meta results applicable in a range of situations as wide as possible, and give a

set of straightforward criteria guaranteeing that problems of the shape (1) have maximisers.

Section 4 has two parts: Section 4.1 collects the main contributions of our paper on the

structural properties of quasi-concave functions on general rearrangement invariant Banach

lattices of integrable functions. These findings are of interest beyond the existence of efficient

allocations. In Section 4.2 we provide suitable local versions of the results in Section 3 on

such general rearrangement invariant commodity spaces. Section 5 illustrates the range of

economically relevant allocations which can be obtained with our method. Technical but

straightforward estimates necessary for the applications are relegated to Appendix A.

2. Preliminaries

We begin with a few crucial pieces of terminology in use throughout our investigations and

introduce the setting of the paper.

Given a non-empty set X , a function f : X → [−∞,∞] := R ∪ {−∞,∞} and a level c ∈ R,

the upper level set of f at level c is the set

Ec(f) := {x ∈ X | f(x) ≥ c}.

If X is endowed with a topology τ , f is upper semicontinuous with respect to τ if the

sets Ec(f) are τ -closed, c ∈ R. If X is a real vector space, f is called quasi-concave if each

set Ec(f), c ∈ R, is convex, i.e. for all choices of x, y ∈ Ec(f) and all 0 < λ < 1, we have

λx+ (1− λ)y ∈ Ec(f).

The effective domain of f is defined by

dom(f) := {x ∈ X | f(x) > −∞}.

If f−1({∞}) = ∅ and dom(f) 6= ∅, f is called proper.

Throughout the text, bolded symbols will refer to vectors of objects. Hence, whenever X
is a set and n ∈ N is a dimension, objects in X n will be denoted by x = (x1, ..., xn). If

f : X → [−∞,∞] is a function, we denote by f(x) := (f(x1), ..., f(xn)) the vector in

[−∞,∞]n arising from a coordinatewise evaluation with f . Similarly, if g : X n → [−∞,∞]n

is a vector-valued function, g(x) is defined as g(x) := (g1(x1), ..., gn(xn)).

We shall fix an atomless probability space (Ω,F ,P), i.e. there is a random variable U with

continuous cumulative distribution function R 3 x 7→ P(U ≤ x). Given a real-valued random

variable X : Ω → R, P ◦ X−1 denotes its distribution or law under P, i.e. the probability

measure P({ω ∈ Ω | X(ω) ∈ ·}) on Borel sets of the real line.

We will usually identify random variables if they agree P-almost surely (P-a.s.). The space of

(equivalence classes of) P-integrable random variables is, as usual, denoted by L1. Similarly,

L∞ is the space of equivalence classes of P-a.s. bounded random variables. By E[·] := EP[·]
and E[·|H] := EP[·|H] we abbreviate the (conditional) expectation operator (with respect to



8 EFFICIENT ALLOCATIONS UNDER LAW-INVARIANCE

a sub-σ-algebra H ⊂ F) under P. The following notions will be of the utmost importance

for our investigations:

Definition 1. A set C ⊂ L1 is called rearrangement invariant with respect to P if

X ∈ C and Y being equal to X in law under P, i.e. P ◦X−1 = P ◦ Y −1, implies Y ∈ C.
Given a rearrangement invariant set C and a function f : C → [−∞,∞], f is law-invariant

with respect to P if f(X) = f(Y ) whenever P ◦X−1 = P ◦ Y −1.

Whenever we speak of law-invariance in the following, we mean law-invariance with respect

to the underlying reference probability measure P unless specified otherwise. The term is

also widely used in the theory of risk measures; c.f. Föllmer & Schied [18].

Economically, we shall model all appearing goods as random and contingent on the proba-

bility space (Ω,F ,P). They are Savage acts and represent state-dependent wealth.

The set of all goods towards which the agents in question have preferences will be assumed

to be an ideal X of L1 with respect to the P-a.s. order between random variables5 which

contains all bounded random variables, i.e.

L∞ ⊂ X ⊂ L1.

Although the precise formal properties of these commodity spaces will be elaborated later in

Section 4, we remark at this point already that X is assumed to be rearrangement invariant

and normed by a law-invariant lattice norm ‖ · ‖. Hence, the commodity spaces cover a very

general range of spaces of random variables. One of the crucial messages of our investigations,

however, is that we can treat the problem in the setting X = L1, and we shall do so in Section

3. The general case follows by means of localisation as elaborated in Section 4.

We close this section by recalling the concave order, a crucial notion of risk aversion.

Definition 2. Let X,Y ∈ L1. Y dominates X in the concave order (X �c Y ) if, and

only if, E[u(X)] ≤ E[u(Y )] for all concave u : R → R. Given a subset C ⊂ L1, a function

f : C → [−∞,∞] is non-decreasing in the concave order if f(X) ≤ f(Y ) holds for all X,Y ∈ C
such that X �c Y .

3. The cornerstones of optimisation involving law-invariance

In the following, for a natural number n ∈ N, [n] denotes the set of the first n natural

numbers, i.e. [n] = {1, 2, ..., n}. Throughout this section, we assume the commodity space

X to be given by L1 endowed with its natural norm ‖ · ‖1, that is

‖X‖1 := E[|X|], X ∈ L1.

We identify each agent with some i ∈ [n] and assume that their preferences over L1 are

represented by a vector U = (Ui)i∈[n] of functions Ui : L1 → [−∞,∞), i ∈ [n], with the

following properties:

5 That is, if X,Y ∈ L1 satisfy |X| ≤ |Y | a.s. and Y ∈ X , then also X ∈ X .
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Assumption 3. For each i ∈ [n], the function Ui : L1 → [−∞,∞) is proper, quasi-concave,

upper semicontinuous, and law-invariant.

As discussed in the introduction, law-invariance is a consequentialist assumption which means

that two commodities produce the same utility if their distribution under the reference mea-

sure P is the same; that is, Ui(X) = Ui(Y ), i ∈ [n], if the two distributions P ◦ X−1 and

P ◦ Y −1 on the real line agree. Alternatively, we will see later in Theorem 18(iii) that law-

invariance of Ui is equivalent to risk aversion in the sense of Ui being non-decreasing in the

concave order. We remark here that without law-invariance, the existence of solutions to the

optimisation problems studied in this paper cannot be guaranteed.

Recall that we abbreviate U : (L1)n → [−∞,∞)n, U(X) = (U1(X1), ...Un(Xn)). As mentioned

above, vectors in (L1)n will be denoted by X, whereas their individual coordinates are denoted

by Xi, i ∈ [n].

As our aim is to maximise aggregated utility within a system arising from distributing a good

X ∈ L1, we first have to clarify what a feasible distribution scheme, an allocation, is. To this

end, we introduce two types of attainable sets relevant throughout the remainder of the

paper. For X ∈ L1, we consider

ΓX := {X ∈ (L1)n | X1 + ...+Xn = X}

and

Γ̂X := {X ∈ (L1)n | X1 + ...+Xn ≤ X}.

The vectors X in ΓX or Γ̂X , respectively, are called allocations of X. X ∈ ΓX allocates X

without free disposal, whereas X ∈ Γ̂X is an allocation ofX when free disposal is allowed. It is

apparent from the definition that we study an economy without production. Due to potential

non-monotonicity of utilities in the almost sure order, Γ̂X is more relevant in situations

in which the economy is not subject to external constraints and a unanimously rejected

remainder of X may thus be left aside. Second, we need to introduce the notion of an

aggregation function.

Definition 4. A function

Λ : [−∞,∞)n → [−∞,∞)

is an aggregation function if it is non-decreasing with respect to the pointwise order on

[−∞,∞)n, i.e. Λ(y) ≤ Λ(z) for all y, z ∈ [−∞,∞)n such that yi ≤ zi for all i ∈ [n].

Given a vector U of utility functions satisfying Assumption 3 and an aggregation function Λ,

we will hence be interested in the quantity

Λ (U(X)) = Λ (U1(X1), ...,Un(Xn))

representing the aggregated individual utilities in the system given by an allocation X ∈ ΓX
or X ∈ Γ̂X of a commodity X ∈ L1.
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3.1. Comonotone allocations. The first step towards tackling the optimisation problem

(1) would be to reduce the attention to a well-behaved subset of the attainable set. This will

turn out to be the set of comonotone allocations.

Definition 5. Given n ∈ N, the set of comonotone n-partitions of the identity (or

comonotone functions) is the set C(n) of functions f = (f1, ..., fn) : R → Rn such that

each coordinate fi is non-decreasing and
∑n

i=1 fi = idR holds.

For γ > 0, we set C(n)γ to be the subset of f ∈ C(n) which satisfy
∑n

i=1 |fi(0)| ≤ γ. Moreover,

for f ∈ C(n), we set f̃ := f − f(0) ∈ C(n).

For each f ∈ C(n), i ∈ [n], and x, y ∈ R, the equality
n∑
i=1

|fi(x)− fi(y)| = |x− y|, (3)

holds.6 In particular, it entails that each fi, i ∈ [n], is a Lipschitz continuous function with

Lipschitz constant 1. As a consequence, fi(X) ∈ L1 holds for all X ∈ L1. Given X ∈ L1,

recall the abbreviation f(X) := (f1(X), ..., fn(X)) ∈ (L1)n. Clearly, f(X) ∈ ΓX holds by

definition. Moreover, if f ∈ C(n+ 1) and fn+1(X) ≥ 0 a.s., (f1(X), ..., fn(X)) ∈ Γ̂X holds.

The following results on comonotone functions are essential; statement (ii) is usually referred

to as comonotone order improvement.

Proposition 6. (i) For every γ > 0, C(n)γ ⊂ (Rn)R is sequentially compact in the topol-

ogy of pointwise convergence. That is, for each sequence (fk)k∈N ⊂ C(n)γ there is a

subsequence (kλ)λ∈N and f ∈ C(n)γ such that for all x ∈ R

fkλ(x)→ f(x), n→∞.

(ii) Let X ∈ (L1)n and set X := X1+...+Xn. Then there is f ∈ C(n) such that Xi �c fi(X)

holds for all i ∈ [n].

Proof. For (i), note that C(n)γ is a closed subset of the set {f ∈ C(n) | f(0) ∈ [−γ, γ]n} and

the latter is sequentially compact in the topology of pointwise convergence by [17, Lemma

B.1]. (ii) is proved in [17, Proposition 5.1]. In the case X ∈ (L∞)n, it is [7, Theorem 3.1].

We also refer to Landsberger and Meilijson [25] and Ludkovski and Rüschendorf [26]. �

The next two result are essential for optimisation with law-invariant inputs: Proposition 7

shows that in the optimisation problems we consider an optimal allocation can be found if,

and only if, an optimal comonotone allocation can be found. Proposition 8 shows that, under

further mild conditions, such optimal comonotone allocations actually exist because the set

of comonotone allocations is particularly well-behaved.

6 Each fi is non-decreasing. Hence, for x, y ∈ R, x ≥ y, we have,
n∑
i=1

|fi(x)− fi(y)| =
n∑
i=1

fi(x)− fi(y) = x− y = |x− y|.
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Proposition 7. Suppose U checks Assumption 3, Λ is an aggregation function, and X ∈ L1

is arbitrary. Then the identities

sup
Y∈ΓX

Λ(U(Y)) = sup
f∈C(n)

Λ (U(f(X))) , (4)

and

sup
Y∈Γ̂X

Λ(U(Y)) = sup{Λ(U(f1(X), ..., fn(X))) | f ∈ C(n+ 1), fn+1(X) ≥ 0}. (5)

hold.

