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Abstract

We prove that in a discrete-time market model the lower arbitrage bound of an American
contingent claim is itself an arbitrage-free price if and only if it corresponds to the price of the
claim optimally exercised under some equivalent martingale measure.
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1 Introduction

An American contingent claim H is a contract which obliges the seller to pay a certain amount
Hτ ≥ 0 if the buyer of that claim decides to exercise it at a (stopping) time τ . A price π of such
an American contingent claim is said to be fair or arbitrage-free if it satisfies the following two
conditions. On the one hand, π should not be too expensive from the buyer’s point of view, in
the sense that there exists an exercise time τ such that π is a fair price for the payoff Hτ . On the
other hand, the price π should not be too cheap from the seller’s point of view, meaning that there
is no exercise time σ such that the fair prices of the payoff Hσ all exceed π. It is well understood
that in an arbitrage-free market the arbitrage-free pricing of H is closely related to an optimal
stopping problem. Indeed, let π = EQ[Hτ ] where Q is an equivalent martingale measure and τ is
an optimal exercise time for H under Q , i.e., τ solves

EQ[Hτ ] = sup{EQ[Hσ] | σ is an exercise time }. (1.1)

It is easily verified that π is an arbitrage-free price for H. But the converse, that is the fact that
every arbitrage-free price of an American contingent claim originates from the solution to (1.1)
under some equivalent martingale measure, has not been clear so far. To be more precise, the
problem here is the lower arbitrage bound π(H) of H, i.e., the infimum over all arbitrage-free
prices of H, which may or may not be itself an arbitrage-free price. In case π(H) is an arbitrage-
free price, it was an open question whether there exists a minimal equivalent martingale measure
in the sense that the solution to (1.1) under that measure yields the price π(H). In this paper we
prove that this is indeed the case, and we also give characterizations of this situation in terms of
replicability properties of H (Theorem 2.3).
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In his doctoral thesis [9], Trevino Aguilar studies a closely related problem in a continuous-time
framework. Indeed, [9] provided some very useful ideas of how to attack the problem.

The remainder of the paper is organized as follows: In Section 2 we introduce the market model,
give a short overview over the arbitrage pricing theory as regards American contingent claims
and state our main result in Theorem 2.3. The proof of Theorem 2.3 is then carried out through
Section 3. Finally, in Section 4 we provide an example illustrating our main results.

We assume that the reader is familiar with standard multi-period discrete-time arbitrage theory
such as outlined in Föllmer and Schied [2]. The book [2] is our main reference, and our setup and
notation will to a major extent be adopted from there. As regards the arbitrage pricing theory of
American contingent claims and the related theory of Snell envelopes, we also refer the reader to
[1, 3, 4, 6, 8].

2 The Main Result

We consider a discrete-time market model in which d assets are priced at times t = 0, . . . , T
with T ∈ N. The information available in the market is modeled by a filtered probability space
(Ω,F , (Ft)t=0,...,T ,P) with

F0 = {∅,Ω} and FT = F .

Throughout the paper, all equalities and inequalities between random variables are understood
in the P-almost sure sense. Following standard arbitrage theory, we assume the existence of a
strictly positive asset which is used as numéraire for discounting. We indicate by Si = (Sit)t=0,...,T ,
i = 1, . . . , d, the discounted price process of the asset i, which is assumed to be non-negative and
adapted to the filtration (Ft)t=0,...,T . LetM be the set of equivalent martingale measures, that is,
the set of probability measures Q on (Ω,F) such that Q is equivalent to P and S = (S1, . . . , Sd)
is a (d-dimensional) martingale under Q. We assume that the market S is arbitrage-free which is
equivalent to M 6= ∅; see [2, Theorem 5.17].

For the remainder of the paper we consider a (discounted) American contingent claim, i.e. a
non-negative (Ft)-adapted process H = (Ht)t=0,...,T . We assume that

Ht ∈ L1(Ω,F ,Q) for all t = 0, . . . , T and Q ∈M.