Proof. Fix an arbitrary X ∈ L1. In order to prove (4), let Y ∈ ΓX be arbitrary. By

Proposition 6(ii), there is g ∈ C(n) such that Yi �c gi(X) holds for all i ∈ [n]. By Theorem

18, U(Y) ≤ U(g(X)) holds in the pointwise order on [−∞,∞)n. As Λ is non-decreasing by

assumption,

Λ(U(Y)) ≤ Λ(U(g(X))) ≤ sup
f∈C(n)

Λ(U(f(X))),

and thus

sup
Y∈ΓX

Λ(U(Y)) ≤ sup
f∈C(n)

Λ (U(f(X))) .

The converse inequality, however, follows from the observation that f(X) ∈ ΓX holds for all

f ∈ C(n), and (4) is proved.

For the second assertion, consider the slightly altered aggregation function

Ξ : [−∞,∞)n+1 → [−∞,∞), Ξ(x1, ..., xn+1) = Λ(x1, ..., xn) + xn+1,

which, indeed, is non-decreasing in the pointwise order on [−∞,∞)n+1. Moreover, let

Un+1 = δ(·|L1
+) : L1 → [−∞,∞), X 7→

{
0, X ∈ L1

+,

−∞, X /∈ L1
+,

be the concave indicator of L1
+ := {Y ∈ L1 | Y ≥ 0 a.s.}, the positive cone of L1 in the almost

sure order. The function Un+1 is proper, concave, upper semicontinuous, and law-invariant.

We set

Ū : (L1)n+1 → [−∞,∞)n+1, X 7→ (U1(X1), ...,Un(Xn),Un+1(Xn+1)),

and obtain

sup
Y∈Γ̂X

Λ(U(Y)) =
{

Ξ(Ū(Z)) | Z ∈ (L1)n+1, Z1 + ...+ Zn+1 = X
}

= sup
f∈C(n+1)

Ξ
(
Ū(f(X))

)
.
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The last equality here is due to (4). In the last supremum only vectors f(X), f ∈ C(n+ 1),

are relevant for which fn+1(X) ∈ L1
+. This in turn implies (f1(X), ..., fn(X)) ∈ Γ̂X for these

f ∈ C(n+ 1). Since they also satisfy Un+1(fn+1(X)) = 0, we obtain (5) as follows:

sup
Y∈Γ̂X

Λ(U(Y)) = sup
{

Ξ
(
Ū(f(X))

)
| f ∈ C(n+ 1), fn+1(X) ≥ 0

}
= sup {Λ (U1(f1(X)), ...,Un(fn(X))) | f ∈ C(n+ 1), fn+1(X) ≥ 0} .

�

Proposition 8. In the situation of Proposition 7 assume Λ is additionally upper semicon-

tinuous. For X ∈ L1 we define the quantities

η(X) := sup
Y∈ΓX

Λ(U(Y)) and η̂(X) := sup
Y∈Γ̂X

Λ(U(Y)).

(i) If η(X) <∞ and there is a constant γ(X) > 0 such that for f ∈ C(n),

Λ(U(f(X))) ≥ η(X)− 1 =⇒ f ∈ C(n)γ(X),

there is a g ∈ C(n)γ(X) such that

η(X) = Λ (U(g(X))) .

(ii) If η̂(X) < ∞ and there is some constant γ̂(X) > 0 such that for f ∈ C(n + 1) with

fn+1(X) ≥ 0,

Λ(U1(f1(X)), ...,Un(fn(X))) ≥ η̂(X)− 1 =⇒ f ∈ C(n+ 1)γ̂(X),

there is a g ∈ C(n+ 1)γ̂(X) such that gn+1(X) ≥ 0 a.s. and

η̂(X) = Λ (U1(g1(X)), ...,Un(gn(X))) .

Proof. (i) By Proposition 7, we may choose a maximising sequence (fk)k∈N ⊂ C(n), i.e.

Λ
(
U(fk(X))

)
↑ η(X) <∞.

Combining the assumption and Proposition 6(i) there is a subsequence (kλ)λ∈N and

g ∈ C(n)γ(X) such that

∀x ∈ R : fkλ(x)→ g(x), λ→∞.

Moreover, by 1-Lipschitz continuity, for all λ ∈ N and i ∈ [n],

|fkλi (X)− gi(X)| ≤ |f̃kλi (X)|+ |g̃i(X)|+ |fkλi (0)− gi(0)| ≤ 2|X|+ 2γ(X) P-a.s.

By the Dominated Convergence Theorem,

fkλ(X)→ g(X) in (L1)n, λ→∞.

As the limes superior is realised as limit along a subsequence, we may, after potentially

passing to another subsequence, assume without loss of generality that for each Ui,

i ∈ [n], the identity limλ→∞ Ui(f
kλ
i (X)) = lim supλ→∞ Ui(f

kλ
i (X)) holds. As Ui is
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upper semicontinuous, we also obtain limλ→∞ Ui(f
kλ
i (X)) ≤ Ui(gi(X)). Λ being non-

decreasing in the pointwise order implies

Λ(U(g(X))) ≥ Λ

(
lim sup
λ→∞

U1(fkλ1 (X)), ..., lim sup
λ→∞

Un(fkλn (X))

)
= Λ

(
lim
λ→∞

U1(fkλ1 (X)), ..., lim
λ→∞

Un(fkλn (X))

)
.

Moreover, upper semicontinuity of Λ shows

Λ

(
lim
λ→∞

U1(fkλ1 (X)), ..., lim
λ→∞

Un(fkλn (X))

)
≥ lim sup

λ→∞
Λ
(
U(fkλ(X))

)
= η(X).

Together the inequalities read as Λ (U(g(X))) ≥ η(X). As the converse inequality holds

a priori, the proof is complete.

(ii) This is proved in complete analogy with (i).

�

Proposition 8 may appear technical at first sight, but it is precisely the instrument which

allows us to prove the existence of efficient allocations in Theorem 12. This, however requires

to characterise when the interplay between the aggregation function Λ and the individual

utilities (Ui)i∈[n] is such that the additional assumptions are met, i.e. the bounds γ(X) and

γ̂(X), respectively, can be found. To this end we suggest the notion of coercive aggregation

functions.

3.2. Coercive aggregation rules. Recall that for a vector u of scalar functions ui : R →
[−∞,∞), we define u : Rn → [−∞,∞)n by u(y) = (u1(y1), ..., un(yn)), y ∈ Rn.

Definition 9. Let n ∈ N, u : Rn → [−∞,∞)n be a vector-valued function, and Λ :

[−∞,∞)n → [−∞,∞) be an aggregation function. For x,m ∈ R, we define the set

S(x,m) :=

{
y ∈ Rn

∣∣∣ n∑
i=1

yi ≤ x, Λ(u(y)) ≥ m

}
. (6)

We say Λ is coercive7 for u if there are functions G : R× R→ R and H : R→ R such that

for all x,m ∈ R, the condition S(x,m) 6= ∅ implies

n∑
i=1

|yi| ≤ G(x,m), y ∈ S(x,m), (7)

and

m ≤ H(x). (8)

7 We remark that our use of the term coercive is not canonical, however, it does not have a unique meaning

in the literature anyway. For instance, a function f : (X , ‖ · ‖X ) → (Y, ‖ · ‖Y) between two normed spaces

is called coercive if ‖x‖X → ∞ implies ‖f(x)‖Y → ∞. As coercive functions in optimisation usually play a

similar role as coercive aggregation functions in our setting, we decided to use this suggestive terminology.
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From an economic point of view, we can interpret a vector y ∈ Rn as a collection of (deter-

ministic) endowments of agents i = 1, ..., n. The sum
∑n

i=1 yi then is the total endowment

of the system [n]. If we think of the vector-valued function u as the individual utility assess-

ments, the quantity Λ(u(y)) is the aggregated utility in the system. Suppose the aggregation

function Λ is coercive for u. Condition (8) means that a bounded total endowment x cannot

lead to arbitrarily large aggregated utility. Regarding condition (7), consider a fixed total

endowment x allocated over the system such that yi → ∞ and yj → −∞ for at least two

agents i, j ∈ [n]. This implies substantial disutility for agent j, and condition (7) ensures

that such allocations will eventually not lead to optimal utility if the spread yi − yj is too

large. However, as the functions G and H do not have to fulfil any specific requirements,

they only pose very soft constraints.

We will use in Section 5 and show in Appendix A that the following aggregation functions

are coercive for suitable vector-valued functions u : Rn → [−∞,∞)n:

• Λα(y) := αmini∈[n] yi+(1−α) maxi∈[n] yi, y ∈ [−∞,∞)n, where 0 < α ≤ 1 is a fixed

parameter;

• Ξα(y) :=
∑
∅6=S⊂[n] αmini∈[n] yi + (1−α) maxi∈S yi, y ∈ [−∞,∞)n, where 0 < α < 1

is a fixed parameter;

• Λw(y) :=
∑n

i=1wiyi, y ∈ [−∞,∞)n, where w = (w1, ..., wn) ∈ (0,∞)n is a family of

positive weights.

Let us also give an example of a vector-valued function u : R2 → R2 and an aggregation

function Λ : [−∞,∞)2 → [0,∞) such that Λ is not coercive for u.

Example 10. Let A1, A2 ∈ R and B1, B2 > 0. We set u(y) := (A1 + B1y1, A2 + B2y2),

y ∈ R2. Moreover, we consider the aggregation function Λ(z) := ez1 + ez2 , z ∈ [−∞,∞)2

(here, e−∞ := 0). Let x,m ∈ R be arbitrary. As

Λ(u(x− n, n)) = eA1+B1x−B1n + eA2+B2n →∞, n→∞,

and x − n + n = x, we have for all m ∈ R and all n ≥ n0 for some n0 ∈ N depending on x

and m that (x− n, n) ∈ S(x,m). This implies

∀m > 0 : sup
y∈S(x,m)

|y1|+ |y2| ≥ sup
n≥n0

|x− n|+ |n| =∞.

Therefore the function G as in (7) cannot exist in this situation. Similarly, as S(x,m) 6= ∅
holds for all m ∈ R, the function H in (8) cannot exist either. Note that Λ not being

coercive for u is a result of the very different and conflicting nature of utility assessment and

aggregation.

The class of coercive aggregation functions is usually rich though and closed under certain

algebraic and order operations:

Proposition 11. Suppose n ∈ N and u : Rn → [−∞,∞)n is a vector-valued function.

Moreover, assume Λ, Ξ, Γ : [−∞,∞)n → [−∞,∞) are aggregation functions such that Λ
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and Ξ are coercive for u and such that Γ ≤ Λ. Then the following functions are coercive for

u, as well:

(i) αΛ, α > 0 arbitrary;

(ii) Λ + Ξ;

(iii) Γ.

Proof. Let G,G′ : R × R → R and H,H ′ : R → R be functions as in Definition 9 for Λ or Ξ,

respectively.

(i) The functions Gα(m,x) := G(x, mα ) and Hα := αH satisfy (7) and (8).

(ii) If y ∈ Rn satisfies (Λ + Ξ)(u(y)) ≥ m, this is only possible if max{Λ(u(y)),Ξ(u(y))} ≥
m
2 . Hence, the function G+(x,m) := max{G(x, m2 ), G′(x, m2 )} satisfies (7). Similarly,

the function H+ := 2 max{H,H ′} satisfies (8).

(iii) As Γ ≤ Λ, the inclusion

{y ∈ Rn |
∑n

i=1 yi ≤ x, Γ(u(y)) ≥ m} ⊂ {y ∈ Rn |
∑n

i=1 yi ≤ x, Λ(u(y)) ≥ m}
holds. Hence, the same functions G and H work for Γ in (7) and (8), as well.

�

3.3. The existence theorem. The aim of this section is to combine the results obtained

above and give a unifying criterion for the existence of comonotone solutions to optimisation

problems involving agents with law-invariant preferences.

Beforehand, we define the regions of relevance for the optimisation problem in question. Given

a vector of utilities U : (L1)n → [−∞,∞)n and an aggregation function Λ : [−∞,∞)n →
[−∞,∞), the relevant region corresponding to the attainable set ΓX is

∆ := {X ∈ L1 | sup
Y∈ΓX

Λ(U(Y)) > −∞},

whereas the region corresponding to the attainable set Γ̂X is

∆̂ := {X ∈ X | sup
Y∈Γ̂X

Λ(U(Y)) > −∞}.

Theorem 12. Suppose U checks Assumption 3. Let Λ : [−∞,∞)n → [−∞,∞) be an upper

semicontinuous aggregation function which is coercive for u := (u1, ..., un), where ui := Ui|R,

i ∈ [n]. Then:

(i) For all X ∈ L1, the optimal values satisfy

η(X) := sup
Y∈ΓX

Λ(U(Y)) <∞ and η̂(X) := sup
Y∈Γ̂X

Λ(U(Y)) <∞. (9)

(ii) There is a function γ : ∆→ R such that for all X ∈ ∆ and all f ∈ C(n),

Λ (U(f(X))) ≥ η(X)− 1 =⇒ f ∈ C(n)γ(X).

Moreover, the first supremum in (9) is attained by g(X) ∈ ΓX , g ∈ C(n) suitably

chosen.
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(iii) There is a function γ̂ : ∆̂ → R such that for all X ∈ ∆̂ and all f ∈ C(n + 1) with

fn+1(X) ≥ 0

Λ (U1(f1(X)), ...,Un(fn(X))) ≥ η̂(X)− 1 =⇒ f ∈ C(n)γ̂(X).

Moreover, the second supremum in (9) is attained by (g1(X), ..., gn(X)) ∈ Γ̂X , g ∈
C(n+ 1) suitably chosen.

(iv) If the function G : R× R→ R in (7) is non-decreasing in the first coordinate and non-

increasing in the second, the optimal value mappings X 7→ η(X) and X 7→ η̂(X) are

upper semicontinuous on ∆ and ∆̂, respectively.

Proof. Recall that for Y ∈ X n we abbreviate E[Y] := (E[Y1], ...,E[Yn]) ∈ Rn.

(i) By Corollary 19 and the assumptions on Λ, for all X ∈ X and all Y ∈ Γ̂X we have

Λ(U(Y)) ≤ Λ(U(E[Y])) = Λ(u(E[Y])).

Moreover,
∑n

i=1 Yi ≤ X implies
∑n

i=1 E[Xi] ≤ E[X]. Hence, coercivity of Λ for u yields

η(X) = sup
Y∈ΓX

Λ(U(Y)) ≤ sup
Y∈Γ̂X

Λ(U(Y)) = η̂(X) ≤ sup
Y∈Γ̂X

Λ(u(E[Y])) ≤ H(E[X]) <∞.

(ii) Let X ∈ ∆ and suppose f ∈ C(n) is such that η(X) − 1 ≤ Λ (U(f(X))). By Corollary

19, η(X)− 1 ≤ Λ (u(E[f(X)])), which means that

n∑
i=1

|fi(0)| − |E[f̃i(X)]| ≤
n∑
i=1

|E[fi(X)]| ≤ G(E[X], η(X)− 1).

Rearranging this inequality yields
n∑
i=1

|fi(0)| ≤ G(E[X], η(X)− 1) +
n∑
i=1

|E[f̃i(X)]|

≤ G(E[X], η(X)− 1) +
n∑
i=1

E[f̃i(|X|)]

≤ G(E[X], η(X)− 1) + E[|X|] =: γ(X).

The existence of a maximiser g(X), g ∈ C(n), follows with Proposition 8.

(iii) Let X ∈ ∆̂. If f ∈ C(n+ 1) is such that fn+1(X) ≥ 0 and

η̂(X)− 1 ≤ Λ(U1(f1(X)), ...,Un(fn(X))),

using the same arguments as in (ii) yields

n∑
i=1

|fi(0)| ≤ G(E[X], η̂(X)− 1) + E[|X|].

As fn+1(0) = −
∑n

i=1 fi(0),

n+1∑
i=1

|fi(0)| ≤ 2
n∑
i=1

|fi(0)| ≤ 2G(E[X], η̂(X)− 1) + 2E[|X|] =: γ̂(X).
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The existence of a maximiser g(X), g ∈ C(n+ 1), follows with Proposition 8.

(iv) This will be proved in the context of Theorem 23.

�

4. Commodity spaces and law-invariance

As mentioned above, we will now demonstrate how the results in the preceding section can

be generalised — or rather localised — to general rearrangement invariant commodity spaces

X with the property L∞ ⊂ X ⊂ L1. For the terminology concerning ordered vector spaces,

we refer to Aliprantis & Burkinshaw [3]. The space X is assumed to have the following

properties:

(a) As a subset of L1, X is rearrangement invariant;

(b) with respect to the P-a.s. order on L1, it is a solid Riesz subspace;

(c) X carries a lattice norm ‖ · ‖ which makes it into a Banach lattice and is law-invariant

as a function ‖ · ‖ : X → [0,∞).

The preceding assumptions entail that the embeddings L∞ ↪→ X ↪→ L1 are continuous, i.e.

there are positive constants κ,K > 0 such that for all X ∈ L∞ and all Y ∈ X the estimates

‖Y ‖ ≤ κ‖Y ‖∞ and E[|Y |] ≤ K‖Y ‖ (10)

hold. For the aforementioned facts on rearrangement invariant function spaces, we refer to

[10, Appendix A] and the references therein.

Let X ∗ denote the dual space of X . A linear functional φ ∈ X ∗ is order continuous if

limn→∞ φ(Xn) = 0 holds for every sequence (Xn)n∈N ⊂ X such that Xn ↓ 0 P-a.s.8 The

space X∼n of all order continuous functionals may be identified with a subspace of L1. More

precisely, for every φ ∈ X∼n there is a unique Q ∈ L1 such that E[|QX|] < ∞ holds for all

X ∈ X and φ(X) = E[QX]. Moreover, for each Q ∈ L∞, X 7→ E[QX] defines an order

continuous bounded linear functional by (10). Using the Hardy-Littlewood inequalities as

stated in [13, Theorem 13.4], one can prove that X∼n ⊂ L1 is rearrangement invariant, as

well.

4.1. Structural properties of law-invariant functions. We assume that (X , ‖ · ‖) is

either (L1, ‖ · ‖1) or a rearrangement invariant Banach lattice L∞ ⊂ X ( L1 as introduced

above.

Before we can generalise the results on the existence of efficient allocations to general com-

modity spaces X , we point out that the potential lack of order continuity of the norm ‖ · ‖ is

the main problem which needs to be overcome. It results in the fact that X∼n ( X ∗ is possi-

ble. Hence, many of the structural properties of (quasi-)concave and law-invariant functions

do not transfer directly.

This necessitates to study structural properties of law-invariant functions on general commod-

ity spaces more closely. We shall see that the localisation procedure works if the individual

8 As the P-a.s. order on L1 (and also X ) renders super Dedekind complete spaces, order convergent sequences

suffice to characterise order continuity.
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utilities in question have minimal order continuity properties on X . For the (strong) Fatou

property introduced in the following we particularly refer to the recent contributions of Chen

et al. [10] and Gao et al. [19].

Definition 13. Let L∞ ⊂ X ⊂ L1 be a rearrangement invariant Banach lattice as elaborated

above. A function f : X → [−∞,∞) is said to have

• the Fatou property if every order convergent sequence (Xn)n∈N ⊂ X with limit

X ∈ X satisfies9

f(X) ≥ lim sup
n→∞

f(Xn);

• the strong Fatou property if the preceding estimate holds for every norm bounded

sequence (Xn)n∈N ⊂ X which converges to X ∈ X a.s.

Note that the space X is closed under suitable conditional expectations: if a σ-algebra H is

finitely generated, i.e. H = σ(π) for some finite measurable partition π = {A1, ..., An} ⊂ F
of Ω, and X ∈ X , then E[X|H] is well-defined and a simple — and thus bounded — function.

Lemma 14. Given X ∈ X and a finitely generated sub-σ-algebra H ⊂ F , the conditional

expectation E[X|H] lies again in X and satisfies ‖E[X|H]‖ ≤ ‖X‖.

Proof. Fix arbitrary X ∈ X and a finitely generated sub-σ-algebra H ⊂ F . Moreover, let

Ak := {|X| ≤ k} ∈ F . For all k ∈ N, E[X1Ak |H] ∈ L∞ ⊂ X , and the set {Y ∈ L∞ | ‖Y ‖ ≤
‖X1Ak‖}, is ‖ · ‖∞-closed by (10). Applying [35, Lemma 1.3] for the first and the lattice

norm property for the second inequality yields

‖E[X1Ak |H]‖ ≤ ‖X1Ak‖ ≤ ‖X‖.

As H is finitely generated, E[X1Ak |H]→ E[X|H] in L∞. Again by (10),

‖E[X|H]‖ = lim
k→∞

‖E[X1Ak |H]‖ ≤ ‖X‖.

�

This observation allows us to define dilatation monotonicity of a function on X .

Definition 15. A function f : X → [−∞,∞] is dilatation monotone if for every X ∈ X
and every finite measurable partition π we have

f(X) ≤ f (E[X|σ(π)]) .

By Jensen’s inequality, E[X|σ(π)] dominates X in the concave order. As an immediate con-

sequence, a function f : X → [−∞,∞] is dilatation monotone if it is non-decreasing in the

concave order.

Our main goal here, however, is to link law-invariance of a quasi-concave function to mono-

tonicity properties such as dilatation monotonicity or being non-decreasing in the concave

order, c.f. Definition 2, and mild order continuity properties such as the Fatou property,

strong Fatou property, and σ(X , L∞)-upper semicontinuity.

9 That is, P(Xn → X) = 1 and there is some X0 ∈ X+ such that supn∈N |Xn| ≤ X0 holds a.s.
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As a first step, we recall the version of [10, Proposition 2.11] suited to our purposes.

Proposition 16. Suppose X ( L1 and ‖·‖ is order continuous. For a proper, quasi-concave,

and law-invariant function f : X → [−∞,∞), the following are equivalent:

(i) f has the strong Fatou property;

(ii) f has the Fatou property;

(iii) f is σ(X , L∞)-upper semicontinuous.

Hence, in the situation of the preceding proposition, the three aforementioned order conti-

nuity properties agree.

In the following, we shall denote the left-continuous quantile function of X ∈ L1 by qX , i.e.

qX(s) := inf{x ∈ R | P(X ≤ x) ≥ s}, 0 < s < 1.

The concave order can be characterised in terms of quantiles; c.f. [14, Lemma 2.2]:

Lemma 17. For X,Y ∈ L1, X �c Y if, and only if, the estimate∫ 1

0
qX(s)g(s)ds ≤

∫ 1

0
qY (s)g(s)ds

holds for any choice of a non-increasing bounded function g : (0, 1)→ R.

The following theorem — which is furthermore of independent interest — encompasses all

relevant structural properties needed for the utility inputs in the optimisation problems in

question. We will discuss the relation to dilatation monotonicity of f : X → [−∞,∞] for the

sake of completeness.

Theorem 18. Let f : X → [−∞,∞] be a function.

(i) Suppose f is quasi-concave, σ(X , L∞)-upper semicontinuous, and law-invariant. Then

it is non-decreasing in the concave order.

(ii) If f does not attain the value +∞, is dilatation monotone and has the strong Fatou

property, then it is law-invariant. The same assertion holds if ‖ · ‖ is order continuous

and f is ‖ · ‖-upper semicontinuous.

If f is additionally quasi-concave, it is σ(X , L∞)-upper semicontinuous in both cases.