Let T denote the set of stopping times τ : Ω → {0, . . . , T}. For each time τ ∈ T , the random
variable Hτ is the discounted payoff obtained by exercising the American contingent claim H at
time τ . Note that Hτ can be considered as the discounted payoff of a European contingent claim,
thus the set of arbitrage-free prices of Hτ is given by

Π(Hτ ) = {EQ[Hτ ] | Q ∈M and EQ[Hτ ] <∞},

see [2, Theorem 5.30]. We define the set of arbitrage-free prices of an American contingent claim
as in [2, Definition 6.31], reflecting the asymmetric connotation of such a contract: the seller must
hedge against all possible exercise times, while the buyer only needs to find one favorable exercise
strategy.

Definition 2.1. A real number π is an arbitrage-free price of the American contingent claim H
if the following two conditions are satisfied:

(i) There exists some τ ∈ T and π′ ∈ Π(Hτ ) such that π ≤ π′.

(ii) There is no τ ∈ T such that π < π′ for all π′ ∈ Π(Hτ ).

The set of arbitrage-free prices of H is denoted by Π(H).
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Recall that in case of a European contingent claim, the set of arbitrage-free prices is either an
open interval or a singleton, the latter case being equivalent to replicability, that is, to the existence
of a self-financing strategy whose discounted terminal value equals the value of the claim; see [2,
Theorem 5.33]. In case of an American contingent claim it is well understood that Π(H) is a real
interval with endpoints

π(H) = inf
Q∈M

sup
τ∈T

EQ[Hτ ] and π(H) = sup
Q∈M

sup
τ∈T

EQ[Hτ ],

and that Π(H) either consists of one single point or does not contain its upper endpoint π(H); see
[2, Theorem 6.33]. In the second case, however, in contrast to the pricing of a European contingent
claim, both situations

π(H) ∈ Π(H) and π(H) /∈ Π(H)

can occur, see Section 4 and [2, Example 6.34]. Let us now establish the relation between the
prices in Π(H) and the optimal stopping of H under some Q ∈M.

Definition 2.2. A stopping time τ ∈ T is an optimal stopping time for H under Q ∈M if

EQ[Hτ ] = sup
σ∈T

EQ[Hσ].

We denote by T ∗ the set of all optimal stopping times:

T ∗ := {τ ∈ T | τ is an optimal stopping for H under some Q ∈M}.

It is well-known that the set of optimal stopping times for H under any Q ∈M is non-empty;
see [2, Theorem 6.20]. Note also that the set

P := {EQ[Hτ ] | Q ∈M and τ ∈ T is optimal under Q }

is an interval with bounds π(H) and π(H); see [2, proof of Theorem 6.33]. It is easily verified
that P ⊆ Π(H). Hence, if π(H) 6∈ Π(H), then P = Π(H). However, in case π(H) ∈ Π(H),
it has been an open question whether P = Π(H) too, i.e., whether there exists an equivalent

martingale measure Q ∈ M and an optimal stopping time τ under Q such that EQ[Hτ ] = π(H).
In Theorem 2.3, which is our main result, we show that this is indeed the case. Moreover, we also
give a detailed characterization of this situation in terms of replicability of the European contingent
claim corresponding to exercising H at a specific stopping time.

Theorem 2.3. Let τ̂ := ess inf{τ | τ ∈ T ∗}. Then τ̂ ∈ T , and the following conditions are
equivalent:

(i) π(H) ∈ Π(H).

(ii) Hτ̂ is replicable (at price π(H)).

(iii) There exists Q ∈M and an optimal stopping time τ for H under Q such that EQ[Hτ ] = π(H).

(iv) There exists τ ∈ T ∗ such that Hτ is replicable.

The proof of Theorem 2.3 needs some preparation and will be given at the end of Section 3.
Notice that Theorem 2.3 extends the case of European contingent claims. Indeed, let H correspond
to a European contingent claim, i.e. Ht = 0 for all t = 0, . . . , T − 1, and Y := HT ≥ 0. Then
clearly Hτ̂ = Y , thus π(H) = inf Π(Y ) is arbitrage-free if and only if Y is replicable.

From our previous remarks and Theorem 2.3 we obtain the following:
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Corollary 2.4. Π(H) = {EQ[Hτ ] | Q ∈M and τ is optimal for H under Q}.

Remark 2.5. The existence of a “worst-case probability measure” Q for the lower Snell envelope
of an American contingent claim H with respect to a convex family N of equivalent probability
measures, in the sense that Q ∈ N shall satisfy

sup
τ∈T

EQ[Hτ ] = inf
Q∈N

sup
τ∈T

EQ[Hτ ],

has been studied in the literature by for instance [9] and [7]; see also the references therein.
Existence results are known under the assumption that the set of densities

{
dQ
dP | Q ∈ N

}
is a

subset of Lp(Ω,F ,P) and compact in the σ(Lp(Ω,F ,P), Lq(Ω,F ,P))-topology for some p ∈ [1,∞)
and q := p/(p − 1) where 1/0 := ∞. However, when studying the lower arbitrage bound π(H),
the set of test measures N equals the set of equivalent martingale measures M, for which this
compactness assumption is satisfied if and only if the market is complete (M = {Q}). Indeed, if
D :=

{
dQ
dP | Q ∈M

}
is σ(Lp(Ω,F ,P), Lq(Ω,F ,P))-compact, then for each C ∈ L∞(Ω,F ,P) the

continuous function D 3 Z 7→ E[ZC] attains its maximum over D which means that the upper
arbitrage bound of the European contingent claim C is itself an arbitrage-free price. Hence, C is
replicable ([2, Theorem 5.33]), and thus the market is complete. Therefore, the mentioned results
cannot be applied in our setting. Note that Theorem 2.3 does not require any further condition
on the set of equivalent martingale measures M. ♦

3 Discussion and Proof of Theorem 2.3

In what follows we introduce the basic tools needed for the proof of Theorem 2.3.

Definition 3.1. For Q ∈ M, the Snell envelope UQ = (UQ
t )t=0,...,T of the American contingent

claim H with respect to the measure Q is defined by

UQ
t = ess sup

τ∈T ,τ≥t
EQ[Hτ | Ft], t = 0, . . . , T.

The lower Snell envelope U↓ = (U↓t )t=0,...,T of H (w.r. to M) is defined by

U↓t = ess inf
Q∈M

UQ
t = ess inf

Q∈M
ess sup
τ∈T ,τ≥t

EQ[Hτ | Ft], t = 0, . . . , T.

In particular, U↓0 = π(H).

The process UQ is the smallest Q-supermartingale dominating H. It is known that τ ∈ T
is an optimal stopping time for H under Q if and only if Hτ = UQ

τ and the stopped process
(UQ)τ := (UQ

τ∧t)t=0,...,T is a Q-martingale. Moreover, τQ := inf{t ≥ 0 | UQ
t = Ht} is the minimal

optimal stopping time for H under Q; see [2, Proposition 6.22]. In particular, the stopping time τ̂
introduced in Theorem 2.3 satisfies τ̂ = ess infQ∈M τQ.

Lemma 3.2. The set {τQ | Q ∈ M} is downward directed, hence τ̂ is a stopping time. In
particular, there exists a sequence (Qk)k∈N ∈M such that {τQk = τ̂} ↗ Ω for k →∞.

Proof. The fact that {τQ | Q ∈M} is downward directed follows as in the proof of [9, Theorem 5.6].
This implies that there is a sequence (Qk)k∈N ⊂M such that τQk ↘ τ̂ . From that it follows that
τ̂ = ess inf{τQk | k ∈ N} is a stopping time. Moreover, as time is discrete and by monotonicity of
the sequence (τQk)k∈N, we deduce that {τQk = τ̂} ↗ Ω for k →∞.
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Notice that, according to Lemma 3.2, for almost all ω ∈ Ω we have τ̂(ω) = τPω (ω) for some
Pω ∈M. Hence we obtain that for almost all ω

Hτ̂ (ω) = HτPω (ω) = UPω

τPω
(ω) ≥ U↓

τPω
(ω) = U↓τ̂ (ω) ≥ Hτ̂ (ω).

Consequently
U↓τ̂ = Hτ̂ . (3.1)

Proposition 3.3. The lower Snell envelope U↓ satisfies the following properties:

(i) (U↓)τ̂ is a M-submartingale, i.e., a submartingale under each Q ∈M.

(ii) If Hτ̂ is replicable at price π(H), then (U↓)τ̂ is a M-martingale.