(iii) Suppose a quasi-concave function f : X → [−∞,∞) has the strong Fatou property, or,

if ‖ · ‖ is order continuous, is ‖ · ‖-upper semicontinuous. Then the following statements

are equivalent:

(a) f is non-decreasing in the concave order;

(b) f is dilatation monotone;

(c) f is law-invariant.

Under any of the equivalent conditions (a)-(c), f is σ(X , L∞)-upper semicontinuous.

Proof. (i) Suppose f : X → [−∞,∞] is quasi-concave, σ(X , L∞)-upper semicontinuous,

and law-invariant. For r ∈ R, we set σr : X ∗ → [−∞,∞] to be the support function of

the superlevel set Er(f) = {Y ∈ X | f(Y ) ≥ r}, i.e.

σr(φ) = inf
Y ∈Er(f)

φ(Y ), φ ∈ X ∗.
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Suppose Er(f) 6= ∅. The Hahn-Banach Theorem and σ(X , L∞)-closedness or the su-

perlevel sets shows that Y ∈ Er(f) holds if, and only if,

∀Q ∈ dom(σr) ∩ L∞ : E[QW ] ≥ σr(Q). (11)

Moreover, the superlevel sets of f are rearrangement invariant. This property transfers

to law-invariance of σr|L∞ and rearrangement invariance of dom(σr) ∩ L∞.

Let now X,Y ∈ X be arbitrary with the property X �c Y . We have to show that

f(X) ≤ f(Y ). This inequality holds trivially if f(X) = −∞. Otherwise, if f(X) > −∞,

there is r ∈ R such that X ∈ Er(f). Pick any such r and let Q ∈ dom(σr) ∩ L∞ be

arbitrary. By [13, Theorem 13.4],

E[QY ] ≥ inf
Q̃∼Q

E[Q̃Y ] = − sup
Q′∼−Q

E[Q′Y ] =

∫ 1

0
(−q−Q(s))qY (s)ds. (12)

As −Q is bounded, −q−Q : (0, 1)→ R is a non-increasing bounded function. Lemma 17

yields the estimate∫ 1

0
(−q−Q(s))qX(s)ds ≤

∫ 1

0
(−q−Q(s))qY (s)ds. (13)

Combining (12) and (13) yields

E[QY ] ≥
∫ 1

0
(−q−Q(s))qY (s)ds ≥

∫ 1

0
(−q−Q(s))qX(s)ds = inf

Q̃∼Q
E[Q̃X].

Using law-invariance of σr on L∞, we obtain

E[QY ] ≥ inf
Q̃∼Q

σr(Q̃) = σr(Q).

As Q ∈ dom(σr) ∩ L∞ was chosen arbitrarily, f(Y ) ≥ r whenever f(X) ≥ r, which in

turn implies f(X) ≤ f(Y ).

(ii) In a first step, we show that f is law-invariant on the level of simple functions. To this

end, suppose two simple functions X and Y are equal in law, i.e. P◦X−1 = P◦Y −1. By

[11, Lemma 2.4], for every ε > 0 there is a Kε ∈ N and finitely generated sub-σ-algebras

H1, ...,HKε ⊂ F such that

‖X − E[E[...E[Y |H1]|H2]...|HKε ]‖∞ < ε.

Setting Xn := E[E[...E[Y |H1]|H2]...|HKεn ] for a sequence εn ↓ 0, we infer that X is

approximated by a sequence (Xn)n∈N ⊂ L∞ uniformly which is bounded in norm ‖ · ‖
and converges a.s.

If f has the strong Fatou property, this yields

f(X) ≥ lim sup
n→∞

f(Xn) ≥ lim inf
n→∞

f(Xn) ≥ f(Y ),

where the last inequality is due to dilatation monotonicity applied to each n ∈ N. The

argument is symmetric in the roles of X and Y , hence f(X) = f(Y ).
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In the second case, i.e. ‖ · ‖ is order continuous and f is upper semicontinuous, using

limn→∞ ‖Xn −X‖ = 0 yields the same assertion.

In a second step, let X and Y be arbitrary in X with the property of being equal in

law. Note that there are two sequences of finitely generated sub-σ-algebras (Hn)n∈N

and (Gn)n∈N such that E[X|Hn] → X and E[Y |Gn] → Y a.s. and P ◦ E[X|Hn]−1 =

P ◦ E[Y |Gn]−1, n ∈ N. Moreover, by Lemma 14,

sup
n∈N
‖E[X|Hn]‖ ≤ ‖X‖ and sup

n∈N
‖E[Y |Gn]‖ ≤ ‖Y ‖.

Combining dilatation monotonicity and the strong Fatou property yields

f(X) = lim
n→∞

f(E[X|Hn]) and f(Y ) = lim
n→∞

f(E[Y |Gn]). (14)

In the second case, order continuity of ‖ · ‖ yields E[X|Hn] = X and limn→∞ E[Y |Gn] =

Y , whence the statement of (14) follows by upper semicontinuity and dilatation mono-

tonicity. Finally, in both cases, the already proved law-invariance on the level of simple

functions combined with P ◦ E[X|Hn]−1 = P ◦ E[Y |Gn]−1, n ∈ N proves the assertion.

σ(X , L∞)-upper semicontinuity of f is implied by our assumptions and law-invariance

by [10, Theorem 2.6] in the case of the strong Fatou property. If ‖·‖ is order continuous,

upper semicontinuity of f entails that it enjoys the Fatou property. If X 6= L1, f is

hence both σ(X , L∞)-upper semicontinuous and has the strong Fatou Property by [10,

Proposition 2.11]. If X = L1, σ(X , L∞)-upper semicontinuity is weak upper semiconti-

nuity and hence already captured by the assumption of ‖ · ‖-upper semicontinuity.

(iii) Combine (i) and (ii).

�

From the preceding proposition, we immediately obtain the following corollary which allows

to control the global behaviour of a quasi-concave function f as in Theorem 18(i) or (iii) in

terms of the behaviour on deterministic random variables.

Corollary 19. In the situation of Theorem 18(i) or (iii),

∀X ∈ X : f(X) ≤ f(E[X]).

We conclude this interlude on the structural properties of law-invariant functions section with

an important generalisation of [10, Theorem 2.6]. It will be the key to localising Theorem 12

to general commodity spaces in Theorem 23.

Proposition 20. If f : X → [−∞,∞] is quasi-concave, σ(X , L∞)-upper semicontinuous

and law-invariant, there exists a unique extension f ] : L1 → [−∞,∞] which is quasi-concave,

upper semicontinuous with respect to ‖·‖1, and law-invariant. Moreover, f ] is non-decreasing

in the concave order, and properness of f implies properness of f ].

Proof. By assumption on f , each upper level set Er(f) is σ(X , L∞)-closed and (11) holds.

Define

Ar := clL1(Er(f)).
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If Er(f) 6= ∅, the representation

Ar = {W ∈ L1 | ∀Q ∈ dom(σr) ∩ L∞ : E[QW ] ≥ σr(Q)}

holds, where σr is as in (11), and

f ](X) = sup{r ∈ R | X ∈ Ar}, X ∈ L1.

f ] is law-invariant and quasi-concave. Indeed, for law-invariance, note that f ](X) ≥ r is

equivalent to E[QX] ≥ σr(Q) for all Q in the rearrangement invariant set L∞ ∩ dom(σr) and

in terms of the law-invariant function σr. For quasi-concavity, let X,Y ∈ L1 and λ ∈ (0, 1),

X,Y ∈ Ar implies λX+(1−λ)Y ∈ Ar by convexity of the latter set. As min{f ](X), f ](Y )} =

sup{r ∈ R | {X,Y } ⊂ Ar}, the inequality f ](λX + (1− λ)Y ) ≥ min{f ](X), f ](Y )} follows.

Moreover, f ] is upper semicontinuous. Indeed, suppose Xn → X in L1. Without loss of

generality, we may assume that s := limn→∞ f
](Xn) ∈ [−∞,∞] exists. Suppose r ∈ R is

such that r < s. Xn ∈ Ar has to hold for all n large enough, hence, for all Q ∈ L∞∩dom(σr),

E[QX] = lim
n→∞

E[QXn] ≥ σr(Q),

which means X ∈ Ar. This shows upper semicontinuity.

We now show that f ] extends f . Clearly, f ]|X ≥ f , and we hence assume for contradiction

the existence of some X ∈ X such that f ](X) > f(X). This allows us to find some r ∈ R
such that X ∈ Ar, whereas X /∈ Er(f). The latter set is σ(X , L∞)-closed. We can thus find

some Q ∈ L∞ which gives a separating hyperplane in that

E[QX[< inf
Y ∈Er(f)

E[QY ] = inf
W∈Ar

E[QW ],

where we have used Ar = clL1(Er(f)) in the last equality. This contradicts X ∈ Ar. f ](X) >

f(X) has to be absurd.

f ] is the unique extension of f to L1 which is quasi-concave, upper semicontinuous, and

law-invariant. Indeed, let f̂ : L1 → [−∞,∞] be any extension of f with these properties. As

L∞ ⊂ X , the restrictions f ]|L∞ and f̂ |L∞ agree. Let X ∈ L1 and let (Gn)n∈N be a sequence

of finitely generated sub-σ-algebras such that limn→∞ E[X|Gn] = X holds in L1. f ] and f̂

being non-decreasing in the concave order follows from Theorem 18(i). Together with upper

semicontinuity, we obtain

f̂(X) = lim
n→∞

f̂ (E[X|Gn]) = lim
n→∞

f (E[X|Gn]) = lim
n→∞

f ] (E[X|Gn]) = f ](X).

Thus, both extensions f ] and f̂ agree.

It remains to prove that properness of f implies properness of f ]. By Corollary 19, f ](E[X]) =

∞ whenever X ∈ L1 satisfies f ](X) =∞. As f ](E[X]) = f(E[X]), f ] only attains the value

+∞ if f does.

�
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4.2. The existence theorem for general commodity spaces. We shall assume X ( L1

here. If ‖ · ‖ is order continuous, Proposition 16 states that for a quasi-concave and law-

invariant function f : X → [−∞,∞), the Fatou property, the strong Fatou property, and

upper semicontinuity with respect to the σ(X , L∞)-topology are all equivalent. This leads

to following assumption:

Assumption 21. The commodity space satisfies X ( L1 as well as properties (a)-(c) above.

For each agent i ∈ [n], its individual utility assessment is given by a function Ui : X →
[−∞,∞), which is proper, quasi-concave, law-invariant, and has the strong Fatou property.

By Proposition 20, each Ui has a canonical extension U]i : L1 → [−∞,∞) which is proper,

quasi-concave, upper semicontinuous, and law-invariant. Consequently, the family of func-

tions U] := (U]i)i∈[n] checks Assumption 3.

The following two results prove that we can extend the optimisation problem to L1 and solve

it in the larger space. Note that we extend the definition of the attainable sets ΓX and Γ̂X ,

X ∈ X , by

ΓXX = ΓX ∩ X n and Γ̂XX = Γ̂X ∩ X n.

Lemma 22. Suppose U := (Ui)i∈[n] : X n → [−∞,∞)n is a vector of utility functions satis-

fying Assumption 21. Let Λ : [−∞,∞)n → [−∞,∞) be an aggregation function and X ∈ X .

Then:

(i) f(X) ∈ X n holds for every comonotone function f ∈ C(n).

(ii) The identities

sup
X∈ΓXX

Λ(U(X)) = sup
Y∈ΓX

Λ(U](Y))

and

sup
X∈Γ̂XX

Λ(U(X)) = sup
Y∈Γ̂X

Λ(U](Y))

hold.

(iii) Λ is coercive for (Ui|R)i∈[n] if, and only if, it is coercive for (U]i|R)i∈[n].

Proof. (i) By (3), the estimate |fi(X)| ≤ |fi(0)|+ |X| holds for all i ∈ [n]. The right-hand

side is an element of X and this space is solid as a subset of L1. We infer that the

left-hand side has to be an element of X as well.