Proof. Fix Q ∈ M. Notice that for every t ∈ {0, . . . , T} there is a sequence (Qk)k∈N ⊂ M such

that UQk
t ↘ U↓t and Qk|Ft

= Q|Ft
for all k; see [2, Proposition 6.45 and Lemma 6.50]. Now, for

every t ∈ {1, . . . , T},

EQ[U↓τ̂∧t | Ft−1] = U↓τ̂ 1{τ̂≤t−1} + EQ[U↓t | Ft−1]1{τ̂≥t}

and

EQ
[
U↓t | Ft−1

]
1{τ̂≥t} = lim

k→∞
EQ
[
UQk
t | Ft−1

]
1{τ̂≥t} = lim

k→∞
EQk

[
UQk

τQk∧t | Ft−1
]

1{τ̂≥t}

= lim
k→∞

UQk

τQk∧(t−1)1{τ̂≥t} = lim
k→∞

UQk
t−11{τ̂≥t} ≥ U↓t−11{τ̂≥t},

where we use the dominated convergence theorem in the first equality since 0 ≤ UQk
t ≤ UQ1

t ≤
EQ1 [

∑T
s=tHs | Ft], and the facts that Qk|Ft

= Q|Ft
, τ̂ ≤ τQ, and (UQk)τ

Qk is a Qk-martingale for
the rest. As Q ∈M was arbitrary, (i) is proved.

In order to prove (ii), let Hτ̂ be replicable at price π(H) and let Q ∈M. Then in combination
with (3.1) and (i) we have for all t = 0, . . . , T that

π(H) = EQ[Hτ̂ ] = EQ[U↓τ̂ ] ≥ EQ[U↓τ̂∧t] ≥ U
↓
0 = π(H),

thus (U↓)τ̂ is a martingale under Q.

Lemma 3.4. Let τ ∈ T be such that Hτ is replicable, then the unique arbitrage-free price p of Hτ

satisfies p ≤ π(H). Moreover, if τ ∈ T ∗, then p = π(H).

Proof. For any τ ∈ T and Q ∈M we have

p = EQ[Hτ ] ≤ sup
σ∈T

EQ [Hσ] = UQ
0 , (3.2)

and taking the infimum on the right-hand side over all Q ∈ M yields p ≤ π(H). Moreover, if
τ ∈ T ∗, then there exists a Q ∈M such that equality holds in (3.2).

Proposition 3.5. Let Hτ̂ be replicable at price π(H). Then

Q :=
{
Q ∈M | UQ

τ̂ = Hτ̂

}
=
{
Q ∈M | UQ

0 = π(H)
}
. (3.3)
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Proof. Let Q ∈ Q. According to Proposition 3.3, (U↓)τ̂ is a Q-martingale. We show that the
process

Ũt := UQ
t 1{τ̂<t} + U↓t 1{τ̂≥t}

is a Q-supermartingale dominating H. Indeed, for any t ∈ {1, . . . T} we have that

EQ[Ũt | Ft−1] = EQ[UQ
t | Ft−1]1{τ̂<t} + EQ[U↓τ̂∧t | Ft−1]1{τ̂≥t}

≤ UQ
t−11{τ̂≤t−1} + U↓τ̂∧(t−1)1{τ̂>t−1} = Ũt−1,

where we use the supermartingale property of UQ and (U↓)τ̂ and the fact that UQ
τ̂ = Hτ̂ = U↓τ̂ by

(3.1). Therefore Ũ is a Q-supermartingale which obviously dominates H since both UQ and U↓

do. By [2, Proposition 6.11], UQ is the smallest Q-supermartingale dominating H, which implies

that UQ
0 ≤ Ũ0 = π(H). Hence UQ

0 = π(H), and the inclusion ’⊆’ in (3.3) is proved.

Now let Q ∈ M be such that UQ
0 = π(H). Then, as UQ is a Q-supermartingale dominating H

and Hτ̂ is replicable at price π(H), we have

π(H) = UQ
0 ≥ EQ[UQ

τ̂ ] ≥ EQ[Hτ̂ ] = π(H).

This implies UQ
τ̂ = Hτ̂ and concludes the proof of the proposition.

Proof of Theorem 2.3. In Lemma 3.2 it is shown that τ̂ ∈ T .
(i) ⇒ (ii): Let π(H) ∈ Π(H). The second property of Definition 2.1 implies the existence of

some P̃ ∈ M such that π(H) ≥ EP̃[Hτ̂ ]. From Proposition 3.3 (i) we know that (U↓)τ̂ is a
M-submartingale. In conjunction with (3.1) we obtain for all Q ∈M that

EQ [Hτ̂ ] = EQ
[
U↓τ̂

]
≥ U↓0 = π(H).

Taking the infimum over all Q ∈M we arrive at

EP̃[Hτ̂ ] ≤ π(H) ≤ inf
Q∈M

EQ[Hτ̂ ] ≤ EP̃[Hτ̂ ],

which yields

EP̃[Hτ̂ ] = π(H) = inf
Q∈M

EQ[Hτ̂ ].

Consequently, the set of arbitrage-free prices for the European contingent claim Hτ̂ contains its
lower bound. Thus Hτ̂ is replicable and Π(Hτ̂ ) = {π(H)}; see [2, Theorem 5.33].
(ii)⇒ (iii): Let Hτ̂ be replicable. From Lemma 3.4, and since EQ[Hτ̂ ] ≥ π(H) for all Q ∈M as in
the proof of Proposition 3.3 (ii), it follows that the unique price of Hτ̂ is π(H). Now fix P∗ ∈ M.
According to Lemma 3.2, there is a sequence (Qk)k∈N ⊂ M such that Ak := {τQk = τ̂} ↗ Ω.
Defining

Bk := Ak \
k−1⋃
m=1

Am ∈ Fτ̂ ,

we get

τ̂ =

∞∑
k=1

τQk1Bk
.

Now consider the probability measure P̃ obtained by pasting the measure P∗ with the measures
Qk on Bk in τ̂ , i.e., P̃ defined via

P̃(A) = EP∗
[ ∞∑
k=1

EQk [1A∩Bk
| Fτ̂ ]

]
, A ∈ F ,
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cf. [2, Lemma 6.49]. Clearly P̃ is equivalent to P. Moreover, P̃ ∈ M since for i = 1, . . . , d and
t = 0, . . . , T − 1 we have

EP̃[Sit+1 | Ft] = EP∗ [Sit+1 | Ft]1{τ̂≥t+1} +

∞∑
k=1

EQk [Sit+1 | Ft]1Bk∩{τ̂≤t} = Sit

as Bk ∩ {τ̂ ≤ t} ∈ Ft. Since on Bk we have UQk

τ̂ = Hτ̂ , by monotone convergence

Hτ̂ =

∞∑
k=1

UQk

τ̂ 1Bk
=

∞∑
k=1

ess sup
σ∈T ,σ≥τ̂

EQk [Hσ1Bk
| Fτ̂ ]

=

∞∑
k=1

ess sup
σ∈T ,σ≥τ̂

EP̃[Hσ1Bk
| Fτ̂ ] ≥ ess sup

σ∈T ,σ≥τ̂

∞∑
k=1

EP̃[Hσ1Bk
| Fτ̂ ]

= ess sup
σ∈T ,σ≥τ̂

EP̃[Hσ | Fτ̂ ] = U P̃
τ̂ ≥ Hτ̂ .

This means that P̃ ∈M verifies U P̃
τ̂ = Hτ̂ . Proposition 3.5 then yields U P̃

0 = π(H) and (iii) follows.

(iii) ⇒ (i): As already mentioned, UQ
0 = EQ[Hτ ] clearly satisfies both conditions in Definition 2.1.

(iii)⇒ (iv): Let Q ∈M such that UQ
0 = π(H), then, according to the equivalences already proved,

Hτ̂ is replicable at price π(H). We show that τQ = τ̂ . Indeed,

π(H) = UQ
0 = EQ [HτQ ] ≥ EQ [Hτ̂ ] = π(H)

implies that EQ [HτQ ] = EQ [Hτ̂ ]. Hence τ̂ is optimal under Q and therefore τQ = τ̂ .
(iv) ⇒ (iii): This implication follows from Lemma 3.4

Our main results are expressed in terms of the stopping time τ̂ , for which we know that
U↓τ̂ = Hτ̂ ; see (3.1). Let us consider the first time when the lower Snell envelope U↓ of H equals
H, that is,

τ↓ := inf{t ≥ 0 | U↓t = Ht}.