(ii) As none of the functions U]i attains the value +∞, the expression

Λ(U](Y)) = Λ(U]1(Y1), ...,U]n(Yn))

is well-defined for all Y ∈ (L1)n. As the family U] = (U]i)i∈[n] checks Assumption 3,

Proposition 7 together with (i) implies

sup
Y∈ΓX

Λ(U](Y)) = sup
f∈C(n)

Λ
(
U](f(X))

)
= sup

f∈C(n)
Λ (U(f(X))) .
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As for f ∈ C(n) the vector f(X) lies in ΓXX we obtain

sup
Y∈ΓX

Λ(U](Y)) ≤ sup
X∈ΓXX

Λ (U(X)) .

The converse inequality holds a priori. Note that the second equality is derived from

Proposition 7 in an analogous way.

(iii) This follows from the equality U(r) = U](r), which holds for all r ∈ R.

�

The following local version of the existence theorem, Theorem 12, is an immediate conse-

quence of the preceding lemma.

Theorem 23. Theorem 12 holds true verbatim if we replace L1 by X , ΓX by ΓXX , and Γ̂X
by Γ̂XX .

Proof. It only remains to verify (iv) from Theorem 12. Note that the following proof works

in L1 as well as in the setting of a general commodity space X of this section.

Let (Xk)k∈N ⊂ ∆ be a sequence and X∞ ∈ ∆ such that limk→∞ ‖Xk −X∞‖ = 0. We shall

prove that

η(X∞) ≥ lim sup
k→∞

η(Xk).

The proof for ∆̂ and η̂ is completely analogous. We proceed similarly to the proof of Proposi-

tion 8, however under the additional problem that not a fixed X is considered, but a sequence

thereof.

First of all, we may assume that limk→∞ η(Xk) = lim supk→∞ η(Xk) up to passing to a sub-

sequence and that lim supk η(Xk) > −∞ — otherwise, the desired inequality is trivial. Now,

for all k ∈ N choose gk ∈ C(n) such that Λ
(
U(gk(Xk))

)
= η(Xk). The proof of Theorem

12(ii) together with (10) yields
n∑
i=1

|gki (0)| ≤ G(E[Xk], η(Xk)− 1) + E[|Xk|] ≤ G(E[Xk], η(Xk)− 1) +K‖Xk‖

≤ G(E[Xk], η(Xk)− 1) +K sup
k∈N
‖Xk‖.

By the convergence of η(Xk), L := infk∈N η(Xk) > −∞. The estimate E[Xk] ≤ K supk∈N ‖Xk‖
holds for all k ∈ N. In conjunction with G being non-decreasing in the first coordinate and

non-increasing in the second, we obtain the bound
n∑
i=1

|gki (0)| ≤ G(K sup
k∈N
‖Xk‖, L− 1) +K sup

k∈N
‖Xk‖ =: ρ <∞,

a constant which is in particular independent of k. We conclude (gk)k∈N ⊂ C(n)ρ.

Recall that Xk → X∞ holds in L1, as well. After passing to subsequences twice, we may hence

infer by Proposition 6(i) that for a suitable subsequence (kλ)λ∈N and a suitable g ∈ C(n)ρ,

we have

gkλ(x)→ g(x), λ→∞,
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for all x ∈ R, and

P( lim
λ→∞

Xkλ = X∞) = 1.

Hence,

gkλ(Xkλ)→ g(X∞) a.s.

If the norm ‖ ·‖ is order continuous, this convergence holds in norm as well. At last, choosing

the constant κ as in (10), for all λ ∈ N and all i ∈ [n] we can estimate

‖gkλi (Xkλ)‖ ≤ κ|gkλi (0)|+ ‖Xkλ‖ ≤ κρ+ sup
k∈N
‖Xk‖.

This allows us to reason as in the proof of Proposition 8, however invoking the strong Fatou

property of the individual utility functions if necessary. We obtain

lim sup
k→∞

η(Xk) = lim sup
λ→∞

Λ
(
U(gkλ(Xkλ)

)
≤ Λ (U(g(X∞)))

≤ sup
f∈C(n)

Λ (U(f(X∞))) = η(X∞).

�

The crucial message of this section is that in a situation of law-invariant utilities with min-

imal order continuity poperties it does not matter on which commodity space we solve the

optimisation problem. Without loss of generality, it may be solved on the canonical com-

modity space L1 as the solution automatically localises to the commodity space in question.

This is due to the homogeneity of the only solutions which are guaranteed to exist, being

comonotone transformations of the aggregate wealth.

5. Applications

In this section, the main existence theorem, Theorem 12, will be applied to a number of

optimisation problems involving individual preferences within a system of agents and an

aggregation thereof. We shall see that the solutions have various economic interpretations.

For the sake of clarity, we we assume that a system of n ≥ 2 agents i ∈ [n] is given who all

have preferences over the commodity space L1. These can be represented numerically by a

vector of utility functions U : (L1)n → [−∞,∞)n satisfying Assumption 3. The localisation

procedure discussed in Section 4 shows that we are simultaneously solving the problem in

all spaces X and for all individual utility functions Ui : X → [−∞,∞) which satisfy the

assumptions of Section 4, in particular Assumption 21.

Before we can discuss the promised applications, we need to introduce more notation: Given

a vector x ∈ [−∞,∞]n, x∗ denotes the maximum and x∗ the minimum of the entries of x,

respectively;

x∗ := max
i∈[n]

xi and x∗ := min
i∈[n]

xi.

If x,y ∈ Rn, x · y denotes the Hadamard product of the two vectors, i.e. x · y = (xiyi)i∈[n].

Also, in order to make fruitful use of the concept of a coercive aggregation function, we shall
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focus on utilities whose behaviour on riskless commodities can be controlled in the following

way:

Definition 24. A function u : R → [−∞,∞) is an (A,B,C)-function, (A,B,C) ∈ R ×
(0,∞)× (0,∞), if

u(x) ≤ A+Bx+ − Cx−, x ∈ R,

where x+ := max{x, 0} and x− := max{−x, 0}.

Remark 25. (i) u : R → [−∞,∞) is an (A,B,C)-function for some (A,B,C) ∈ R ×
(0,∞)× (0,∞) if, and only if, there are α± ∈ R and β± > 0 such that for all x ∈ R

u(x) ≤

{
α+ + β+x, x ≥ 0,

α− − β−|x|, x < 0,

that is, u can be controlled from above by affine functions.

(ii) Any proper concave function u : R→ [−∞,∞) is an (A,B,C)-function.

(iii) Suppose (A,B,C) and (Â, B̂, Ĉ) are elements of R× (0,∞)× (0,∞) with the property

that A ≤ Â, B ≤ B̂ and Ĉ ≤ C. One easily sees that every (A,B,C)-function is also a

(Â, B̂, Ĉ)-function.

In this section, we will work under the following assumption:

Assumption 26. The vector of utility functions U = (Ui)i∈[n] satisfies Assumption 3. More-

over, setting ui(x) := Ui(x), x ∈ R, we impose that each ui is an (Ai, Bi, Ci)-function, i ∈ [n].

We remark that in some of the case studies below, the additional control of the behaviour

on riskless commodities rules out cash-additivity of the corresponding utility functions.10

5.1. (Biased) weak Pareto efficiency. In this section, we prove the existence of (biased)

weak Pareto optima as solutions to a suitable optimisation problem.

Definition 27. Let Γ ⊂ (L1)n be an attainable set. X ∈ Γ is called weakly Pareto

efficient or a weak Pareto optimum, if there is no Y ∈ Γ with Ui(Yi) > Ui(Xi), i ∈ [n].

The aggregation function we shall be interested in,

Λα(y) := αmin
i∈[n]

yi + (1− α) max
i∈[n]

yi, y ∈ [−∞,∞)n,

where 0 < α ≤ 1 is a parameter, is easily seen to be upper semicontinuous. We remark that

the function

L1 3 X 7→ sup
Y∈ΓX

Λ1(U(Y))

is the quasi-concave sup-convolution of the individual utilities; c.f. Mastrogiacomo & Rosazza

Gianin [30].

The following observation is immediate:

10 Ui would be cash-additive if Ui(X + r) = Ui + r holds for all X ∈ L1 and all r ∈ R. In that case,

quasi-concavity automatically implies concavity.



EFFICIENT ALLOCATIONS UNDER LAW-INVARIANCE 27

Lemma 28. Suppose 0 < α ≤ 1. If X ∈ ΓX is such that

Λα(U(X)) = sup
Y∈ΓX

Λα(U(Y)) ∈ R,

then X is a weakly Pareto efficient allocation of X within ΓX . The analogous result holds

when ΓX is replaced by Γ̂X .

Theorem 29. Suppose U = (Ui)i∈[n] fulfils Assumption 26 and let 0 ≤ α < 1. If α > 0,

assume that B = (Bi)i∈[n] and C = (Ci)i∈[n] additionally satisfy

B2

C1
<

α

1− α
<
C2

B1
if n = 2, (15)

or

(n− 1)B∗

C∗
<

α

1− α
if n ≥ 3. (16)

(i) For all X ∈
∑n

i=1 dom(Ui) there is g ∈ C(n) such that

Λα (U(g(X))) = sup
Y∈ΓX

Λα(U(Y)) ∈ R.

g(X) is a weakly Pareto efficient allocation of X in case that free disposal is not allowed.

(ii) For all X ∈
∑n

i=1 dom(Ui) + L1
+ there is g ∈ C(n+ 1) such that gn+1(X) ≥ 0 and

Λα (U1(g1(X)), ...,Un(gn(X))) = sup
Y∈Γ̂X

Λα(U(Y)) ∈ R.

(g1(X), ..., gn(X)) is a weakly Pareto efficient allocation of X in case that free disposal

is allowed.

Proof. (i) is an immediate consequence of Lemmas A.1 and A.2 and Theorem 12(ii) if one

notices that X ∈ ∆ if, and only if, X ∈
∑n

i=1 dom(Ui).

(ii) follows from Lemmas A.1 and A.2 and Theorem 12(iii) as X ∈ ∆̂ if, and only if, X ≥ Y
for some Y ∈ ∆ =

∑n
i=1 dom(Ui), or equivalently, X ∈

∑n
i=1 dom(Ui) + L1

+. �

The reason not only to look at the quasi-concave sup-convolution given by Λ1, but also at

the weighted aggregation functions Λα for 0 < α < 1, is the following: Λ1 only depends

on the worst utility achieved by redistribution. It is unaffected by positive deviations from

the worst utility other agents may achieve. Therefore it has a bias to overemphasise and

sanction negative deviations from a systemic mean utility. The smaller one chooses α ∈ (0, 1),

the more the optimal value under aggregation Λα depends on the best utility achieved by

redistribution. Within the set of weak Pareto optima, Λα therefore has a bias towards those

allowing for well-performing agents, while the situation of the worst-performing agents is not

too dire at the same time.
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5.2. Game theory and core allocations. For this application, we consider the case n ≥ 3

for the sake of non-triviality. The following notions are adopted from Aliprantis & Burkinshaw

[3, Section 8.10].

Definition 30. Given a vector W ∈ (L1)n of initial endowments set W := W1 + ... + Wn.

A core allocation of W is a vector X ∈ ΓW such that no ∅ 6= S ⊂ [n] and Y ∈ ΓW with

the following properties can be found:

•
∑

i∈S Yi =
∑

i∈SWi;

• for all i ∈ S, Ui(Yi) > Ui(Xi).

The set of all core allocations of W is denoted by core(W).

Core allocations are fair redistributions of a vector of initial endowments: no subsystem

S ⊂ [n] of agents is disadvantaged in that they would be better off by withdrawing their

ressources from the larger system [n] and distributing them among themselves.