Clearly we have τ↓ ≤ τ̂ . It might be expected that τ↓ plays a similarly important role in the
analysis of U↓ as the stopping times τQ do for UQ. Concerning this matter, see for instance the
discussion of the lower Snell envelope as outlined in [2]. A natural question is whether τ↓ and τ̂
do coincide, or in case they do not, whether at least the analysis carried out in this section could
also be done replacing τ̂ by the earlier stopping time τ↓. However, the answer to both questions is
no. In Section 4 we show that τ↓ and τ̂ need not coincide, and that Hτ↓ can be replicable without
π(H) being an arbitrage-free price for H. Consequently, τ↓ is not suited for a characterization of
the situation π(H) ∈ Π(H). Nevertheless, we have the following result:

Proposition 3.6. π(H) ∈ Π(H) if and only if both τ↓ ∈ T ∗ and Hτ↓ is replicable. In either case
τ̂ = τ↓.

Proof. Suppose that π(H) ∈ Π(H) and let Q and τ be as in Theorem 2.3 (iii). Since (U↓)τ̂ is a
Q-martingale by Proposition 3.3, Doob’s stopping theorem yields

EQ[Hτ↓ ] = EQ[U↓
τ↓

] = U↓0 = π(H) = EQ[Hτ ].

Hence τ↓ is optimal under Q, so τ̂ ≤ τQ ≤ τ↓ ≤ τ̂ . Therefore τ̂ = τQ = τ↓ and Hτ↓ = Hτ̂ is
replicable by Theorem 2.3. The reverse implication follows directly from Theorem 2.3.
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4 An Illustrating Example

LetX1, X2 be standard normal distributed random variables on the probability spaces (Ωi,Ai,Pi), i =
1, 2, respectively, and consider the product space Ω = Ω1 × Ω2, F = A1 ⊗ A2, and P = P1 ⊗ P2.
We define the random variables X̃i on (Ω,F ,P) by X̃i(ω1, ω2) = −1 +

√
2Xi(ωi), i = 1, 2. Let the

discounted stock price of the risky asset on (Ω,F ,P) be given by

S0 = 1, S1 = eX̃1 , S2 = eX̃1+X̃2 .

The filtration is
F0 = {∅,Ω}, F1 = σ(X̃1), F2 = σ(X̃1, X̃2).

Consider the following discounted American contingent claim:

H0 = 0, H1 = eX̃1 , H2 = eX̃1+
1
2 X̃2 .

Clearly τQ ≥ 1 for any equivalent martingale measure Q ∈ M. Moreover, note that P ∈ M and
that, for any τ ∈ T such that τ ≥ 1,

EP[Hτ ] = EP[eX̃11{τ=1} + eX̃1+
1
2 X̃21{τ=2}] = EP[eX̃11{τ=1}] + EP[eX̃11{τ=2}] · EP[e

1
2 X̃2 ] ≤ 1,

where the last inequality is strict if P(τ = 2) > 0 since EP[e
1
2 X̃2 ] < 1. In particular this gives

τP = 1, which in turn implies τ̂ = 1. Therefore, Hτ̂ = S1 is replicable and Theorem 2.3 ensures
that π(H) is an arbitrage-free price for H.

Now consider another discounted American contingent claim, given by

H0 = 0, H1 = eX̃1 , H2 = eX̃1Z where Z = eX̃21{X̃2>1} + 1{X̃2≤1}.

Since Z ≥ 1 and P(Z > 1) > 0, for each stopping time τ ∈ T we have Hτ ≤ H2, and one verifies
that τQ = 2 for all Q ∈ M, and thus τ̂ = 2. However, one can find a sequence of equivalent
martingale measures (Qn)n∈N such that EQn [Z | F1] → 1 as n → ∞. Therefore U↓1 = H1, hence
τ↓ = 1 < 2 = τ̂ . In addition we have that Hτ↓ = S1 is replicable, whereas Hτ̂ is not, so π(H) is
not an arbitrage-free price by Theorem 2.3.
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