We are interested in the closely related question whether an aggregated quantity W ∈ L1 can

be split into initial endowments such that, relative to these, the allocation is already perceived

as fair in the sense of core allocations. More precisely, we ask if there is an allocation W ∈ ΓW
such that W ∈ core(W). We prove that solutions to a suitable optimisation problem of type

(1) do exactly satisfy this. For 0 < α < 1 consider the aggregation function

Ξα(y) :=
∑

∅6=S⊂[n]

αmin
i∈[n]

yi + (1− α) max
i∈S

yi

= (2n − 1)αmin
i∈[n]

yi + (1− α)
∑

∅6=S⊂[n]

max
i∈S

yi, y ∈ [−∞,∞)n,

Ξα is easily seen to be upper semicontinuous.

Theorem 31. Suppose U = (Ui)i∈[n] satisfies Assumption 26. Then there is 0 < α < 1 such

that for any W ∈
∑n

i=1 dom(Ui) there is g ∈ C(n) with the property

Ξα (U(g(W ))) = sup
W∈ΓW

Ξα(U(W)) ∈ R.

In particular, g(W ) ∈ core(g(W )) holds.

Proof. Let W ∈
∑n

i=1 dom(Ui). As limα↑1
α

1−α = ∞, we may choose α ∈ (0, 1) with the

property that
(n− 1)B∗

C∗
<

α

1− α
,

i.e. (16) is satisfied. As for all ∅ 6= S ⊂ [n] and all y ∈ [−∞,∞)n, we have

αmin
i∈[n]

yi + (1− α) max
i∈S

yi ≤ Λα(y)

and the latter function is coercive for (Ai, Bi, Ci)-functions satisfying (16) by Lemma A.1,

the mapping

[−∞,∞)n 3 y 7→ αmin
i∈[n]

yi + (1− α) max
i∈S

yi
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is coercive for u = (u1, ..., un) by Proposition 11(iii). By Proposition 11(ii), Ξα is coercive

for u. By Theorem 12(ii), there is g ∈ C(n) with the claimed properties.

It remains to prove that g(W ) ∈ core(g(W )). To this end, assume there is ∅ 6= S∗ ⊂ [n] and

Y ∈ ΓW such that∑
i∈S∗

Yi =
∑
i∈S∗

gi(W ) and ∀ i ∈ S∗ : Ui(gi(W )) < Ui(Yi).

Without loss of generality, we may assume Yi = gi(W ) for all i /∈ S∗. This implies

min
i∈[n]

Ui(Yi) ≥ min
i∈[n]

Ui(gi(W )) and max
i∈S

Ui(Yi) ≥ max
i∈S

Ui(gi(W )), ∅ 6= S ⊂ [n].

As furthermore maxi∈S∗ Ui(Yi) > maxi∈S∗ Ui(gi(W )), we obtain Ξα (U(g(W ))) < Ξα(U(Y))

which is a contradiction to g(W ) being a maximiser. Hence, g(W ) has to be a core

allocation of itself. �

5.3. Pareto efficiency with and without free disposal. In this section we turn to the

more restrictive and, compared to weak Pareto efficiency, economically more desirable prop-

erty of Pareto efficiency.

Definition 32. Let Γ ⊂ (L1)n be a attainable set. X ∈ Γ is called Pareto efficient or a

Pareto optimum, if Y ∈ Γ and Ui(Yi) ≥ Ui(Xi), i ∈ [n], implies Ui(Xi) = Ui(Yi), i ∈ [n].

Clearly, every Pareto efficient allocation is weakly Pareto efficient. Suppose now w :=

(w1, ..., wn) ∈ (0,∞)n is a vector of positive weights. We define the upper semicontinuous

aggregation function

Λw(y) :=

n∑
i=1

wiyi, y ∈ [−∞,∞)n.

As elaborated in the introduction, if X ∈ ΓX satisfies

n∑
i=1

wiUi(Xi) = Λw(U(X)) = sup
Y∈ΓX

Λw(U(Y)) ∈ R,

then X is Pareto efficient within ΓX . Analogously, X ∈ Γ̂X is Pareto efficient within Γ̂X
whenever

∑n
i=1wiUi(Xi) = sup

Y∈Γ̂X
Λw(U(Y)) ∈ R. A natural question is whether for a

particular choice of w ∈ (0,∞)n the function Λw checks the assumptions of Theorem 12.

Theorem 33. Suppose U = (Ui)i∈[n] fulfils Assumption 26. If w ∈ (0,∞)n, B = (Bi)i∈[n]

and C = (Ci)i∈[n] satisfy

B2

C1
<
w1

w2
<
C2

B1
if n = 2, (17)

or

(w ·B)∗ < (w ·C)∗ if n ≥ 3, (18)

the following assertions hold:
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(i) If X ∈
∑n

i=1 dom(Ui) there is g ∈ C(n) such that

Λw (U(g(X))) = sup
Y∈ΓX

Λw(U(Y)) ∈ R.

Consequently, g(X) is a Pareto efficient allocation of X in case free disposal is not

allowed.

(ii) If X ∈
∑n

i=1 dom(Ui) + L1
+ there is g ∈ C(n+ 1) such that gn+1(X) ≥ 0 and

Λw (U1(g1(X)), ...,Un(gn(X))) = sup
Y∈Γ̂X

Λw(U(Y)) ∈ R.

Consequently, (g1(X), ..., gn(X)) is a Pareto efficient allocation of X in case free dis-

posal is allowed.

Proof. Both (i) and (ii) follow from Lemma A.3 and Theorem 12 if one notices that ∆ =∑n
i=1 dom(Ui) and ∆̂ =

∑n
i=1 dom(Ui) + X+. �

Example 34. In this example, we consider two agents with different law-invariant utility

assessments. First, given some fixed constant β > 1, we set Q := {Q ∈ L∞+ | E[Q] = 1, Q ≤
β P-a.s.}. The preferences of agent 1 over L1 are of Yaari type and given by the concave

law-invariant and positively homogeneous utility function

U1(X) := inf
Q∈Q

E[QX], X ∈ L1,

for which U1|R is a (0, 1, 1)-function; c.f. Yaari [37]. Regarding agent 2, we assume that she

has law-invariant variational preferences. More precisely, assume that u2 : R → [−∞,∞)

is a utility function, i.e. u2 is concave, right-continuous, non-decreasing, dom(u2) 6= ∅ and

such that there are x, y ∈ dom(u2) such that u2(x) 6= u2(y). Moreover, let Q2 ⊂ L∞+ be

law-invariant with the property that E[Q] = 1 for all Q ∈ Q2, i.e. Q2 is a set of probability

densities with respect to P. We furthermore suppose a convex and law-invariant function α2 :

Q2 → R with the property ι := infQ∈Q2 α2(Q) > −∞ is given. Eventually, the preferences of

agent 2 are given by the utility function

U2(X) = inf
Q∈Q2

E[Qu2(X)] + α2(Q).

The right derivative u′2(x) := limy↓x
u2(y)−u2(x)

y−x ∈ [0,∞], x ∈ R, exists and is non-decreasing.

Let us assume we can find z− < z+ such that ∞ > u′2(z−) > u′2(z+). Then U2|R is an

(A, u′2(z+), u′2(z−))-function, where

A := max{u2(z+)− u′2(z+)z+ + ι, u2(z−)− u′2(z−)z− + ι}.

If we choose w1, w2 > 0 such that

u′2(z+) <
w1

w2
< u′2(z−),
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(17) is satisfied. By Theorem 33(i), for every X ∈ dom(U1) + dom(U2) = L1 + dom(U2) there

is g ∈ C(2) such that

∞ > w1U1(g1(X)) + w2U2(g2(X)) = sup
X∈ΓX

w1U1(X1) + w2U2(X2).

If we want to say more about the concrete shape of g, we need to make further assumptions

on U2. Hence, let us assume

• dom(U2) = dom(U2) + R;

• U2 is strictly monotone with respect to the a.s. order, i.e. X ≤ Y a.s. and P(X <

Y ) > 0 implies U2(X) < U2(Y );

• U2 is strictly risk averse conditional on lower tail events, that is,

U2(X) < U2

(
X1Ac + E[X1A]

P(A) 1A

)
whenever A is a lower tail event for X. The latter means that P(A) > 0 and

sup{m ∈ R | P({X ≤ m} ∩A) = 0} < inf{m ∈ R | P({X ≤ m} ∩A) = 1}
≤ sup{m ∈ R | P({X ≤ m} ∩Ac) = 0}.

Interpretationally, the infimal value X attains on A is strictly less than the supremal

value it attains on A, which is bounded from above by the infimal value attained on

Ac. As an illustrating example, assume that for some m ∈ R and some δ > 0 the

three probabilities P(X ≤ m), P(m < X ≤ m+δ), and P(X > m+δ) are all positive.

Then {X ≤ m+ δ} is a lower tail event for X.

If these additional conditions are met, then [31, Proposition 5.2] shows that g is of the shape

g(x) = (−(x− `)− + k,max{x, `} − k), x ∈ R,

for suitable constants k, ` ∈ R.

5.4. Pareto efficiency under individual rationality constraints. Here we solve the

problem of finding Pareto efficient allocations under individual rationality constraints as

posed in Ravanelli & Svindland [31].

As in Section 5.2 we assume all agents i ∈ [n] enter the system with an initial endowment.

These are given by a vector W ∈ (L1)n. Now, by means of redistribution, they aim to

improve the aggregated situation within the system, but in that redistribution they are not

willing to accept a loss in utility beyond a certain threshold compared to the utility of their

initial endowment. Given these thresholds ci ∈ [−∞,∞)n and some sensible positive weights

w ∈ (0,∞)n, we thus consider the optimisation problem

n∑
i=1

wiUi(Yi)→ max subject to Y ∈ ΓW (or Y ∈ Γ̂W ), Ui(Yi) ≥ Ui(Wi) + ci, i ∈ [n],

where W := W1 + ...+Wn, depending on whether free disposal is allowed in the redistribution

or not. Any solution of this optimisation problem will be a Pareto efficient allocation of the
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aggregated initial endowment W . We will model this situation by altering the attainable

sets, which are now defined by

Ac(W) := {X ∈ ΓW | Ui(Xi) ≥ Ui(Wi) + ci},

if free disposal is not allowed, or, provided free disposal is allowed,

Âc(W) := {X ∈ Γ̂W | Ui(Xi) ≥ Ui(Wi) + ci},

where W ∈ (L1)n is the vector of initial endowments. Clearly, the inclusion Ac(W) ⊂ Âc(W)

holds. However, it is not a priori clear whether for a given vector of initial endowments W

any of these two sets is non-empty.

For the next theorem, we set I∞ := {i ∈ [n] | ci = −∞}, a possibly empty set. However, we

may assume without loss of generality that I∞ ( [n], as otherwise we are in the situation of

Theorem 33. We also define the upper semicontinuous aggregation function

Λ(y) :=
n∑
i=1

yi, y ∈ [−∞,∞)n.

Theorem 35. Suppose U = (Ui)i∈[n] fulfils Assumption 26 and assume B = (Bi)i∈[n] and

C = (Ci)i∈[n] satisfy

max
i∈[n]

Bi − inf
i∈I∞

Ci < 0,

where infi∈I∞ Ci :=∞ if I∞ = ∅. Furthermore, let W ∈
∏n
i=1 dom(Ui), W := W1 + ...+Wn,

and let c ∈ [−∞,∞)n be a vector of individual rationality constraints.

(i) If Ac(W) 6= ∅ and supY∈Ac(W) Λ(U(Y)) > −∞, there is g ∈ C(n) such that

Λ (U(g(W ))) = sup
Y∈Ac(W)

Λ(U(Y)) ∈ R.

g(W ) is a Pareto efficient allocation of W which respects the individual rationality

constraints c in case free disposal is not allowed.

(ii) If Âc(W) 6= ∅ and sup
Y∈Âc(W)

Λ(U(Y)) > −∞ there is g ∈ C(n + 1) such that

gn+1(W ) ≥ 0 and

Λ (U1(g1(W )), ...,Un(gn(W ))) = sup
Y∈Âc(W)

Λ(U(Y)) ∈ R.

(g1(W ), ..., gn(W )) is a Pareto efficient allocation of W which respects the individual

rationality constraints c in case free disposal is allowed.

Proof. Both in (i) and (ii), if (g1(W ), ..., gn(W )) is a maximiser, its Pareto efficiency within

Ac(W) — or Âc(W), respectively — is immediately verified.

(i) We aim to apply Theorem 33 and therefore have to verify condition (18). Consider the

utility functions Ũi := Ui+ δ(·|Ci), where Ci := {Y ∈ L1 | Ui(Y ) ≥ Ui(Wi) + ci} is closed

and δ(·|Ci) is the concave indicator of this set. The family Ũ of new utility functions

Ũi checks Assumption 3. Furthermore, Ũi ≤ Ui. Hence, Ũi|R is also an (Ai, Bi, Ci)-

function, and Assumption 26 is checked.
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We shall now demonstrate that for all i ∈ [n], the parameter Ci can be assumed to

satisfy B∗ < Ci after potential manipulation. This would entail that (Ũ1, ..., Ũn) checks

the hypotheses of Theorem 33, namely (18) if we choose w = (1, 1, ..., 1).

To this end, note first that for all i ∈ I∞ the estimate B∗ < Ci holds by assumption.

Second, if i ∈ [n]\I∞, assume r ∈ R satisfies Ũi(r) > −∞. This implies Ũi(r) = ui(r) ≥
Ui(Wi) + ci > −∞. Hence, if additionally r < 0,

Ui(Wi) + ci ≤ ui(−|r|) ≤ Ai − Ci|r|,

which can be rearranged as

|r| ≤
∣∣∣∣Ui(Wi) + ci −Ai

Ci

∣∣∣∣ =: σi.

For ni ∈ N large enough, we have for all y ∈ [−σi,∞) that

Ai +Biy
+ − Ciy− ≤ ni +Biy

+ − (B∗ + 1)y−.

Hence, Ui is also a (ni, Bi,B
∗ + 1)-function.

Now we can conclude with Theorem 33 the existence of some g ∈ C(n) such that

n∑
i=1

Ũi(gi(W )) = sup
Y∈ΓW

n∑
i=1

Ũi(Yi) ∈ R.

The left-hand side would be −∞ if g(X) were not in the attainable set Ac(W), whence

we infer g(W ) ∈ Ac(W). This implies Ũi(gi(W )) = Ui(gi(W )) for all i ∈ [n]. Using

again that
∑n

i=1 Ũi(Yi) = −∞ if Y ∈ ΓW \Ac(W),

sup
Y∈ΓW

n∑
i=1

Ũi(Yi) = sup
Y∈Ac(W)

n∑
i=1

Ũi(Yi) = sup
Y∈Ac(W)

n∑
i=1

Ui(Yi).

(ii) The argument is in complete analogy with the argument for (i).

�

5.5. Aggregation with a view towards systemic risk. Throughout this section let

p,q, r ∈ Rn+ be such that
∑n

i=1 pi = 1. We consider the upper semicontinuous aggrega-

tion function

Λp,q,r(y) :=
n∑
i=1

−piy−i + qi(yi − ri)+, y ∈ [−∞,∞)n. (19)

It was suggested by Brunnermeier & Cheridito [5] as a way to aggregate individual profits

net of losses in a system of agents in a meaningful way to account for systemic risk; c.f. [20,

Example 4.3].

In the present setting, we may consider the the quantity Λp,q,r(U(X)), X ∈ (L1)n, and use

Λp,q,r to aggregate the individual utilities of the n agents. In such an application, it would

be more appropriate to think of Λp,q,r to account for systemic fairness.

Note that for some X ∈ (L1)n, Λp,q,r(U(X)) has a clear-cut interpretation: −piUi(Xi)
−,

i ∈ [n], only appears in the aggregation if i incurs a negative utility and is then weighted
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according to the impact or importance of agent i. Conversely, the term qi(Ui(Xi) − ri)
+

accounts, likewise in a weighted way, for the positive utility agent i gains as far as it exceeds

a certain individual threshold ri.

One easily sees that Λp,q,r is an upper semicontinuous aggregation function.

Theorem 36. Suppose U = (Ui)i∈[n] fulfils Assumption 26 and assume B = (Bi)i∈[n], C =

(Ci)i∈[n], and p,q ∈ Rn+ satisfy

(q ·B)∗ < (p ·C)∗. (20)

Let r ∈ Rn+ be arbitrary and define Λp,q,r as in (19).

(i) For all X ∈
∑n

i=1 dom(Ui) there is g ∈ C(n) such that

Λp,q,r (U(g(X))) = sup
Y∈ΓX

Λp,q,r(U(Y)) ∈ R.

(ii) For all X ∈
∑n

i=1 dom(Ui) + L1
+ there is g ∈ C(n+ 1) such that gn+1(X) ≥ 0 and

Λp,q,r(U1(g1(X)), ...,Un(gn(X))) = sup
Y∈Γ̂X

Λp,q,r(U(Y)) ∈ R.

Proof. Combine Lemma A.4 with Theorem 12. �

Appendix A. Coercivity results

In the following, given a vector u = (u1, ..., un) of (Ai, Bi, Ci)-functions, we set A := (Ai)i∈[n],

B := (Bi)i∈[n], and C := (Ci)i∈[n].

Lemma A.1. Assume u = (u1, ..., un) is a vector of (Ai, Bi, Ci)-functions ui : R→ [−∞,∞),

i ∈ [n]. Let 0 < α < 1 be a parameter which satisfies (15) if n = 2, or, provided n ≥ 3, (16).

Then the aggregation function

Λα(y) := αmin
i∈[n]

yi + (1− α) max
i∈[n]

yi, y ∈ [−∞,∞)n,

is upper semicontinuous and coercive for u.

Proof. The aggregation function Λα is clearly upper semicontinuous and non-decreasing in

the pointwise order on [−∞,∞)n. Fix x,m ∈ R and consider the set S(x,m) defined in

(6). In order to find the bound G(x,m) as in (7), we choose y ∈ S(x,m) arbitrary, set

I := {i ∈ [n] | yi < 0}, and distinguish the following cases:

Case 1: I = ∅. Then
∑n

i=1 |yi| =
∑n

i=1 yi ≤ x.

Case 2: y ∈ Rn−. Then

m ≤ αmin
i∈[n]

Ai − Ci|yi|+ (1− α) max
i∈[n]

Ai − Ci|yi| ≤ A∗ − αC∗max
i∈[n]
|yi|.

Rearranging this inequality yields
n∑
i=1

|yi| ≤ nmax
i∈[n]
|yi| ≤

n(A∗ −m)

αC∗
. (A.1)

Case 3: I 6= ∅ and J := {i ∈ [n] | yi > 0} 6= ∅.
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Case 3.1: If n = 2 and I = {1}, we have J = {2}. From the property y1 + y2 ≤ x we infer

|y2| = y2 ≤ x+ |y1|. Using this and each ui being an (Ai, Bi, Ci)-function, we can estimate

m ≤ α min
i=1,2

ui(yi) + (1− α) max
i=1,2

ui(yi) ≤ αu1(y1) + (1− α) max
i=1,2

ui(yi)

≤ α(A1 − C1|y1|) + (1− α) max{A1 − C1|y1|, A2 +B2y2}
≤ α(A∗ − C1|y1|) + (1− α)(A∗ +B2y2)

= A∗ − αC1|y1|+ (1− α)B2(x+ |y1|) = A∗ + (1− α)B2x+ ((1− α)B2 − αC1) |y1|.

By the first inequality in (15), (1− α)B2 − αC1 < 0. Hence, rearranging terms yields

|y1| ≤
A∗ + (1− α)B2x−m
|(1− α)B2 − αC1|

,

and eventually

|y1|+ |y2| ≤ x+ 2|y1| ≤ x+
2(A∗ + (1− α)B2x−m)

|(1− α)B2 − αC1|
. (A.2)

Case 3.2: If n = 2 and I = {2}, we obtain completely analogously to Case 3.1 that

|y1|+ |y2| ≤ x+ 2|y2| ≤ x+
2(A∗ + αB1x−m)

|αB1 − (1− α)C2|
. (A.3)

Case 3.3: n ≥ 3. As above,

max
j∈J
|yj | ≤

∑
j∈J

yj ≤ x+ (n− 1) max
i∈I
|yi|.

This allows us to infer

m ≤ αmin
i∈[n]

Ai +Biy
+
i − Ciy

−
i + (1− α) max

i∈[n]
Ai +Biy

+
i − Ciy

−
i

≤ αmin
i∈I

(A∗ − Ci|yi|) + (1− α) max
j∈J

(A∗ + Bjyj)

≤ A∗ − αC∗max
i∈I
|yi|+ (1− α)B∗max

j∈J
|yi|

≤ A∗ + (1− α)B∗x+ ((1− α)(n− 1)B∗ − αC∗) max
i∈I
|yi|.

Rearranging the preceding inequality and using that, by (16), (1− α)(n− 1)B∗ − αC∗ < 0,

we conclude

max
i∈I
|yi| ≤

A∗ + (1− α)B∗x−m
|(1− α)(n− 1)B∗ − αC∗|

,

and eventually

n∑
i=1

|yi| ≤ x+ 2
∑
i∈I
|yi| ≤ x+ 2(n− 1) max

i∈I
|yi|

≤ x+
2(n− 1)(A∗ + (1− α)B∗x−m)

|(1− α)(n− 1)B∗ − αC∗|
.

(A.4)
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Let G̃(x,m) be defined as the maximum of the bound (A.1)-(A.3) (if n = 2) or of (A.1), and

(A.4) (if n ≥ 3). Then

G(x,m) := max{G̃(x,m), x}, (x,m) ∈ R× R,

gives the desired bound (7).

Note that for all x ∈ R, G̃(x,m)→ −∞ as m→∞. We may hence consider the real-valued

function

H(x) := max{inf{s ∈ R | G̃(x, s) ≤ −1},A∗ + B∗x+ 1}, x ∈ R.

Fix m ≥ H(x) and suppose we can choose y ∈ S(x,m). By construction, y ∈ Rn+ has to

hold. We estimate

m ≤ max
i∈[n]

Ai +Biyi < A∗ + B∗x+ 1 ≤ H(x) ≤ m.

No such y can exist, and the function H has property (8). Λα is coercive for u. �

Lemma A.2. Assume u = (u1, ..., un) is a vector of (Ai, Bi, Ci)-functions ui : R→ [−∞,∞),

i ∈ [n]. Then the aggregation function Λ1(y) = mini∈[n] yi, y ∈ [−∞,∞)n, is upper semicon-

tinuous and coercive for u.

Proof. Λ1 is upper semicontinuous and non-decreasing in the pointwise order on [−∞,∞)n.

For coercivity in the case n ≥ 3, note that (n−1)B∗

C∗
<∞. Hence, for 0 < α < 1 close enough

to 1, the estimate
(n− 1)B∗

C∗
<

α

1− α
holds. Hence, Λ1(y) ≤ Λα(y) holds for all y ∈ [−∞,∞)n, and the latter function is coercive

for u by Lemma A.1. Coercivity of Λ1 follows with Proposition 11(iii).

It remains to treat the case n = 2. Let x,m ∈ R be arbitrary and suppose y ∈ S(x,m). Set

I := {i ∈ [n] | yi < 0} and consider the following cases:

Case 1: I = ∅. Then |y1|+ |y2| = y1 + y2 ≤ x.

Case 2: y ∈ Rn−. Then

m ≤ Λ1(u(y)) ≤ min{A1 − C1|y1|, A2 − C2|y2|} ≤ A∗ −C∗max
i=1,2

|yi|.

From a rearrangement of this inequality, we infer

|y1|+ |y2| ≤ 2 max
i=1,2

|yi| ≤
2(A∗ −m)

C∗
.

Case 3: |I| = 1.

Case 3.1: I = {1}. We use again that |y2| = y2 ≤ x− y1 = x+ |y1|. Note that

m ≤ Λ1(u(y)) ≤ min{A1 − C1|y1|, A2 +B2y2} ≤ A∗ −C∗|y1|.

From a rearrangement of this inequality, we obtain

|y1|+ |y2| ≤ x+ 2|y1| ≤ x+
2(A∗ −m)

C∗
.

Case 3.2: I = {2}. In this case, we obtain the same bound as in Case 3.1.



EFFICIENT ALLOCATIONS UNDER LAW-INVARIANCE 37

Consequently, the function

G(x,m) := max{x, x+ + 2(A∗−m)
C∗

}, (x,m) ∈ R× R,

has the desired property (7).

Now consider the function

H(x) := max
{
A∗ + C∗(

1
2x

+ + 1), A1 +B1x+ 1
}
, x ∈ R.

If m ≥ H(x), max{2(A∗−m)
C∗

, x+ 2(A∗−m)
C∗

} ≤ −1. Thus, if we could choose y ∈ S(x,m), Case

1 above would have to hold, i.e. y ∈ R2
+. Using that each ui is an (Ai, Bi, Ci)-function,

Λ1(u(y)) ≤ u1(y1) ≤ A1 +B1y1 < A1 +B1x+ 1 ≤ H(x) ≤ m.

This is a contradiction, and S(x,m) = ∅ has to hold. Hence, the function H has the

desired property (8), and Λ1 is coercive for u. �

Lemma A.3. Assume u = (u1, ..., un) is a vector of (Ai, Bi, Ci)-functions ui : R→ [−∞,∞),

i ∈ [n]. Moreover, suppose w ∈ (0,∞)n satisfies (17) if n = 2, or, if n ≥ 3, (18). Then the

aggregation function

Λw(y) :=
n∑
i=1

wiyi, y ∈ [−∞,∞)n,

is upper semicontinuous and coercive for u.

Proof. The function Λw is clearly upper semicontinuous and non-decreasing in the pointwise

order on [−∞,∞)n. In order to find a function G with property (7), fix x,m ∈ R and assume

y ∈ S(x,m) is arbitrarily chosen.

Case 1: y ∈ Rn+. Then
∑n

i=1 |yi| =
∑n

i=1 yi ≤ x.

Case 2: y ∈ Rn−. Then

m ≤ Λw(u(y)) =

n∑
i=1

wiui(yi) ≤
n∑
i=1

wi(Ai − Ci|yi|) ≤ n(w ·A)∗ − (w ·C)∗

n∑
i=1

|yi|.

Rearranging this inequality yields
n∑
i=1

|yi| ≤
n(w ·A)∗ −m

(w ·C)∗
. (A.5)

Case 3: y ∈ Rn\(Rn+ ∪ Rn−). We set I = {i ∈ [n] | yi < 0}.
Case 3.1: n = 2 and I = {1}. We have

m ≤ w1u1(y1) + w2u2(y2) ≤ w1A1 − w1C1|y1|+ w2A2 + w2B2|y2|.

Using |y2| = y2 ≤ x+ |y1|, one obtains

m ≤ 2(w ·A)∗ + w2B2x+ (w2B2 − w1C1)|y1|.

By the first inequality in (17), w2B2 − w1C1 < 0. Hence, rearranging this inequality yields

|y1|+ |y2| ≤ x+ 2|y1| ≤ x+
4(w ·A)∗ + 2(w ·B)∗|x| − 2m

|w2B2 − w1C1|
. (A.6)
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Case 3.2: If n = 2 and I = {2}, we obtain completely analogously to Case 3.1 that

|y1|+ |y2| ≤ x+ 2|y2| ≤ x+
4(w ·A)∗ + 2(w ·B)∗|x| − 2m

|w1B1 − w2C2|
. (A.7)

Combining Cases 1-3.2 implies that the function

G(x,m) := max

{
x,

2(w ·A)∗ −m
(w ·C)∗

, x+
4(w ·A)∗ + 2(w ·B)∗|x| − 2m

ξ

}
has property (7). Here, ξ := min{|w1B1 − w2C2|, |w2B2 − w1C1|}.
Case 3.3: n ≥ 3. As in preceding proofs,

∑
i∈[n]\I yi ≤ x+

∑
i∈I |yi|. This allows us to infer

m ≤
n∑
i=1

wiui(yi) ≤
∑

i∈[n]\I

wi(Ai +Bi|yi|) +
∑
i∈I

wi(Ai − Ci|yi|)

≤
n∑
i=1

wiAi + (w ·B)∗
∑

i∈[n]\I

|yi| − (w ·C)∗
∑
i∈I
|yi|

≤ n(w ·A)∗ + (w ·B)∗x+ ((w ·B)∗ − (w ·C)∗)
∑
i∈I
|yi|

Rearranging this inequality using (18) yields∑
i∈I
|yi| ≤

n(w ·A)∗ + (w ·B)∗x−m
|(w ·B)∗ − (w ·C)∗|

,

and, eventually,

n∑
i=1

|yi| ≤ x+ 2
∑
i∈I
|yi| ≤ x+

2 (n(w ·A)∗ + (w ·B)∗x−m)

|(w ·B)∗ − (w ·C)∗|
. (A.8)

Combining equations (A.5) and (A.8) shows that the function

G(x,m) := max

{
x,
n(w ·A)∗ −m

(w ·C)∗
, x+

2 (n(w ·A)∗ + (w ·B)∗x−m)

|(w ·B)∗ − (w ·C)∗|

}
has property (7), provided n ≥ 3.

We now turn our attention to the existence of a function H with property (8). Fix x ∈ R
and let H̃(x) := n(w ·A)∗ + (w ·B)∗x+ 1. If n = 2, consider

H(x) := max
{
H̃(x), (w ·C)∗ + 2(w ·A)∗, ξ(x+1)

2 + 2(w ·A)∗ + (w ·B)∗|x|
}
,

where ξ is defined as above. If m ≥ H(x), the right-hand sides of (A.5)-(A.7) are less or

equal to −1. If n ≥ 3, consider

H(x) := max
{
H̃(x), n(w ·A)∗ + (w ·C)∗,

|(w·B)∗−(w·C)∗|(x+1)
2 + n(w ·A)∗ + (w ·B)∗x

}
.

If m ≥ H(x) in this case, the right-hand sides of (A.5) and (A.8) are less or equal to −1.
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Suppose now m ≥ H(x) and S(x,m) 6= ∅. Then for all y ∈ S(x,m), Case 1 from above has

to hold, i.e. y ∈ Rn+. Moreover,

n∑
i=1

wiui(yi) ≤
n∑
i=1

wi(Ai +Biyi) < n(w ·A)∗ + (w ·B)∗x+ 1 = H̃(x) ≤ H(x) ≤ m,

which is absurd. Hence, the function H has property (8). �

Lemma A.4. Assume u = (u1, ..., un) is a vector of (Ai, Bi, Ci)-functions ui : R→ [−∞,∞),

i ∈ [n]. If p,q ∈ Rn+ satisfy (20) and r ∈ Rn+ is arbitrary, the aggregation function

Λp,q,r(y) :=
∑n

i=1−piy
−
i + qi(yi − ri)+, y ∈ [−∞,∞)n,

is upper semicontinuous and coercive for u.

Proof. By Remark 25(iii), we may assume without loss of generality that Ai ≥ 0 holds for

all i ∈ [n].

As already observed, the function Λp,q,r is upper semicontinuous and non-decreasing in the

pointwise order on [−∞,∞)n. In order to find the function G, fix x,m ∈ R and let y ∈
S(x,m) be arbitrary. Again, we set I := {i ∈ [n] | yi < 0}.
Case 1: I = ∅, i.e. y ∈ Rn+. As in the preceding proofs,

∑n
i=1 |yi| ≤ x.

Case 2: y ∈ Rn−. Then

m ≤ Λp,q,r (u(y)) ≤
n∑
i=1

−pi(Ai − Ci|yi|)− + qi(Ai − Ci|yi| − ri)+

≤
n∑
i=1

pi(Ai − Ci|yi|) + qi(Ai − ri)+ ≤ n(p ·A)∗ − (p ·C)∗

n∑
i=1

|yi|+
n∑
i=1

qi(Ai − ri)+.

As piCi > 0 for all i ∈ [n], we obtain

n∑
i=1

|yi| ≤
n(p ·A)∗ +

∑n
i=1 qi(Ai − ri)+ −m

(p ·C)∗
. (A.9)

Case 3: I 6= ∅ and yj > 0 for some j ∈ J := [n]\I.

Setting I ′ := {i ∈ I | Ai − Ci|yi| > ri} and J ′ := {j ∈ J | Aj +Bjyj > rj}, we have

m ≤ Λp,q,r (u(y)) ≤
∑
i∈I
−pi(Ai − Ci|yi|)− + qi(Ai − Ci|yi| − ri)+

+
∑
j∈J
−pj(Aj +Bj |yj |)− + qj(Aj +Bj |yj | − rj)+

≤
∑
i∈I

pi(Ai − Ci|yi|) +
∑
i∈I′

qi(Ai − Ci|yi|)

+
∑
j∈J ′

qj(Aj +Bj |yj |).

In the last step, we have used that for j ∈ J , our assumption Aj ≥ 0 implies (Aj+Bjyj)
− = 0.
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• The estimate∑
i∈I

pi(Ai − Ci|yi|) ≤ n(p ·A)∗ − (p ·C)∗
∑
i∈I
|yi| =: ρ1 − (p ·C)∗

∑
i∈I
|yi|

is immediate.

• We have
∑

i∈I′ qi(Ai − Ci|yi|) ≤ n(q ·A)∗ =: ρ2.

• From
∑

j∈J ′ |yj | ≤
∑

j∈J yj ≤ x+
∑

i∈I |yi|, we conclude∑
j∈J ′

qj(Aj +Bj |yj |) ≤ ρ2 + (q ·B)∗

(
x+

∑
i∈I
|yi|

)
.

Combining all estimates above, we obtain

m ≤ ρ1− (p ·C)∗
∑
i∈I
|yi|+ 2ρ2 + (q ·B)∗

(
x+

∑
i∈I
|yi|

)
=: ρ3 + ((q ·B)∗ − (p ·C)∗)

∑
i∈I
|yi|.

The constant ρ3 ∈ R is independent of y. We rearrange the inequality and use (20) in order

to obtain ∑
i∈I
|yi| ≤

ρ3 −m
|(q ·B)∗ − (p ·C)∗|

.

Consequently, the bound∑
i∈[n]

|yi| ≤ x+ 2
∑
i∈I
|yi| ≤ x+

2(ρ3 −m)

|(q ·B)∗ − (p ·C)∗|
(A.10)

holds. Let G̃(x,m) be defined as the maximum of the bounds in (A.9) and (A.10). As in the

preceding proofs, the function G(x,m) := max{x, G̃(x,m)}, (x,m) ∈ R × R, has property

(7).

Note that for all x ∈ R we have G̃(x,m) → −∞ as m → ∞. This allows us to define a

function H which has property (8) by

H(x) := max{inf{s ∈ R | G̃(x, s) ≤ −1}, n(q ·A)∗ + (q ·B)∗x+ 1}, x ∈ R.

The proof of the assertion is completely analogous to the preceding cases. �
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